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Solvable three-state model of a driven double-well potential
and coherent destruction of tunneling

Laro Schatzer and Stefan Weigert
Departement fu¨r Physik und Astronomie der Universita¨t Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

~Received 10 July 1997!

A simple model for a particle in a double well is derived from discretizing its configuration space. The
model contains as many free parameters as the original system and it respects all the existing symmetries. In
the presence of an external periodic force both the continuous system and the discrete model are shown to
possess a generalized time-reversal symmetry in addition to the known generalized parity. The impact of the
driving force on the spectrum of the Floquet operator is studied. In particular, the occurrence of degenerate
quasienergies causing coherent destruction of tunneling is discussed—to a large extent analytically—for arbi-
trary driving frequencies and barrier heights.@S1050-2947~98!00301-1#

PACS number~s!: 03.65.2w, 73.40.Gk, 33.80.Be
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I. INTRODUCTION

Tunneling of a particle in a symmetric double-well pote
tial on the real line is well understood, at least qualitative
For a large barrier separating the minima, semiclassical
culations @1# provide reliable estimates of the system
eigenstates and energy eigenvalues near the bottom o
spectrum. In another approach, path integrals are use
obtain approximate solutions@2,3#. In this framework instan-
tons are crucial; they are the solutions of the classical eq
tions of motion of a particle in theinvertedpotential. For low
barriers, one can resort to the supersymmetric partner o
original potential in order to determine the low lying ener
eigenvalues@4–6#. The partner potential possesses thesame
spectrum as the original one except for the ground state
fortunately, it is asingle-well potential. The approximate
evaluation of the spectrum is then straightforward us
again semiclassical approximations or, for example, a va
tional principle.

If an external driving force is added to the system it b
comes more difficult to gain insight into its quantum m
chanical properties. Even a coupling linear in the particl
coordinate leads to qualitative changes which are not ea
discussed in the familiar language of tunneling phenom
@7–10#. To a large extent, this is related to the fact th
generically classical systems with one degree of freedom
come nonintegrable as a driving force is turned on.

In this paper, an elementary model to describe a part
in a driven double-well system is introduced. The basic id
is to discretize the continuous configuration space of t
original system while preserving its essential features. In
way, a three-level system is obtained which has both
same number of free parameters and the same symmetri
its continuous ancestor, contrary to existingtwo-level ap-
proximations of a double well@11–14#. Many calculations
can be performed analytically in this model. The discuss
of the undriven system shows that the drastic approxima
provides a reasonable qualitative description of the partic
behavior in a double well. On this basis, the dynamics of
driven system is investigated.Mutatis mutandis, the results
obtained here apply to the continuous system the stud
571050-2947/98/57~1!/68~11!/$15.00
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which often requires extensive numerical work.
The paper is organized as follows. First, we briefly revie

the behavior of a particle in a double well, followed by th
derivation of the model to be investigated in this work. T
next section discusses the symmetries of the system, for
lated in terms of the Floquet description. Then, the proper
of the undriven model are compared with those of the c
tinuous system. The driven system is studied in detail,
focus being on degeneracies of quasienergies. Finally,
effective Hamiltonian for time translation over one period
determined approximatively in the high-frequency limit. Th
summary collects the results and draws conclusions.

II. MODEL OF A DRIVEN DOUBLE WELL

A. Continuous system

The quantal dynamics of a particle in a symmetric doub
well potential on the real line,

VDW~x!52
A

2
x21

B

4
x4, A,B.0 ~1!

is governed by Schro¨dinger’s equation

i\
]

]t
uc~ t !&5Ĥ~ t !uc~ t !&, ~2!

where the Hamiltonian reads

Ĥ~ t !5
p̂2

2m
1VDW~ x̂!1g~ t !x̂, g~ t1T!5g~ t !. ~3!

Here a periodic driving forceg(t) acting on the particle has
been added. The shape of the potential

V~x,t !5V DW~x!1g~ t !x ~4!

at timet depends on the parametersA, B, andg(t). Equiva-
lently, one can describe it in terms of the mean energyVG of
68 © 1998 The American Physical Society
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57 69SOLVABLE THREE-STATE MODEL OF A DRIVEN . . .
the potential minima, located atL6(t), the time-dependen
asymmetryDV(t), and the barrier heightVB ~cf. Fig. 1!.

The impact of the driving force on the tunneling behav
of the particle has been studied in@7# for sinusoidal time
dependence

g~ t !5S sin vt, v52p/T. ~5!

For small and large values of the driving frequencyv, the
force has been found to enhance the tunneling rate while
system evolves in a complex manner for intermediate
quencies. In addition,coherent destructionof tunneling has
been observed@15# for specific parameter values: a wav
packet localized initially in one of the wells periodically re
covers its shape, even for very long times. This phenome
can be attributed to a crossing of quasienergies of the
quet operator. A related phenomenon has been observe
time-independent systems: tunneling is suppressed if en
eigenvalues are forced to fall onto each other as is poss
for systems with nontrivial topology in the presence of gau
fields @16,17#.

