
No-Cloning Theorem1

There is no quantum-mechanical device which outputs a perfect copy of an arbi-
trary pure quantum state |ψ〉 while leaving the original intact. Such an appara-

tus would be described by a unitary operator Û acting as

Û |ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 ,

where |0〉 is a known ‘blank’ input state. However, due to the linearity of the

operator Û this equation is consistent only if the input states |ψ〉 are pairwise
orthogonal. A contradiction arises if one requires that the device work correctly
for non-orthogonal states as well. It is also impossible to duplicate (or broadcast)
non-commuting mixed states.

Two proofs of the No-Cloning theorem [1,2] have been published in 1982,
both triggered by a claim that the use of →entangled states would allow one to
transmit information with superluminal speed. However, the proposed scheme
cannot be implemented since it relies on the perfect cloning of quantum states.
Seen the elementary nature of its proof, the No-Cloning theorem and its gener-
alization to mixed states [3] have been discovered surprisingly late.

The No-Cloning theorem captures a fundamental aspect of the structure of
quantum mechanics. Its limiting character plays an important role in the theory
of →quantum information. For example, the theorem forbids to copy the in-
formation carried by a state |ψ〉 at the end of a →quantum computation. Thus,
although desirable, no safety copies of the result embodied in the state |ψ〉 can
be made, it cannot be distributed to other parties or multiplied for →quantum
state reconstruction. At the same time, the security of →quantum cryptogra-
phy relies on the No-Cloning theorem: if two parties establish a secret key by
exchanging quantum states through a quantum channel, eavesdroppers are not
able to reliably copy the states unknown to them. The theorem is consistent
with →quantum teleportation since the unknown input state is destroyed irre-
trievably once the process has been completed.

Quantum cloning machines have been devised to produce one or more ap-
proximate copies of an unknown quantum state [4]. To achieve optimal cloning
the devices take into account the number N of identically prepared (unknown)
input states, the number M of desired output copies, whether pure or mixed
states should be duplicated, and whether the cloner is required to work for
arbitrary input states, i.e. universally, or for a limited set of input states only.
Optimal cloning machines are conceptually linked to →quantum state recon-
struction and the impossibility to use →quantum correlations for signaling.
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