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The quantum way to diagonalize hermitean matrices
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An entirely quantum mechanical approach to diagonalize hermitean matrices has been presented recently. The
method is based on the measurement of quantum mechanical observables which provides the computational
resource. In brief, quantum mechanics is able to directly address and output eigenvalues of hermitean
matrices. Here, the example of (2 × 2) matrices is considered in detail. This simple case allows one to
illustrate the conceptual features of the general method which is applicable to (N × N) hermitean matrices.

1 Introduction

A new attitude towards quantum theory has emerged in recent years. The focus is no longer on attempts
to come to terms with counter-intuitive quantum features but to capitalize on them. In this way, surprising
methods have been uncovered to solve specific problems by means which have no classical equivalent:
quantum cryptography, for example, allows one to establish secure keys for secret transmission of infor-
mation [1]; entanglement [2] is used as a tool to set up powerful quantum algorithms which do factor
large integers much more efficiently than any presently known classical algorithm [3]. Throughout, these
techniques make use of the measurement of quantum mechanical observables as an unquestioned tool. This
is also true for many (but not all [4]) proposals of quantum error correction schemes [3, 5], required to let
a potential algorithm run.

The purpose of the present contribution is to study the simplest situation in which a quantum mechanical
measurement, i.e. the bare ‘projection’ [2], “does” the computation. The computational task is to determine
the eigenvalues of hermitean (2×2) matrices by quantum means alone. Although the answer to this problem
can be given analytically it is useful to discuss this particular case since there is no conceptual difference
between diagonalizing (2 × 2) or (N × N) hermitean matrices along these lines [6].

Before turning to the explicit example, consider briefly the traditional view on quantum mechanical
measurements: a measurement is thought to confirm or reveal some information about the state of the
system. The measured observable Â is assumed to be known entirely, including in-principle-knowledge of
its eigenstates and eigenvalues. Further, the observable also defines the scope of the possible results of a
measurement since both the only allowed outcomes are its eigenvalues and, directly after the measurement,
the system necessarily resides in the corresponding eigenstate.

In the context of quantum diagonalization, however, the crucial idea is to learn something about the
measured observable – not about the state of the system. Why is there scope for information gain at all?
What can one learn from a quantum mechanical experiment if both the measured observable and the state
are known?
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It is essential to realize that the input required to measure an observable Â and the output of an experiment,
in which Â is actually measured, are not identical. In fact, it is possible to construct an apparatus which
measures an observable Â without explicitly knowing its eigenvalues. Then, a measurement provides
partial – but explicit – information about the spectral properties of the observable Â: it delivers one of
its eigenvalues. As the eigenvalues of Â are not known explicitly before the measurement, information is
indeed gained by measuring Â. This is the idea which underlies quantum diagonalization.

The quantum diagonalization of a hermitean matrix is achieved in five steps: (1) express the matrix in a
standard form; (2) associate a quantum mechanical observable with it; (3) identify an apparatus capable
of measuring the observable; (4) measure the observable – this provides the eigenvalues of the matrix; (5)
determine its eigenstates. The next section gives the details for (2 × 2) matrices. Then, the generalization
to (N × N) matrices is briefly summarized.

2 Quantum diagonalization of hermitean (2 × 2) matrices

Suppose you want to determine the eigenvalues A± (and, subsequently, the eigenvectors |A±〉) of the
general hermitean (2 × 2) matrix

A =
[

α β∗

β γ

]
, α, γ ∈ R , β ∈ C . (1)

Obviously, this problem is easily solved analytically. The eigenvalues read

A± =
1
2

(
α + γ ±

√
(α − γ)2 + 4ββ∗

)
, (2)

and one can also give explicit expressions for the eigenvectors of the matrix A. The five-step procedure
of quantum diagonalization is now applied to A; it will, of course, reproduce the result (2). However, all
conceptual points, which also apply to the technically more cumbersome case of (N × N) matrices are
conveniently illustrated by this simple example.