To a large extent, results for a particle in the driv
double well are based on numerically obtained solutions
Schrödinger’s equation. It seems desirable to have availa
a model, as simple as possible, which reproduces the fea
mentioned above at least qualitatively. In the following,
apparently crude approximation of the system described
Eqs. ~3! and ~5! is introduced. The model is required to r
spect the qualitative structure of the potential landscape,
number of free parameters in the original system, as we
its symmetries. The resulting model allows one to appro
many questions analytically forall parameter values. In spit
of the drastic simplification involved in its derivation, it i
found to provide a reasonable description of tunneling i
driven double-well potential.

B. Discrete system

Let us revert Feynman’s ‘‘derivation’’ of Schro¨dinger’s
equation@18#: the configuration spaceR of the system de-
scribed by the HamiltonianĤ(t) is replaced by an equidis
tant set of points,xk5kL, with integersk, and the lengthL
is yet to be determined. In the position representation
wave functionc(x)5^xuc& now takes on values atxk only,

c~x!→ck5c~kL!, ~6!

FIG. 1. The double-well potentialVDW(t) at timet is character-
ized by the locationsL6 of the local minima, the mean energyVG ,
the asymmetryDV, and the barrier crossing energyVB .
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and the kinetic energy is proportional to the discretized L
placian in one dimension@19#:

]2

]x2 c~x!→D2ck5
1

L2 ~ck1122ck1ck21!. ~7!

As long as the indexk runs over all integers, not much ha
been gained. A further simplification is motivated by lookin
at the qualitative shape of the potential landscape. A part
larly simple, qualitatively correct description ofVDW(x) re-
fers only to the presence of the two minima, separated b
barrier at the origin, and to the steep increase forx→6`.
Therefore the choiceL5L5uL6(0)u allows one to correctly
represent the overall structure ofVDW(x) if for x050 and
x656L one defines

V~x0 ,t !5V G1V B , V~x6 ,t !5VG6DV~ t !/2. ~8!

This approximation does not take into account that the lo
tions of the minima atx5L6(t) are slightly shifted due to
the position-dependent driving force.

For simplicity, the boundary conditionc(x)→0 for x→`
is modeled by the requirement that the wave function van
for k562, or c6250, corresponding to an infinitely stron
potentialVDW(x62) at these points. Thus the wave functio
is different from zero at three points only, and the discretiz
version of the HamiltonianĤ(t) becomes a (333) matrix:

H~ t !5H01H1~ t !, ~9!

where the time-independent partH0 reads

H05~2h1VG!11S 0 2h 0

2h VB 2h

0 2h 0
D , ~10!

with 1 being the (333) unit matrix, andh5\2/2mL2. Here
and below, operators acting on the Hilbert spaceC3 of the
three-state model are denoted by sans-serif symbols.
driving term is

H1~ t !5
DV~ t !

2
diag~21,0,1!, ~11!

with a periodically varying asymmetry@cf. Eq. ~5!#

DV~ t !5Lg~ t !. ~12!

Further, the sinusoidal time dependence of the driv
term is replaced by a function taking two values only, bei
constant during both the first and the second half of the
terval of periodicityT52p/v:

DV~ t !5H 1DV, 0<t mod T,T/2

2DV, T/2<t mod T,T.
~13!

This simplification retains the relevant features of the co
tinuously varying time dependence, as is known, for e
ample, from investigations of parametric resonance@20,21#.

Let us check the number of parameters in the discr
model of the periodically driven double well. The Hami
tonian H(t) in Eq. ~9! depends on four parameters, name
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70 57LARO SCHATZER AND STEFAN WEIGERT
the barrier heightVB , the kinetic parameterh5\2/2mL2,
the periodT of the driving, and its amplitudeDV, matching
thus the number of parameters of the continuous system
the double-well potential is described by a system with t
states~instead of three!, the number of parameters is reduc
by one, since the model now depends on a combina
V(h,VB) of the barrier heightVB and the parameterh only.
In this sense, the three-state model introduced here is m
realistic than two-level models known to reproduce qual
tively various aspects of the continuous system@14#.

Nevertheless, it is useful to eliminate the kinetic para
eterh by rescaling

T→hT, DV→DV/h, VB→VB/h, ~14!

leaving us with a system depending effectively only on
three~rescaled! parametersVB, T, and“V.

The HamiltonianH(t) obtained as an approximation to
particle system also has an interpretation as a Hamilton
for a spin of lengths51 in a crystal field under the influenc
of a time-dependent external magnetic field along thez axis:

H~ t !52VBSz
22gmBB~ t !•S, ~15!

where a term proportional to the unit matrix has be
dropped, and

gmBB~ t !5
h

&
ex1DV~ t !ez . ~16!

The vectorS has three components, each of which is a (s
115) three-dimensional matrix such that

@Sj ,Sk#5 i« jklSl . ~17!

The extrema of the double-well potential correspond to
stationary configurations of the classical spin. The o
diagonal elements ofH(t) couple the stationary states.

III. SYMMETRIES

Before investigating the dynamics of eitherĤ(t) or H(t)
in detail, a careful search for symmetry transformations
useful. For the class of systems studied here, three inde
dent discrete transformations can be identified which le
the Hamiltonian invariant. Two of them are immediately re
ognized, namely, the time periodicity and a generalized p
ity transformation. The third one, a generalization of tim
reversal invariance, has not yet been pointed out.
existence of these symmetries implies that the solutions
the driven system have specific features, and each of
invariances simplifies its study.

A. Time periodicity

Due to Eq.~5! or Eq. ~13! the Hamilton operatorĤ(t) is
invariant under the discrete transformation

J:t→t1T. ~18!

