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The functional of uncertainty J@c# assigns to each stateuc& the product of the variances of the momentum
and position operators. Its first and second variations are investigated. Each stationary point is located on one
of a countable set of three-dimensional manifolds in Hilbert space. For a harmonic oscillator with given mass
and frequency the extremals are identified as displaced squeezed energy eigenstates. The neighborhood of the
stationary states is found to have the structure of a saddle, thus completing the picture of the landscape of
uncertainty in Hilbert space. This result follows from the diagonalization of the second variation of the
uncertainty functional, which is not straightforward sinceJ@c# depends nonlinearly on the stateuc&.

PACS number~s!: 03.65.Bz, 42.50.Dv

INTRODUCTION

There are various ways to define coherent states for a
harmonic oscillator@1#. The annihilation operatora is a lin-
ear combination of position and momentum operators, and
all its eigenstates are coherent states. Also, they can be ob-
tained by appropriately displacing in phase space the vacuum
or ground stateu0&, defined by the propertyau0&50. Finally,
the construction of quantum states, which are localized as
much as possible about a given point in the classical phase
space, i.e., the consideration of states ofminimaluncertainty,
leads to coherent states.

In the following, however, the focus will be on states with
stationary, not minimal uncertainty. The appropriate tool to
work with @2# is a functionalJ@c #, which assigns a value of
uncertainty@3# to each stateuc& in the one-particle Hilbert
spaceH. Such a functional usually is introduced without
reference to a Hamiltonian operator: only the operatorsp̂ and
q̂—constituting the Heisenberg algebra—and the spaceH

are required for its definition. For the Heisenberg algebra one
finds that the states that render the uncertainty stationary are
eigenstates of an appropriate harmonic oscillator. The varia-
tional approach given in@2# is applicable to any pair of non-
commuting operators, not only position and momentum. This
feature has been exploited, for example, in@4# to introduce
‘‘intelligent’’ spin states that turn the uncertainty relation for
spin operators into an equality. Similar relations for number
and phase operators have been studied in this spirit@2,5#. In
the present work somewhat more ‘‘global’’ information is
extracted from the uncertainty functional; its behavior near
the stationary states will be determined.

In order to establish notation, first the stationary points of
the uncertainty functional are derived in a representation-
independent way from the requirement that the first variation
of the functionalJ@c# vanish. In the present approach the
result is naturally expressed in terms of squeezed states, the
concept of which was put forward onlyafter @2# was pub-
lished. Then, the quadratic approximation of the functional
J@c# in Hilbert space is calculated and diagonalized. Based
on this result the topography of thelandscape of uncertainty
defined over Hilbert spaceH will be discussed.

PRELIMINARIES

The operators of position and momentum,q̂ and p̂, re-
spectively, obey the commutation relation

@ p̂,q̂#5
\

i
, ~1!

and the uncertainty functionalJl@c# associated with the al-
gebra~1! is defined as the product of the variances of these
operators

Jl@c#5Dp@c#Dq@c#2l~^cuc&21!. ~2!

The varianceD r of an operatorr̂ in a stateuc& is given by

D r@c#5~^cu r̂ 2uc&2^cu r̂ uc&2!1/2, ~3!

and the restriction that the state be normalized,

^cuc&51, ~4!

is taken into account through the term containing the La-
grangian multiplierl. Contrary to the quantum-mechanical
functional used to derive Schro¨dinger’s equation from a
variational principle@6#, the one considered here isnonlinear
in the stateuc&.

Consider the change of the functionalJl when moving
away from the stateuc& along directionue&[«u«&, with
«!1 and^«u«&51. It is natural to requirêeuc&50, so that
u«& becomes an element of the orthocomplement ofuc& in
H, denoted byHc .

Expanding the functionalJl@c1e#5Jl
01dJl1d2Jl up

to terms quadratic in«, one obtains

Jl@c1e#5Jl@c#1«D«Jl@c#1
«2

2
D«
2Jl@c#, ~5!

where the operatorD« contains functional derivatives

D«5^«u
d

d^cu
1

d

duc&
u«&. ~6!

