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Abstract
A quantum mechanical search procedure to determine the real zeros of a
polynomial is introduced. It is based on the construction of a spin
observable whose eigenvalues coincide with the zeros of the polynomial.
Subsequent quantum mechanical measurements of the observable output
directly the numerical values of the zeros. Performing the measurements is
the only computational resource involved.
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1. Introduction

Quantum mechanical measurements are a computational
resource. Various quantum algorithms use projective
measurements at some stage or other to determine the period of
a function; see e.g. [1]. In [2], projective measurements have
been assigned a crucial role in a particular scheme of universal
quantum computation which requires measurements on up to
four qubits. Related schemes have been formulated based on
measurements on triples and pairs [3], and finally on pairs of
qubits only [4]. Measurements are also an essential part of
Grover’s search algorithm—namely, in order to actually read
the result of the computation [5, 6].

A conceptually different strategy has been used in
proposing a special-purpose machine which is capable of
diagonalizing any finite-dimensional Hermitian matrix by
genuine quantum means, i.e. quantum measurements [7, 8].
In this approach of quantum diagonalization, a Hermitian
matrix is considered as a quantum mechanical observable of an
appropriate one-spin system. Projective measurements with
a generalized Stern–Gerlach apparatus provide directly the
unknown eigenvalues of the matrix which solves the hard part
of the diagonalization. In this paper, it will be shown how to
find the real zeros of a prescribed polynomial in a similar way,
using quantum mechanical measurements.

2. The quantum search procedure

Consider a polynomial of degree N which is assumed to have
N real zeros ζn:

P(x) =
N∑

n=0

pn xn, pn ∈ R, pN = 1. (1)

The assumption that pN = 1 is not a restriction since
two polynomials Q(x) and Q(x)/c, c �= 0, have the same
zeros. The quantum procedure for identifying the zeros ζn

of P(x) consists of two steps. First, one needs to find
a Hermitian companion matrix C of the polynomial P(x).
By construction, its eigenvalues coincide with the unknown
zeros of the polynomial P(x). Second, one determines the
eigenvalues of the matrix C by a method inspired by the
quantum diagonalization of a Hermitian matrix. Effectively,
they are obtained by measuring the eigenvalues of a quantum
mechanical spin observable Ĉ with matrix representation C.

3. The Hermitian companion matrix of a polynomial

It is straightforward to calculate the characteristic polynomial
PM(λ) of an (N × N) matrix M:

det(M − λE) = PM(λ), (2)

where E is the (N × N) unit matrix. The polynomial PM(λ)

has degree N , and its zeros coincide with the eigenvalues
µn , n = 1, . . . , N , of the matrix M. Hermitian matrices
have real eigenvalues only; hence all zeros of its characteristic
polynomial are located on the real axis. The inverse problem
reads
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• Given a polynomial P(x) of degree N with real zeros,
find a Hermitian matrix C such that its characteristic
polynomial is P(x).

The matrix C is known as the companion matrix of the
polynomial P(x). Obviously, the companion matrix should
be determined without reference to the roots of the given
polynomial. If C is one solution of the inverse problem, then
the matrices CU = UCU† provide solutions as well, where U is
any unitary (N × N) matrix. The difficult part of the inverse
problem lies in the requirement of finding a Hermitian matrix
C: it is easy to specify a non-Hermitian companion matrix C0

of the polynomial (1), namely,

C0 =




0 1
...

. . .

1
−p0 −p1 · · · −pN−1


 . (3)

Partial solutions of the problem of finding Hermitian
companion matrices have been obtained in [9]. A complete and
constructive solution can be found in [10], where a Hermitean
companion matrix C is specified in terms of the coefficients
pn , n = 0, 1, . . . , N . Explicitly, a polynomial P(x) of degree
N with N real zeros can be written in the form

P(x) = (−)N det(C − xE), (4)

where the matrix C is tridiagonal and real symmetric, and hence
Hermitian:

C =




−q1(0)
√

d1√
d1 −q2(0)

√
d2

√
d2 −q3(0)

. . .