The long-time properties of a system with periodT are con-
veniently extracted from a description in terms of itsFloquet
operator@22#. Mathematically, the description of electrons
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a spatially periodic potential and the Floquet formalism a
closely related. Physically, it can be thought of as a stro
scopic observation of the system at timest50,T,2T,..., say.
The details of the time evolution for intermediate times a
not determined. This approach comes down to studying
properties of the propagator over one time interval

F̂5Û~T,0!

5 lim
N→`

e2~ i /\!Ĥ~ tN!Dt...e2~ i /\!Ĥ~ t2!Dte2~ i /\!Ĥ~ t1!Dt,

~19!

where N is the number of time intervals of lengthDt
5T/N, and tn5(n21/2)Dt. Formally, the propagator ca
be written as

F̂5t expS 2
i

\ E
0

T

dt Ĥ~ t ! D , ~20!

wheret denotes time ordering. The Floquet operatorF̂ maps
a stateuc~0!& over one time interval:

F̂ uc~0!&5uc~T!&, ~21!

corresponding to an integration of Schro¨dinger’s equation
from t50 to t5T. The N-fold application ofF̂ to uc(0)&
results in the stateuc(NT)&. Obviously, the eigenstates ofF
play an important role,

F̂ uw~ j !&5e2 i« j uw~ j !&, j 50,1, . . . . ~22!

The eigenvalues exp(2i«j) are complex numbers of modulu
one, and the realquasienergies« j are defined modulo 2p. In
general, the nature of the spectrum of quasienergies, b
finite, countable, or continuous, reflects the complexity of
system’s dynamics@23#. If the Hamiltonian does not explic
itly depend on time, the eigenstatesuw ( j )& of the Floquet
operatorF̂ coincide with those of the Hamilton operatorĤ,
that is, uw ( j )&5uc ( j )&, while the energy eigenvalues are r
lated to the quasienergies by« j5(EjT/\)mod 2p. This as-
sociation will continue to hold for a weak time-depende
driving force, and the statesuw ( j )& can be ordered by sorting
them according to the size of the expectation value of
energy averaged over one periodT:

^Ĥ& j5
1

T E
0

T

dt^w~ j !uÛ~ t,0!†Ĥ~ t !Û~ t,0!uw~ j !&. ~23!

As a matter of fact, it is the invariance of the Hamiltonia
Ĥ(t) under the time translationJ which leads to the exis-
tence of quasienergies defined according to Eq.~22!.

B. Generalized parity

For potentials symmetric under spatial reflection, that
VDW(2x)5VDW(x), the HamiltonianĤ(t) in Eq. ~3! is in-
variant under a simultaneous transformation of space
time,

P:x→2x and t→t1T/2, ~24!
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57 71SOLVABLE THREE-STATE MODEL OF A DRIVEN . . .
known asgeneralized parity@24#. Here, the property of the
driving forceg(t1T/2)52g(t) is crucial.

The invariance of the Hamiltonian under the transform
tion in Eq.~24! has an important consequence for the expl
form of the Floquet operatorF̂. The symmetryP means that

Ĥ~ t1T/2!5 P̂Ĥ~ t !P̂, ~25!

where reflection at the origin is described by the parity o
eratorP̂,

P̂c~x!5c~2x!, P̂251, P̂5 P̂†, ~26!

andPcn5c2n for the discrete model. Equation~25! implies
that the propagator over thesecondhalf of a periodT can be
expressed by the propagator over itsfirst half:

Û~T,T/2!5 P̂Û~T/2,0!P̂. ~27!

Hence the propagation over a full period of time can
written as asquare,

Û~T,0!5Û~T,T/2!Û~T/2,0!

5 P̂Û~T/2,0!P̂Û~T/2,0! ~28!

or, in terms of the Floquet operator

F̂5Ŝ2, Ŝ5 P̂Û~T/2,0!. ~29!

Thus the action of the Floquet operator is given as a twof
application of its ‘‘root’’ Ŝ, being a simple product of propa
gation over half the periodT and a reflection at the origin
This decomposition has not been observed before.

In the following, the eigenequation ofŜ,

Ŝuw~ j !&5e2 is j uw~ j !&, ~30!

will be studied instead of Eq.~22!. The eigenstates of th
operatorsŜ and F̂ coincide, and the relation between the
eigenvalues is governed by

« j52s j mod 2p. ~31!

This relation is important for the discussion of degener
quasienergies« j .

C. Generalized time reversal

The third symmetry transformation again involves bo
space and time:

Q:x→2x and t→2t. ~32!

It will be called generalized time reversal. The symmetry is
a consequence of the propertyg(2t)52g(t) of the driving
force.

In Hilbert space, the transformationQ is represented by
an antilinear operatorÂ, not a linear one. There isno con-
served quantity associated with it. However, it is possible
construct a symmetry-adapted basis such that the~Floquet!
eigenfunctions do have a particular structure. This prope
is a generalization of the possibility to choose purely r
eigenfunctions if a system is invariant under time revers
-
t

-

e

d

e

o

ty
l
l,

leading to a real symmetric Hamiltonian. Let us introdu
the antilinear operatorK̂ which has the properties

K̂251, K̂5K̂†, K̂ÔK̂5Ô* , ~33!

whereÔ is any operator~expressed in the position represe
tation! or a complex number, and the star* denotes complex
conjugation. Schro¨dinger’s equation~2! is invariant under
the application of the antiunitary operatorP̂K̂ combined with
the reflection of the time parameter

P̂K̂ ^ ~ t→2t !. ~34!