In a first step the extrema~or stationary states! $uc0&% of the
functional Jl will be determined by requiring the second
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term in Eq.~5! to vanish for arbitrary~unrestricted! variation
ue&. In a second step, the behavior of the functional in the
neighborhood of each stationary stateuc0& is investigated,
which amounts to diagonalizing a quadratic form associated
with the third term in the expansion~5!.

FIRST VARIATION

Turning to first order, the equation for the extrema is
found to be

D«Jl@c#505^«u$8Dp@c#Dq@c#

18Dq@c#Dp@c#2luc&%1 c.c., ~7!

where the ‘‘left’’ derivative of the varianceD r is given by

8D r@c#[
dD r@c#

d^cu
5

1

2D r@c#
~ r̂ 222^cu r̂ uc& r̂ !uc&. ~8!

In order that Eq.~7! hold for arbitrary variationŝ «u, one
must have

e22g~ p̂222^ p̂& p̂!uc&1e2g~ q̂222^q̂&q̂!uc&52luc&, ~9!

where

g5
1

2
lnS Dp@c#

Dq@c# D , ~10!

with bothDq andDp assumed to be different from zero@7#.
Here and in the following all expectation values^•& are
taken in the stateuc&. A second equation results from vary-
ing u«& instead of^«u, which, however, turns out to be the
adjoint of Eq.~9!.

It is convenient to rescale the operatorsq̂ and p̂,

p̂g5e2gp̂5Sg p̂S g
† ,

q̂g5e1gq̂5Sg q̂S g
† , ~11!

by using the unitary dilation or squeezing operator@8#:

Sg5expS i

2\
g~ p̂q̂1q̂p̂! D . ~12!

The value of the multiplierl in the stateuc& follows from
Eq. ~9! and the constraint~4!

l5
1

2
$^ p̂g

21q̂g
2&22~^ p̂g&21^q̂g&2!%. ~13!

Plugging this expression back into Eq.~9!, one obtains

$~ p̂g2^ p̂g&!21~ q̂g2^q̂g&!2%uc&

5$^~ p̂g2^ p̂g&!2&1^~ q̂g2^q̂g&!2&%uc&, ~14!

suggesting use of the shifted operators

P̂5 p̂g2^ p̂g&5T̃a p̂gT̃a
† ,

Q̂5q̂g2^q̂g&5T̃a q̂gT̃a
† , ~15!

where the operator for phase-space translations is given by

T̃a5expS 2
i

\
~jgp̂g2hgq̂g! D , ~16!

and the complex numbera denotes a point in phase space:

a5
1

A2\
~^q̂g&1 i ^ p̂g&![

1

A2\
~jg1 ihg!. ~17!

Note that T̃a is defined in terms of the rescaled operators
p̂g and q̂g ; the expression in terms of the original operators
follows from the relationT̃a5SgTaS g

† .
Rewriting Eq.~14! leads to

1

2
~ P̂21Q̂2!uc&5

1

2
^~ P̂21Q̂2!&uc&. ~18!

Consequently, a stateuc& is a stationary point of the func-
tional Jl@c# if it is an eigenstate of the operator
Ĥ05( P̂21Q̂2)/2, which is formally identical to the Hamil-
tonian of a harmonic oscillator. The operator
ĥ05( p̂21q̂2)/2 is unitarily equivalent toĤ0 according to
~11! and~15!. If the normalized eigenstates ofĥ0 are denoted
by un&, n50,1,2,. . . , one canexpress the solutions of Eq.
~18! in the form

un;g,a&5TaSgun&, n50,1,2, . . . . ~19!

These states have also been introduced in Ref.@9# in a dif-
ferent context.

