
Quantum State Reconstruction1

Quantum state reconstruction, or state reconstruction for short, aims at identifying
an unknown →quantum state on the basis of experimentally accessible data. The
Quantum Optics community usually refers to this inverse problem as quantum (state)
tomography while the expression quantum state estimation is often used in the field of
→Quantum Information. Reconstruction procedures depend on the physical context
defined by the system carrying the unknown state, the experimentally accessible ob-
servables, the size of the ensemble of systems prepared in the unknown state, and
the precision of the measured data.

A two-level system (such as a spin-1/2, a qubit, or the two polarizations of a
photon) prepared in a state with density matrix ρ̂ is sufficient to illustrate the idea
of state reconstruction. With two positive eigenvalues summing to one, the density
matrix is a positive operator, and it depends on three real parameters. In its Bloch
representation, the parameters combine to a real vector n with length |n| ≤ 1,

ρ̂ =
1

2
(I + n · σ̂) ,

where I denotes the identity operator, and the components of the spin operator σ̂

are given by the →Pauli matrices σ̂x, σ̂y, and σ̂z. This parametrization of the density
matrix ρ̂ is immediatly useful for state reconstruction since the components of the
vector n coincide with the →expectation values of the →Pauli matrices in the state ρ̂,

nj = Tr[σ̂j ρ̂] ≡ 〈σ̂j〉ρ , j = x, y, z .

The three observables σ̂x, σ̂y, and σ̂z are informationally complete: any state ρ̂ of the
two-level system is determined uniquely by the values of the measured expectations
〈σ̂x〉ρ, 〈σ̂y〉ρ, and 〈σ̂z〉ρ. No pair of observables allows one to reconstruct the state of a
two-level system but many other triples (and larger sets) of observables exist which
are also informationally complete.This flexibility is highly desirable from an experi-
mental point of view. Specific reconstruction procedures will take into account any
additional information: if a system is known to reside in a →pure state, for example,
it will be sufficient to measure a smaller number of →expectation values.

The reconstruction of a quantum state in a laboratory is necessarily based on
→expectation values which are known only approximately: any ensemble used to
measure an →expectation value such as 〈σ̂x〉ρ is finite, and any measuring apparatus
invariably introduces uncertainties. Consequently, the collected data will be compati-
ble with a continuous family of quantum states. The reconstruction is complicated by
the fact that unacceptable density matrices with negative eigenvalues may arise upon
inverting the information contained in experimentally observed mean values. To de-
termine the ‘best’ candidate among the acceptable states requires additional selection
criteria such as the maximum-likelihood method, for example.
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In 1933, W. Pauli raised he question [1] whether the probability distributions
|〈q|ψ〉|2dq (to find a particle located near position q) and |〈p|ψ〉|2dp (to find the par-
ticle with a momentum close to p) determine a single →pure state |ψ〉. This is an
early instance of quantum state reconstruction, with a negative answer: in general,
there is a number of →pure states, called Pauli partners, which give rise to the same
pair of probabilities, also known as Pauli data.

E. Schrödinger suggested in 1935 to think of the →wave function as a catalogue
of expectations, that is, a tool which succinctly holds the information about the →ex-
pectation value of any observable [2]. In nuce, this remark contains the concept of
quantum state reconstruction. Knowing the →expectation values of all observables
effectively means to know the quantum state, and only a technical problem remains
to be solved, namely to identify an informationally complete set of observables, or
quorum.

The tomography of classical objects has inspired a successful method of quan-
tum state reconstruction. Quantum tomography is based on the →Wigner function,
an intuitively appealing way to represent the state ρ̂ of a quantum particle. This real
function resembles a classical probability distribution for two real variables q and
p although it may take negative values and, therefore, cannot be observed experi-
mentally. It is not difficult, however, to derive marginals from the →Wigner function
which are legitimate probability distributions. As shown in 1989, suitable families
of marginals provide sufficient information to recover the →Wigner function and,
a fortiori, the unknown state ρ̂ [3]. The marginals can be measured through optical
homodyning, a well-established technique of quantum optics, as has been demon-
strated experimentally in 1993 [4].

Regarding the efficiency of different reconstruction schemes, some quantitative
results are known for states residing in a d-dimensional space. Given a finite ensem-
ble of quantum systems in one and the same state, the statistical error is minimal if
measurements are performed with respect to d + 1 sets of mutually unbiased bases,
each containing d observables [5]. So far, the required set of observables has been
found to exist only if the dimension d equals the power of a prime number. To extract
maximal information about an unknown state of whichN copies of are provided, it is
often advantageous to go beyond the traditional framework of →projective measure-
ments, using →positive operator-valued measurements instead, for example. Within
the field of →quantum cloning, the quality of a given reconstruction procedure is
measured by its fidelity which compares the estimated state to the original one.
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R. Statist. Soc. B 67, 109-134 (2005)