This follows from the properties ofK̂ in Eq. ~33!, the sym-
metry Q, and the fact thatĤ(t) is real. Hence, if the state
uc(t)& is a solution of the time-dependent Schro¨dinger equa-
tion, then the transformed stateP̂K̂uc(2t)& is a solution,
too. Similarly, if uw ( j )& is an eigenstate of the Floquet oper
tor F̂ ~or the operatorŜ! according to Eq.~22!, then the
transformed stateP̂K̂uw ( j )& is also an eigenstate. This is see
from combining the time periodicityJ of the Hamiltonian
with the symmetryQ implying that

Ĥ~T2t !5 P̂Ĥ~ t !P̂. ~35!

Therefore applying parity to the Floquet operatorF̂
5Û(T,0) corresponds to a reversed time ordering. Since
Hamiltonian is real symmetric,Ĥ5(Ĥ†)* 5ĤT, this is iden-
tical to a transposition:

P̂F̂ P̂5 lim
N→`

e2~ i /\!P̂Ĥ~ tN!P̂Dt...e~2 i /\!P̂Ĥ~ t1!P̂Dt

5 lim
N→`

e2~ i /\!Ĥ~ t1!Dt...e2~ i /\!Ĥ~ tN!Dt5F̂T,

using Eqs.~19! and~35!; the superscriptT denotes the trans
pose. This property is also shared by the operatorŜ,

P̂Ŝ P̂5ŜT. ~36!

As a consequence one has

Ŝ~ P̂K̂uw~ j !&)5 P̂ŜTK̂uw~ j !&5 P̂K̂Ŝ†uw~ j !&5 P̂K̂e1 is j uw~ j !&

5e2 is j~ P̂K̂uw~ j !&), ~37!

where the antilinearity ofK̂, the unitarity ofŜ, and Eq.~36!

have been used. Thus the statesuw ( j )& andP̂K̂uw ( j )& are both
eigenstates ofŜ with the sameeigenvalue. They represen
the samephysical state if the eigenvalues$e2 is j% are not
degenerate.

Now the definition of a symmetry-adapted basis emer
naturally for systems being invariant under generalized ti
reversal. Starting with an arbitrary orthonormal basis$uwn&%,
the symmetry-adapted basis$uFn&% is obtained from a linear
combination of the original and transformed states:
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72 57LARO SCHATZER AND STEFAN WEIGERT
uFn&5H c~ uwn&1 P̂K̂uwn&! if P̂K̂uwn&Þ2uwn&

c~ uwn&1 i P̂K̂uwn&! if P̂K̂uwn&52uwn&,
~38!

where c is a real normalization constant. The orthonorm
basis statesuFn& have the important property that they a
invariant under the application of the antiunitary operat
P̂K̂:

P̂K̂uFn&5uFn&, ~39!

using (P̂K̂)251. This construction of thenormal form~38!
is equivalent to Wigner’s general treatment of anti-unita
operators@25#, as shown in Appendix A. Expressed in th
basis~38! both the rootŜ and the Floquet operatorF̂ turn out
to be symmetric,

Skl5^FkuŜF l&5^P̂K̂FkuP̂K̂ŜF l&* 5^P̂K̂FkuŜ†P̂K̂F l&*

5^FkuŜ†F l&* 5Slk , ~40!

where the antiunitarity ofP̂K̂ and Eqs.~36! and ~39! have
been used. Hence, the operatorŜ belongs to the orthogona
ensemble of symmetric unitary matrices@26,23# obeying

Ŝ5ŜT, ~41!

when expressed in the symmetry-adapted basis. This re
holds generally for systems having an antiunitary symme
Â providedL̂5Â251. It has to be emphasized that the r
lations ~36! and ~41! are equivalent. However, this equiva
lence is not a trivial one, since the construction of t
symmetry-adapted basis explicitly involves the transform
tion ~38! which is neither unitary nor antiunitary.

Relation~37! and definition~38! lead to the normal form
of a Floquet eigenstateuF ( j )& in the sense that it is also a
eigenstate of the operator associated with generalized
reversal:

P̂K̂uF~ j !&5uF~ j !&. ~42!

Hence, the corresponding wave functions satisfy

F~ j !~x!5@F~ j !~2x!#* , xPR, ~43!

which, in the discrete model, reads

Fn
~ j !5@F2n

~ j ! #* , n50,61. ~44!

The time-independent functions in Eqs.~43! and ~44!, re-
spectively, are identical to their complex conjugate reflec
at the origin and thus they have the form

q~x!eiu~x!, q~x!5q~2x! and u~x!52u~2x!
~45!

and

S 1

&
eif sin a,cosa,

1

&
e2 if sin a D , a,fP@0,2p!,

~46!
l

ult
y
-

-

e

d

respectively. These relations have an analog in the w
known case of systems being invariant under~standard! time
reversal, where wave functions can be chosen real.

IV. DISCRETE DOUBLE WELL

First, the exact solution of the undriven discrete dou
well is presented, including a time-independent asymme
of the well. Various properties of the discrete model a
shown to agree qualitatively with those of the continuo
one. Then, the discretized version of thedriven double well
is investigated, the focus being on crossings of quasie
gies.