The value of the uncertainty in the statesun;g,a& in-
creases linearly withn, just as does the energy of a harmonic
oscillator Ĥ0:

Jl@n#5\~n1 1
2!, ~20!

as follows from

Dp
2@n#5Dq

2@n#5\~n1 1
2!5D2~n!. ~21!

Consequently, the set of all states with stationary uncertainty
can be labeled by one discrete indexn50,1,2,. . . , andthree
continuous~real! parameters: the real numbergPR, corre-
sponding to a scaling of the position and momentum axis,
and the complex numbera, fixing one point in the complex
plane.

For eachnPN0 there is a three-dimensional manifold
Mn of states in Hilbert spaceH with constant~stationary!
uncertainty. Two manifoldsMn andMn8 do not have any
point in common ifnÞn8. In particular, forn50 one ob-
tains the setM0 of standard coherent states@10# thatmini-
mize the uncertainty. The manifoldsMn do not provide a
foliation of Hilbert space into disjoint regions since their
dimension is negligible compared to the dimension ofH.
Qualitatively, this situation can be visualized in a low-
dimensional example. Imagine three orthonormal unit vec-
tors in R3 and attach to each of their tips a straight line. If
these lines do not intersect they correspond to the manifolds
Mn .
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SECOND VARIATION

Having found the stationary points of the functional, their
neighborhoods will be investigated now by studying the qua-
dratic approximation ofJl@c# at un;g,a&. Consider the third
term in the expansion ~5!, evaluated at the state
uc0&5un;g,a&:

1

2
D«
2Jl@c0#5

1

2 H 2^«u
d2Jl@c#

d^cuduc&
u«&1

d2Jl@c#

duc&2
u«&u«&

1^«u^«u
d2Jl@c#

d^cu2 J
c5c0

. ~22!

Due to the nonlinearity ofJl@c0#, its diagonalization is not
straightforward; therefore a general discussion of the second
variation seems appropriate before calculating it explicitly.

General structure

The second variationd2Jl of the functional in Eq.~22! is
defined onrays of Hilbert spaceH, as it must be: it is
invariant under the transformation

uc01e&→eibuc01e&, ~23!

that is, under the simultaneous transformations

uc0&→eibuc0&, u«&→eibu«&. ~24!

However, it is not defined on the rays of the spaceHc0
but

on its vectors: replacing onlyu«&→eibu«& modifies the last
two terms of Eq.~22! and,a fortiori, the value of uncertainty.
The spaceHc0

can be parametrized by the expansion coef-

ficients of its elementsu«& in an orthonormal basis of
Hc0

, $uxn&,n51,2, . . .%, say, all of which fulfill

^c0uxn&50; one obtains

u«&5(
n

«nuxn&, «nPC. ~25!

For a fixed phase convention of thex basis each ray
uc01e& determines uniquely one set of values$«n% andvice
versa. The second variationd2Jl becomes a function of the
parameters$«n ,«n* %.

Plugging the expansion ofu«& into Eq. ~22!, one finds
from decomposing the coefficients into real and imaginary
parts,«n5«n81 i«n9 , that one can write

d2Jl@c01e#5
«2

2
«W •J•«W , ~26!

whereJ is a quadratic, real symmetric matrix acting on the
elements of the spaceTc0

, spanned by the vectors

«W 5(«18 ,«19 ,«28 , . . . ). Thescalar product of two elements of
Hc0

can be expressed as

^mun&5mW •~E1 iS!•nW , ~27!

whereE is the unit matrix inTc0
, and the symplectic matrix

S consists of (232) blocks along the diagonal, each of
which is a standard symplectic matrix.

Now one can determine the orthonormal eigenvectors«W k
and eigenvaluesJk , k51,2, . . . , of thematrix J. Translat-
ing the vectors«W k of Tc0

into elementsu«k& of Hc0
, one is

led to a set of directions in Hilbert spaceH,

uck&;uc0&1«u«k& ~28!

with associated eigenvaluesJk . The eigendirections$uck&%
do not have to~and, in general, will not! be orthogonal since
they have been derived from anonlinear functional,Jl@c#.