1. Standard form of A: Any hermitean (2 × 2) matrix A can be written as a unique linear combination of
the three Pauli matrices σj = σ†

j , j = 1, 2, 3, , and the unit matrix σ0 = I2,

A = (a0σ0 + a · σσ) , aj = 1
2 Tr [Aσj ] ∈ R , (3)

where

a0 = 1
2 (α + γ) , a1 = 1

2 (β + β∗) , a2 = 1
2i (β

∗ − β) , a3 = 1
2 (α − γ) . (4)

From a general point of view, this corresponds to an expansion of A in multipole operators (cf. below).

2. Identification of an observable: The most general Hamiltonian of a spin-1/2 in a homogeneous
magnetic field B0 is linear in the components of the spin S = �σσ/2. Therefore, any matrix A has
an interpretation as a Hamiltonian operator of a quantum spin subjected to an appropriately chosen
magnetic field,

A = aI2 − gµBB0 · S ≡ HA(S) , a = a0 , B0 =
−2

gµB�
a . (5)

The part aI2 shifts the energy globally by a fixed amount. Let E± denote the eigenvalues of the second
part of this expression, −gµBB0 · S ≡ H0

A(S); then, the eigenvalues A± of the matrix A are given by

A± = a + E± . (6)
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Consequently, the door is now open to determine the eigenvalues of A experimentally, i.e. through
measuring the eigenvalues E± of the Hamiltonian H0

A(S). In the next step it is shown how to devise
an apparatus which measures this operator.

3. Setting up a measuring device: The apparatus is required to measure the eigenvalues of the operator
H0

A(S). In the case of a (2 × 2) matrix this is just a familiar Stern-Gerlach apparatus, appropriately
oriented in space. However, as the method will be applied to (N × N) hermitean matrices later on, it
is important to go through the construction of the measuring device in detail.

Consider the spatially varying Hamiltonian

H0(r, S) = aI2 − gµBB(r) · S ≡ aI2 + H0
A(r, S) , (7)

which describes the interaction of a spin with an inhomogeneous magnetic field B(r). In order that
H0(r, S) measure the observable H0

A(S), the field needs to satisfy the conditions

B(0) = B0 and ∇ · B(r) = ∇ × B(r) = 0 . (8)

Then, at the centre of the apparatus, the operator H0
A(r, S) coincides with the observable to be measured,

H0
A(0, S) = H0

A(S), and the magnetic field is consistent with Maxwell’s equations. Consider the field [7]

B(r) = (1 + k · r)B0 + (B0 · r)k , (9)

which is consistent with Eqs. (8) if the vector k is perpendicular to B0. Diagonalize the operator
H0

A(r, S) to first order of ∇|B|/|B|. This leads to r-dependent eigenvalues

E±(r) = ±�

2
(1 + k · r)B0 , (10)

which imply the existence of a state-dependent force

F±(r) = −∇E±(r) = ∓�

2
B0k . (11)

Consequently, particles on their way through the apparatus will be deflected deterministically from a
straight line once the projection to an eigenstate |E±〉 has occurred. In this way, the eigenvalues of the
observable can be accessed experimentally.

4. Determination of the eigenvalues: If a measurement of the operator H0
A(S) is performed on the state

ρ̂ = I2/2, then it is thrown with probability 1/2 into one of the eigenstates |E±〉 with density matrix
ρ̂±,

app(H0
A) : ρ̂ = I2/2

p±−→ (E±; ρ̂± ) , p± = Tr [ρ̂ρ̂±] = 1
2 . (12)

Repeating the measurement a few times, both eigenvalues will have been found soon. The probability
not to obtain one of the two values after N0 identical runs of the experiment equals 1/2N0, and hence
goes to zero exponentially with the number of runs. Subsequently, the sought-after eigenvalues A± of
the matrix A are known due to the relation (6), and the major step in the diagonalization of the matrix
has been achieved in a quantum way.

5. Determination of the eigenstates: Once both eigenvalues A± are known, it is straightforward to
to determine the associated eigenstates by a simple calculation. Optionally, one continues along an
experimental line. One exploits the fact that the apparatus app(H0

A) prepares an ensemble of eigenstates
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of A with density matrix ρ̂+ if the other subbeam (containing ρ̂−) is blocked – and vice versa. The
Bloch representation of the density matrix ρ̂+, say, can be parameterized by expectation values,

ρ̂+ = 1
2 (σ0 + 〈σσ〉+ · σσ) , 〈σ̂j〉+ = Tr [ρ̂+σj ] ≡ 〈E+|σj |E+〉 . (13)

Hence, the components of the vector 〈σσ〉+ (and therefore ρ̂+) are easily obtained by means of a
second, appropriately oriented Stern-Gerlach apparatus, which amounts to a reconstruction of the
density matrix ρ̂+.