A. Undriven system

The discrete system with time-independent asymme
potential is described by the Hamiltonian

H5H01
DV

2
diag~21,0,1!, ~47!

with H0 from Eq. ~10!. The energy eigenvaluesEj in the
time-independent Schro¨dinger equation

Huc~ j !&5Ej uc~ j !&, ~48!

are obtained from the roots of the characteristic polynom
of the matrixH:

Ej5
1

3
Tr H012Ap cosS w1

2~ j 11!p

3 D , ~49!

where j 50,1,2, and

w5
1

3
arccos~qp2 3/2!,

p5
1

3 S VB
2

3
1

~DV!2

4
12h2D ,

q5
VB

3 S VB
2

9
2

~DV!2

4
1h2D . ~50!

The term (TrH0)/3 can be removed by shifting the origin o
the energy axis by an amountVG52(6h1VB)/3, and the
new Hamiltonian is given by a traceless matrix. Even for t
three-level system, the dependence of the eigenvalues o
barrier heightVB and the asymmetryDV is far from trivial.
The dependence onDV is quadratic throughout since th
eigenvalues cannot be sensitive to the transformationDV→
2DV.

The splitting of the two ground states,

DE5E12E052A3p sin w, ~51!

is approximately given by

DE5A~DV!214~h2/VB!21O„~h2/VB!2
…. ~52!

This result is to be compared with the dependence of
tunnel splitting in a continuous double-well potential.
semiclassical calculation@27# leads to an asymptotic expres
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57 73SOLVABLE THREE-STATE MODEL OF A DRIVEN . . .
sion similar to Eq.~52!: the main difference is that th
barrier-dependent term under the root decreases expo
tially with VB , not algebraically. Nevertheless, the over
behavior of the eigenvalues is correct. In Fig. 2, the spect
is shown for a wide range of values of the barrier heightVB .

For VB→`, the wells decouple and the energy splittin
equals the potential asymmetryDE5DV. The eigenstates
c (0) andc (1) are now localized on the left and on the right
the barrier, respectively~provided thatDVÞ0!, as can be
seen from the ‘‘spatial’’ structure of the three-compone
eigenfunctions ofH,

c0
~ j !5h21Fh221S VB

3
2

DV

2
1Ej D 22

1S VB

3
21

DV

2
1Ej D 22G1/2

,

c61
~ j ! 52hS 1

3
VB7

DV

2
1Ej D 21

c0
~ j ! . ~53!

FIG. 2. Eigenvalues of the discrete system as a function of
barrier heightVB for the symmetric double well,DV50. The en-
ergy axis has been shifted by an amountVG522h so that the
barrier-independent eigenvalue is zero,E150; units are such tha
h51.
en-
l
m

t

For finite VB and a slight asymmetryDV, the eigenstates o
H are almost symmetric and antisymmetric under reflect
at the origin, as illustrated in Fig. 3. For vanishingDV, par-
ity P̂ is a conserved quantity and the states are~anti!symmet-
ric under spatial inversion, also following from Eq.~53! by
taking the limitDV→0.

The physical meaning of the splittingDE easily emerges
from looking at the time evolution of statescL,R(t) initially
localized in a well:uck

L(0)u25d21,k @or uck
R(0)u25d11,k#.

For small DV the initial statescL,R(0) are well approxi-
mated by a superposition of the two first eigenstates

cL,R~0!'
1

&
~c~0!6c~1!!. ~54!

The time evolution of this state reads

cL~ t !'
1

&
~c~0!e2 iE0t/\1c~1!e2 iE1t/\!

5
1

&
~c~0!1c~1!e2 iDEt/\!e2 iE0t/\. ~55!

Upon comparison with Eq.~54! the localized states are see
to evolve into each other:cL→cR→cL, with a characteris-
tic tunneling frequencyDE/\, apart from a physically irrel-
evant phase.

While the states at the bottom,c (0) andc (1), agree well
with those of the continuous system, the statec (2) is cen-
tered about the saddle at the origin,k50. This indicates that
the present approach is closely related to the method oftight
binding @28#: the states of an atomic lattice are approxima
by superposing wave functions localized at individual atom
In this sense, the discrete potential should be thought o
providing three local minima atk561 andk50 instead of
two wells and a saddle in between. Apart from this discre
ancy, the discrete approximation of a double well inde
reproduces qualitatively the important features of the sta
at the bottom of the continuous system.

e

e-

r
e

FIG. 3. Eigenstates of the discrete doubl
well model:~a! symmetricDV50, and~b! asym-
metric caseDV50.2. The dashed lines are fo
easy comparison with the wave functions of th
continuous double well. Note thelarge value of
c (2) at the central site~see text!.
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B. Driven system

This section deals with the eigenvalue equation of
operatorS,

Suw~ j !&5e2 is j uw~ j !&, j 50,1,2 ~56!

replacing the Floquet equation~22! sinceF5S2. Explicitly,

S5P exp~2 iHT/2\!, ~57!

whereH is the Hamiltonian with a fixed time-independe
asymmetry according to Eq.~47!, since the piecewise con
stant approximation~13! of the driving forceDV(t) has been
used. Since the operatorsP and H do not commute for an
asymmetryDVÞ0, there is no common basis to diagonali
them simultaneously. Only then is the product~57! easily
transformed into a single exponential. The operatorS can be
understood as a product of two finite transformations in
group U~3!. Unfortunately, a general Baker-Campbe
Hausdorff formula seems not to be available for this gro
although results todisentangleexponents have been obtaine
@29#. This situation is in contrast to the group SU~2! where a
closed form for the product is known@30#. Nevertheless, the
eigenvalues and the eigenstates ofS can be determined ana
lytically, as indicated in Appendix B, since the characteris
polynomial ofS is of third order for the discrete model. T
this end it is convenient to introduce the operatorS̃ which
differs from S by a factor,

S̃5eisS, eis5~det S!21/35ei ~s01s11s2!/3. ~58!