It remains to show that different vectors«W k and«W l do not
define statesuck& and uc l& that belong to thesameray in
Hilbert spaceH. Suppose that the normalized statesuck&
and uc l& belonged to the same ray. Then, the modulus of
their scalar product

z^ckuc l& z25
1

N2 z11«2^«ku« l& z251, ~29!

with N511«2, would necessarily be equal to 1. However,
using«W k•«W l50 for kÞ l in Eq. ~27! one finds that

^«ku« l&5 i«W k•S•«W l ; ~30!

as a result, Eq.~29! only holds if

z^«ku« l& z2511
2

«2
, «Þ0. ~31!

This is a contradiction since the product of two normalized
elements ofHc0

cannot exceed 1:z^«ku« l& z<1. Conse-

quently, the directionsuck& associated with different«W k in-
deed define different rays in Hilbert space.

Explicit calculation

The explicit evaluation ofd2Jl as given in Eq.~22! sim-
plifies considerably if the neighborhood of the state
un0&5un0 ;0,0& is investigated, since the expectation values
of position and momentum vanish; quantitatively the results
will be the same for arbitrary statesun0 ;g,a&. From a
straightforward, lengthy calculation one obtains

1

2
D«
2I l@n0#5\^«u

1

2
~ p̂21q̂2!u«&2D2~n0!^«u«&

2
1

2
$~^«u p̂un0&1 c.c.!21~^«uq̂un0&1 c.c.!2%

2
1

8D2~n0!
„^«u~ p̂22q̂2!un0&1 c.c.…2; ~32!

here, the multiplier has been given the value it takes at the
stationary state under consideration, as is familiar from iso-
perimetric problems@11#: lu un0&5D2(n0)[\(n011/2).

Equation~32! suggests using the eigenstates$un&,n0Þn
PN0% of the operatorĥ05

1
2( p̂

21q̂2) asx basis for the space
Hn0

:
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u«&5 (
n50

`

«nun& ~nÞn0!. ~33!

The matrixJ will have nonzero off-diagonal elements only if
n5n061,n062. Consequently, the eigenvaluesJn of the
matrix J for all the other values ofn can be read off from the
combination of the first two terms of Eq.~32!:

Jn5\~n2n0!, un2n0u.2, ~34!

each of the valuesJn occurring twice. This result is intu-
itively plausible: if one starts from the stateun0& and rotates
it slightly towards another stateun8,(n022)&, the uncer-
tainty decreases, whereas adding a component of a state
un8.(n012)&, having itself a larger uncertainty thanun0&,
entails an increase of the uncertainty.

There remains to investigate a (838) matrix J̃ with off-
diagonal elements resulting from the third and fourth contri-
butions in~32!, with entries forn022<n<n012; the cases
n050,1 have to be considered separately. This matrix de-
composes into two (434) blocks since the third term has
matrix elements only for states with quantum numbers dif-
fering by 1 fromn0 ~case I!, and the last term requires a
difference of 2 between the initial and final quantum number
~case II!.

Case I: Expandingu«&5«n011un011&1«n021un021&,
the first two terms are found to contribute

\~«n01182 1«n01192 !2~«n02182 1«n02192 !. ~35!

Using ^n0uq̂u«&5A\/2(«n011An0111«n011An0) and a

similar expression for̂n0u p̂u«&, one obtains a contribution
that can be written as

2\«W •M̃•«W , ~36!

and the matrixM̃ decomposes into two (232) blocksM̃ 8
andM̃ 9, coupling the real and imaginary components among
themselves only, respectively. Explicitly, one has

M̃ 85F n0 An0~n011!