. . .
. . .

−qn−2(0)
√

dn−2√
dn−2 −qn−1(0)

√
dn−1√

dn−1 −qn(0)




.

(5)
The non-negative numbers dk , k = 1, 2, . . . , N − 1, and
the polynomials qn(x), n = 1, 2, . . . , N , are generated
when applying a modified Euclidean algorithm [10] to the
polynomial P(x). The operations required to determine the
matrix elements of C are

(i) repeated division of polynomials;
(ii) evaluation of specific polynomials at x = 0;

(iii) taking square roots of positive numbers dk .

As a corollary, the modified Euclidean algorithm checks
whether the given polynomial has real zeros only: if any one
of the numbers dk is found to be negative, P(x) cannot have
real zeros only. For completeness, the algorithm is sketched
in the appendix.

4. A quantum search for eigenvalues of Hermitian
matrices

Four steps are necessary to find the eigenvalues of a given
Hermitian matrix C with N different eigenvalues by means of
quantum measurements. Here only an outline of this approach
will be given; for details about the procedure for (N × N)

matrices, readers should consult [7], while it is illustrated for
(2 × 2) matrices in [8].

The matrix must be (i) written in standard form; next,
it is interpreted as (ii) a matrix representation of a unique
observable Ĉ of a quantum spin; this observable can be
measured by (iii) a specific apparatus which needs to be
identified and built; finally, the apparatus is used to generate
the eigenvalues by (iv) actually measuring the observable C.

(i) The standard form of C. Write the Hermitian (N ×
N) matrix C as a combination of linearly independent
Hermitian multipole operators Tν , ν = 0, . . . , N 2 − 1:

C =
N 2−1∑
ν=0

cνTν , cν = 1

N
Tr[CTν ] ∈ R. (6)

There are N 2 self-adjoint multipole operators T̂ν =
T̂ †

ν with matrix representations Tν , and they form a
basis in the space of Hermitian operators acting on an
N -dimensional Hilbert space H [11]. These operators
consist of all traceless symmetric products of up to N
spin components Ŝ = (Ŝx , Ŝy, Ŝy), plus the identity
operator. Two multipoles are orthogonal with respect
to a scalar product defined as the trace of their product:
(1/N) Tr[T̂ν T̂ν′] = δνν′ .

(ii) Identification of an observable. On the basis of the
expansion (6), interpret the matrix C as representing
an observable Ĉ for a spin with quantum number s =
(N − 1)/2:

Ĉ = C(Ŝ) =
N 2−1∑
ν=0

cν T̂ν, (7)

thinking of the multipoles as functions of the spin
components, T̂ν = Tν(Ŝ).

(iii) Setting up a measuring device for Ĉ . Swift and Wright
have shown in [11] how to devise a generalized Stern–
Gerlach apparatus which measures any spin observable
Ĉ . The construction generalizes the traditional Stern–
Gerlach apparatus which measures the spin component
en · Ŝ along a direction specified by a unit vector en .
Setting up this device requires one to create arbitrary static
electric and magnetic fields in the laboratory, consistent
with Maxwell’s equations. The procedure is made explicit
in [11]. Once constructed, the apparatus will split
an incoming beam of particles with spin s into N =
2s + 1 subbeams corresponding to the eigenvalues of Ĉ .
The working principle is equivalent to that of a standard
Stern–Gerlach apparatus where Ĉ ≡ Ŝz .

(iv) Determination of the eigenvalues. Prepare a spin s in a
homogeneous mixture ρ̂0 = Î/(2s + 1). When carrying
out measurements with the apparatus associated with Ĉ ,
the output of each individual measurement will be one
of the eigenvalues ζn of the matrix C. The actual values
of the eigenvalues can be determined from the amount
by which the particles in each subbeam are deflected
from the straight line of flight. After sufficiently many
repetitions, all eigenvalues ζn will be known. Since each
eigenvalue occurs with probability 1/N , the probability of
not obtaining one of the N values decreases exponentially
with the number of runs.
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By construction, the numbers ζn obtained in the last step coin-
cide with the zeros of the polynomial P(x), and one can write

P(x) =
N∏

n=1

(x − ζn). (8)

The zeros ζn have been obtained by a genuinely quantum me-
chanical method.