It has unit determinant

det S̃5e3is det S51, ~59!

so thatS̃ is an element of the group SU~3!. The new phases
s̃ j are shifted with respect to the old ones by the amouns,

s̃ j5~s j1s! mod 2p, ~60!

having the property

s̃01s̃11s̃250 mod 2p. ~61!

Explicitly, in terms of S̃, one obtains the characterist
polynomial:

l32~Tr S̃)l21xl2det S̃50. ~62!

The coefficientx is easily determined: It follows from the
unitarity of S̃ that its eigenvalues are complex numbers
modulus one, hence the inverse ofl equals its complex con
jugate, l215l* . When taking into account Eq.~59! one
finds that the characteristic polynomial is invariant unde
multiplication with2l23 and subsequent complex conjug
tion. A comparison of coefficients then reveals thatx

5(Tr S̃)* . Thus the characteristic polynomial reads

l32~Tr S̃!l21~Tr S̃!* l2150. ~63!
e

e

,

f

a

A simple expression for the trace ofS̃ follows if it is evalu-
ated in the eigenbasis of the HamiltonianH in Eq. ~47! of the
undriven system:

Tr S̃5(
j 51

3

^c~ j !ueisP exp~2 iHT/2\!uc~ j !&

5(
j 51

3

e2 i ~EjT/2\2s!^c~ j !uPuc~ j !&, ~64!

containing the expectation values of the parity operator.
modulus obviously has the propertyuTr S̃u<3. Explicit ex-
pressions of the eigenphasess̃ j of S̃ are not illuminating due
to their involved dependence on the parameters ofS̃ via its
trace in Eq.~64!. In Fig. 4, the eigenphasess̃ j and the
quasienergies« j , respectively, are plotted as functions of th
strength of the asymmetry while keeping the periodT and
the barrier height fixed. The quantitiess̃ j vary with a degree
of complexity as a function ofDV which is surprising in
light of the simplicity of the underlying model. They donot
cross each other which, however, does not exclude the
generacy of quasienergies. Before turning to the discuss
of degenerate quasienergies, a geometric interpretation o
condition

Tr S̃5e2 i s̃11e2 i s̃21e2 i s̃35z ~65!

FIG. 4. Eigenphases of the driven discrete driven double-w
model for T510, VB510 for variable asymmetryDV: ~a! eigen-

phasess̃ j , ~b! quasienergies« j , j 50,1,2. The dashed vertical line
all have a length ofp ~see text!.
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will be given. Considerz5Reia as a vector in the comple
plane with lengthuzu,3. For a solution of Eq.~65! one has
to find three unit vectors$e2 i s̃ j% which must combine to give
the vectorz. This is always possible for a one-parame
family of angles$s̃ j%. Then one has to select that particul
solution which leads to the correct value of detS̃51.

C. Coherent destruction of tunneling

In this section we focus our interest on crossings
quasienergies. They are related to the effect of coherent
struction of tunneling@15#, corresponding to the relocaliza
tion of a tunneling state in a potential well at strobosco
times t5T,2T,... . As seen in Fig. 4, the quasienergies« j
may degenerate for specific values of the asymmetrywithout

a crossing of the phasess̃ j ~or s j !. More precisely, the re-
lation betweens j and« j implies that quasienergies do cro
if one of the following conditions is fulfilled: ~a! s̃ j

5s̃k mod 2p, or ~b! s̃ j5(s̃k1p) mod 2p. These
conditions also apply to the original phasess j . Generically,
in order to realize condition~a!, which means to have a de
generate eigenvalue exp(2is̃ j), the variation oftwo system
parameters is required. This follows from the fact that
matrix S̃ belongs to the orthogonal ensemble of symme
unitary matrices according to Eq.~41! and a comparison o
the number of free parameters for orthogonal matrices in
nondegenerate and degenerate case@31#, respectively. A geo-
metric interpretation of the realization of condition~a! is ob-
tained from looking at the corresponding expression for
trace ofS̃,

Tr S̃5e2i s̃ j12e2 i s̃ j . ~66!

The right-hand side of Eq.~66! describes a one-dimension
curve in the complex plane, shown in Fig. 5. In the gene
case, the complex numberz5Tr S̃ is confined to remain
inside the region defined by Eq.~66!.