An0~n011! n011 G , ~37!

and M̃ 9 is identical toM̃ 8 except for the sign of the off-
diagonal elements. The determinant of both matrices,M̃ 8
and M̃ 9, vanishes: the associated two zero eigenvalues cor-
respond to shifts in position and momentum leaving the un-
certainty invariant:

u«p~n0!&; i p̂un0&, u«q~n0!&; i q̂un0&. ~38!

The remaining two nonzero eigenvalues are both given by
22\(n011/2) but no immediate physical interpretation of
the associated eigendirections has been found.

Case II: From analogous reasoning one obtains four more
eigenvalues stemming from the last term in Eq.~32!, given
by 62\,2\(n0

21n011)/(2n011), and one zero eigen-
value associated with the squeezing transformation:

u«s~n0!&; i ~ p̂q̂1q̂p̂!un0&. ~39!

For convenience the eight nontrivial eigenvalues of the
matrix J̃ are exhibited in units of\,

03 ,22,12,2~2n011!2 ,2
n0
21n011

2n011
, ~40!

four of which are negative~the multiplicities are indicated by
indices!.

In fact, the plane tangent to the surface of constant uncer-
tainty at the point uc&, the three-dimensional manifold
Mn0

, is spanned by a linear combination of the Hilbert
space directions given in Eqs.~38! and ~39!, i.e.,

uc~Mn0
!&;un0&1ju«p~n0!&1hu«q~n0!&1gu«s~n0!&,

~41!

with real coefficientsj,h,g. One can directly check that the
right-hand side of Eq.~32! vanishes for these states.

Finally, for n050,1, these results are modified slightly. In
particular, forun0&5u0&, the matrixJ hasno negative eigen-
value in agreement with the fact that the coherent states have
minimal uncertainty.

CONCLUSIONS

In summary, first- and second-order variations of the func-
tional of uncertaintyJ@c# have been investigated in detail. It
is expected that the technique developed here to study the
second variation will be of interest in quantum optics where
uncertainty relations for number and phase are discussed
@12,13#.

The eigenstates of any given harmonic oscillator are guar-
anteed to be states with stationary uncertainty since it is ex-
actly this set of states that is obtained if one requires the
first-order variation ofJ@c# to vanish. More precisely, there
is a countable set of three-dimensional manifoldsMn of
states such that the value of the uncertainty remains un-
changed under arbitrary variations. Each point on these
manifoldsMn corresponds to an eigenstateun0&, say, of a
harmonic oscillator with a definitely chosen scale of position
and momentum and prescribed expectation values of these
quantities.

Physically speaking, ‘‘kinematic’’ considerations thus
single out a ‘‘dynamical’’ object, namely the number opera-
tor ~and all its displaced rescaled versions! of the algebra
spanned byp̂ and q̂. This observation provides another jus-
tification of the fact that the Hamiltonian of the harmonic
oscillator plays a particular role with respect to the Heisen-
berg algebra.

According to@10# it is possible to base completeness re-
lations on any~nonzero! stateuc&PH, since the family of
operatorsTa , aPC, acts irreducibly in Hilbert spaceH.
Thus, one arrives at a countable number of resolutions of
unity based on the states given in Eq.~19!:

1

pECdaun;g,a&^n;g,au51, n50,1,2,. . . , ~42!

usually written forn50 only. These resolutions of unity for
n51,2, . . . , occupy a specific position among all possible
ones since they involve states of stationary uncertainty only.

53 2087LANDSCAPE OF UNCERTAINTY IN HILBERT SPACE . . .



When collecting the results stemming from diagonalizing
the second variation ofJ@c# about its stationary points, the
following picture of the landscape of uncertainty in Hilbert
spaceH associated with the Heisenberg algebra emerges.
The neighborhood of a state such asun0& is found to be an
infinite-dimensional saddle. There are@2(n021)14#
52(n011) directions in the spaceH along which the un-
certainty decreases~if n0>2). With respect to the remaining
variations the pointun0& represents a minimum of the

uncertainty—except for the three directions defined by the
manifoldMn0

along which the uncertainty remains constant.
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