5. Conclusions

It has been shown that one can build a quantum mechanical
special-purpose machine which is capable of providing as
output the roots of a polynomial of degree N . The underlying
working principle is that of performing quantum mechanical
measurements with a generalized Stern–Gerlach apparatus.

The present approach is genuinely different from existing
quantum mechanical computations for finding the eigenvalues
of a Hermitian operator, Ĥ , say. This is typically done by
means of quantum phase estimation in which the eigenphases
of the unitary operator Û = exp[iĤ ] are determined by
a quantum algorithm [12, 13]. The algorithms require
the efficient implementation of the operator Û and (some
of) its powers, followed by an (inverse) quantum Fourier
transformation. If one desires to obtain the value of a phase
φ with n relevant bits and a probability of success not smaller
than (1−ε), one needs to let the algorithms run for a timeO(t2 )

where t = ln[2+1/(2ε)] [14]. Furthermore, it has been argued
in [15] that one can design a quantum algorithm to determine
eigenvalues of specific (‘exponentially large’) Hamiltonians
which runs in polynomial time while the best known classical
algorithms require an exponential amount of time.

One could perform the matrix diagonalization required
in the procedure to locate the zeros of a polynomial by each
of the approaches just mentioned. Therefore, the question of
the computational efficiency of the proposed special-purpose
machine poses itself naturally, but it remains open for the time
being.

The possibility of extracting information from individual
quantum mechanical measurements in the present setting may
have implications for the interpretation of quantum mechanical
states. Quantum root extraction of polynomials seems to
strengthen the individual interpretation [16]: a single run of
a measurement (with only one individual quantum system
involved) provides information about one (randomly selected)
zero of the polynomial; hence, no ensemble of identically
prepared systems is required to obtain a useful answer from
the experiment.

Instead of repeating the experiment M � N times, one
can imagine running M identical experiments simultaneously,
each generalized Stern–Gerlach apparatus being tuned to
search for the zeros of the same polynomial P(x). If the input
state is an M-fold direct product of the homogeneous mixture
ρ̂0,

ρ̂0 ⊗ · · · ⊗ ρ̂0, (9)

the resulting ‘parallel’ quantum search would, with large
probability, produce all zeros ζn at one go. In a sense, quantum
mechanics is able to point almost instantaneously at the zeros
of a given polynomial without any software program running.

Appendix. The modified Euclidean algorithm

Given a polynomial

P(x) = x N + pN−1x N−1 + · · · + p0, pn ∈ R, (10)

the modified Euclidean algorithm [10] defines recursively a
number of polynomials Pk(x), k = 2, 3, . . . , N −1, of smaller
degrees, and it generates other polynomials qk(x) and numbers
dk which are required to define the Hermitian companion
matrix C. Start with

P1(x) = P(x) P2(x) = 1

N

dP(x)

dx
, (11)

and iterate the following steps. Divide Pk(x) by Pk+1(x):

Pk(x) = qk(x)Pk+1(x) − rk(x), (12)

with a remainder rk(x) which may either be different from or
equal to zero. Denote by d(Q(x)) the coefficient of the highest
power of the polynomial Q(x): for example, d(P(x)) = 1.
Define a polynomial Pk+2(x) and the number dk according to

(i) rk(x) �= 0: Pk+2(x) = rk (x)k

dk
and dk = d(rk(x));

(ii) rk(x) = 0: Pk+2(x) = dPk+1(x)/dx
d(dPk+1(x)/dx)

and dk = 0.

The algorithm terminates if Pk+1 = 1, defining qk(x) =
Pk(x). Otherwise the procedure is repeated with Pk+1(x) and
Pk+2(x) in (11) and it will generate qk+1 and dk+1, etc.
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