FIG. 5. The behavior of TrS̃ in the complex plane for fixed
asymmetry (DV50.2) and varying periodT is depicted by the

dashed line. The quasienergies« j do cross if~a! s̃ j5s̃k mod 2p,

Tr S̃ falls on the threefold cycloidz5exp(2if)12 exp(2if), f

P@0,2p), or if ~b! s̃ j5s̃k1p mod 2p, Tr S̃ falls on the unit
circle, uzu51. The dashed line doesnot touch the cycloid since

crossings of the phasess̃ j are generically avoided.
r

f
e-

c

e
c

e

e

c

In order to realize condition~b! the variation of asingle
parameter is sufficient. In this case the difference betw
two phasess̃0 and s̃1 , say, has to be an odd multiple ofp.
In terms of the trace of the root operator this implies th
Tr S̃5exp(2is̃2) or

uTr Su5uTr S̃u51, ~67!

describing the unit circle in the complex plane~cf. Fig. 5!. In
fact, a realization of Eq.~67! is already sufficient in order to
fulfill condition ~b! as follows from writting down explicitly
the rootsl j of Eq. ~63!,

$l j%5$Tr S̃,6A2~Tr S̃!* %. ~68!

Therefore condition~67! determines the locus of degenera
quasienergies. Variation of a single parameter, 0<T<3, in-
deed leads to such crossings as shown by the dashed li
Fig. 5, intersecting repeatedly the unit circle.

It is straightforward to obtain a global picture of the pre
ence of crossings in the parameter plane (DV,T), say. Figure
6~a! shows the contours of TrS̃ with modulus equal to unity.
Obviously, variation of asingle parameter in the (DV,T)
plane will generically result in a crossing, as has been arg
before. The arrangement of lines in Fig. 6~a! for not too large

FIG. 6. ~a! Contour plot of uTr S̃u51 for the parameters 0
<DV<12 and 0<T<10, showing the parameter values where
crossing of quasienergies occurs.~b! Same as~a! restricted to the
points where the degenerate Floquet eigenstatesuw ( j )&,uw (k)& are
strongly localized in the potential wells.
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76 57LARO SCHATZER AND STEFAN WEIGERT
values ofDV is a consequence of condition~b!. In the sym-
metric case,DV50, the operatorP is diagonal in the eigen
basisuw ( j )& of the nondriven system. For smallDV, the Flo-
quet eigenstatesuw ( j )& are well approximated by the state
uc ( j )&. Using Eqs.~48!, ~56!, and the definition ofP from
Eq. ~26!, one obtains approximate values of the eigenpha

s̃ j'H 1

2
EjT/\1s1S 0, j even

p, j oddD J mod 2p. ~69!

This equation together with condition~b! approximately re-
produces the equidistant lines visible in Fig. 6~a!. However,
a crossing of these contour lines is avoided, because it w
imply a realization of condition~a!. The lines almost paralle
to theDV axis correspond to the~alternating! realizations of
condition ~b!, s̃ j5(s̃k1p) mod 2p for ( j ,k)5(0,2) and
( j ,k)5(1,2). The ‘‘hyperbolic’’ branches correspond to th
realizations of the same condition for (j ,k)5(0,1). From
s̃12s̃0'DET/2\1p one finds the estimate

T'
4pn\

DE
, nPZ. ~70!

This reproduces the quasihyperbolic behaviorT}DV21 vis-
ible in Fig. 6, sinceDE'DV for sufficiently large asymme
try DV.

Another interesting feature appearing in Fig. 6 is the co
plete disappearance of quasi-energy crossings for large
ing amplitudeDV*VB . This effect is a consequence of th
few-level discrete approximation scheme and it has no a
log in the continuous system. From Eq.~64! one estimates
uTr S̃u<(u^P& j u, where^P& j is the expectation value of th
parity operator for thej th eigenstate of the asymmetr
double well@cf. Eq. ~53!#. For nonvanishing asymmetryDV
the modulus of̂ P& j is less than unity since parity is not
conserved quantity in this case. At some threshold va
uTr S̃u becomes strictly smaller than one, hence the condi
~67! necessary for degenerate quasienergies cannot hol
large driving amplitude.

Being mainly interested in the tunneling behavior of sta
being localized in the wells, we now focus our attention
the quasienergy crossings of these states. Figure 6~b! shows
an appropriately modified version of Fig. 6~a!, containing
only crossings with sufficiently large localization of the co
responding Floquet eigenstates in the wells: the localiza
probability of the~degenerate! eigenstatesuw ( j )&,uw (k)& is re-
quired to be greater than that of the third eigenstateuw ( l )&,

uw61
~ j ! u2,uw61

~k! u2>uw61
~ l ! u2. ~71!

For 4&DV&10.5, not only the ‘‘hyperbolic’’ branches in
Fig. 6~b! ~associated with the resonancesT54pn/DE in the
undriven system! induce crossings of quasienergies, but t
other branches contribute as well. It appears that a cros
of quasienergies enhances the localization probability of
corresponding Floquet eigenstates in the wells.

D. The effective Hamiltonian

In this section we give an alternative physical interpre
tion of the effect of the time-dependent driving term in t
s,

ld

-
iv-

a-

e
n
for

s

n

e
ng
e

-

discrete model. To this end we introduce an effective, tim
independent HamiltonianHeff producing the same strobo
scopic dynamics of the driven system as does the Ha
tonianH(t) in Eq. ~9!, i.e.,

F5expS 2
i

\
HeffTD . ~72!

Knowledge of a Baker-Campbell-Hausdorff relation f
SU~3! would explicitly provide the operatorHeff in terms of
H0 andP. SinceHeff is the logarithm ofF, it is not uniquely
defined in general. However, a natural choice ofHeff is to
have it coincide with the symmetric HamiltonianH0 in Eq.
~10! in the nondriven case for vanishing asymmetryDV,

Heff5H01DH, ~73!

where DH50 if DV50. Because of its invariance unde
generalized time reversal, the effective Hamiltonian co
mutes with the antiunitary operatorPK,

@Heff,PK#50. ~74!

In this picture, the eigenvaluesEj
eff are related to the quasien

ergies by « j5(Ej
effT/\) mod 2p, and a crossing corre

sponds to a resonance

~Ej
eff2Ek

eff!T/\52pn, j Þk,nPZ. ~75!

Express the effective Hamiltonian in the basis of the fu
damental representation@32# of SU~3!,

Heff5a011 (
k51

8

aklk ~ak real!, ~76!

with the traceless Gell-Mann (333) matriceslk , the gen-
erators of the group. Due to the invariance under general
time reversal~74! the nine real coefficientsak are not inde-
pendent:

a15a6 , a25a7 , and a352)a8 . ~77!

Thus six parametersak completely characterize both the e
fective HamiltonianHeff and the Floquet matrixF. In the
nondriven case,Heff5H0 , the coefficientsak are related to
the system parameters bya052h1VG1VB/3, a152h,
a352h/21VB , a25a45a550.

Let us determine the explicit form of the effective Ham
tonian in the high-frequency limitT→0. From Eq.~27! and
the driving approximation~13! we have that

expS 2
i

\
HeffTD5expS 2

i

2\
PHPTDexpS 2

i

2\
HTD ,

~78!

with H from Eq. ~47!. Using the Baker-Campbell-Hausdor
formula @33#

eAeB5eA1B1 ~1/2!@A,B#2~1/12!~†A,@A,B#‡1†@A,B#,B‡!1•••

~79!

one finds the expansion
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DH5h
DVT

8\
~l21l7!1h

~DV T!2

48\2 ~l11l6!

1O„~DVT/\!3
…, ~80!

which respects the antiunitary symmetry~77!. An explicit
calculation of the energy eigenvalues of the effective Ham
tonian ~along the same lines as in Sec. IV A! results in an
expression for the tunnel splittingDE similar to Eq. ~51!:
one only has to replace

h2→~heff!25h2@11~DVT!2/40\2#1O„~DVT/\!3
….
~81!

Consequently, in the limit of high frequency (T→0) the
driving force effectivelydecreasesthe height of the potentia
barrier,

VB
eff'VB@12~DVT!2/40\2#,VB , T→0. ~82!

A decrease of the effective potential barrier in the hig
frequency limit is also found for the continuous system@7#.

V. SUMMARY

In this paper, we have studied a simple discrete mode
a periodically driven particle in a double-well potential. Ta
ing into account all the relevant symmetries, time period
ity, generalized parity, and generalized time reversal, a n
ral decomposition of the Floquet operator and an associ
normal form of its eigenfunctions has been presented. A
cussion of quasienergy crossings, motivated by the effec
coherent destruction of tunneling, has revealed that they
closely related to the resonances of the non-driven asym
ric double-well system. The results qualitatively agree to
large extent with those of the continuous model, as far
they are known.
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APPENDIX A: NORMAL FORM
OF ANTIUNITARY OPERATORS

Any antiunitary operatorÂ can be written as

Â5ÛK̂, ~A1!
nd

et
l-

-

of

-
u-
ed
s-
of
re
et-
a
s

l-
l

where K̂ is complex conjugation~in some basis! and Û is

unitary @25#. Eigenstates ofÂ are constructed from those o

the unitary operatorL̂5Â25ÛÛ* . If uv0& is an eigenstate

of L̂ with eigenvalue 1,

L̂uv0&5uv0&, ~A2!

then the state

uv&5H c~ uv0&1Âuv0&! if Âuv0&Þ2uv0&

c~ uv0&1 iÂuv0&! if Âuv0&52uv0&
~A3!

is obviously an eigenstate of the operatorÂ. In the context of

this paper, the operatorÛ in Eq. ~A1! is to be identified@cf.

Eq. ~34!# with spatial reflectionP̂, and the operatorL̂ equals
the identity. If the eigenvalue of the eigenstateuv0& of L̂ is
different from one, the operatorÂ does not have
eigenstates—instead a set of ‘‘characteristic vectors’’@25#
can be associated with it.

APPENDIX B: ANALYTICAL DETERMINATION
OF S AND ITS EIGENVALUES

The knowledge of the eigenbasis and eigenvalues of
time-independent asymmetric HamiltonianH in Eq. ~9! al-
lows one to explicitly calculate the matrixS defined in Eq.
~57!:

S5PU diag~e2 iE0T/2\,e2 iE1T/2\,e2 iE2T/2\!U†. ~B1!

Here, the unitary transformationU is composed of the eigen
basis ofH, Eq. ~53!: Ujk5ck22

( j 21) , j ,k51,2,3. The eigenval-
uesEj of H are inserted from Eq.~49!. In principle, one can
obtain the eigenvalues exp(2isj) and eigenstates in close
form, since the characteristic polynomial ofS̃ in Eq. ~63! is
of third order. However, we refrain from presenting the e
plicit results because the rather involved expressions do
offer much insight.
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