3 Quantum diagonalization of hermitean (N × N) matrices

Five steps are necessary to diagonalize a hermitean (N × N) matrix A by quantum means.

1. Standard form of A: Write the hermitean (N × N ) matrix A as a combination of linearly independent
hermitean multipole operators Tν , ν = 0, . . . , N2 − 1,

A =
N2−1∑
ν=0

aνTν , aν =
1
N

Tr [A Tν ] ∈ R . (14)

Multipole operators Tj1j2···ja act in a Hilbert space Hs of dimension N = 2s + 1 which carries an
irreducible representation of the group SU(2) with the spin components (S1, S2, S3) as generators.
They are defined as the symmetrized products Sj1Sj2 · · ·Sja

, ji = 1, 2, 3, and a = 0, 1, . . . , 2s, after
subtracting off the trace, except for T0 ≡ T(0) = I, the (N×N) unit matrix. The index a labels (2s+1)
classes with (2a + 1) elements each, transforming among themselves under rotations. Explicitly, the
lowest multipoles read

T(1)
j = Sj , T(2)

j1j2
= 1

2 (Sj1Sj2 + Sj2Sj1) − δi1j2

3
Sj1Sj2 . (15)

For the sake of brevity, a collective index ν ≡ (a; j1, . . . , jk) has been used in (14), taking on the values
ν = 0, 1, . . . , N2 − 1. The N2 self-adjoint multipole operators Tν = T†

ν form a basis in the space of
hermitean operators acting on the N -dimensional Hilbert space Hs [7]. Two multipoles are orthogonal
with respect to a scalar product defined as the trace of their product: (1/N) Tr [TνTν′ ] = δνν′ .

2. Identification of an observable: Interpret the matrix A as an observable HA for a single quantum spin
S with quantum number s = (N − 1)/2,

A =
N2−1∑
ν=0

aνTν(S) ≡ HA(S) , (16)

using the expression of the multipoles Tν(S) in terms of the components of a spin. Since the multipoles
are expressed explicitly as a function of the spin components not exceeding the power 2s, it is justified
to consider them and, a fortiori, the quantity HA(S) as an observable for a spin s.

3. Setting up a measuring device: Swift and Wright [7] have shown how to devise, in principle, a
generalized Stern-Gerlach apparatus which measures any observable HA(S) – just as a traditional
Stern-Gerlach apparatus measures the spin component n · S along the direction n. The construction
requires that arbitrary static electric and magnetic fields, consistent with Maxwell’s equations, can be
created in the laboratory. To construct an apparatus app(HA) means to identify a spin Hamiltonian
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H(r, S) which splits an incoming beam of particles with spin s into subbeams corresponding to the
eigenvalues An. The most general Hamiltonian acting on the Hilbert space Hs of a spin s reads

H(r, S) =
N2−1∑
ν=0

Φν(r)Tν , (17)

with traceless multipoles (except for ν = 0), and totally symmetric expansion coefficients Φν(r) (≡
Φ(k)

j1j2...jk
(r)). These functions, which vary in space, generalize the magnetic field B(r) in (7). Tune

the corresponding electric and magnetic fields in such a way that the coefficients Φν(r) and their first
derivatives with respect to some spatial direction, r1, say, satisfy

Φν(r)|r=0 = aν , and
∂Φν(r)

∂r1

∣∣∣∣
r=0

= aν . (18)

As shown explicitly in [7], this is always possible with realistic fields satisfying Maxwell’s equations.
Then, the Hamiltonian in (17) has two important properties:

(i) At the origin, r = 0, it coincides with the matrix H(0, S) = HA(S).

(ii) Suppose that a beam of particles with spin s enters the generalized Stern-Gerlach apparatus
app(HA) just described. At its center, particles in an eigenstate |An〉, say, will experience a force
in the r1 direction given (up to second order in distance from the center) by

F1(r)|r=0 = − ∂〈An|H(r, S)|An〉
∂r1

∣∣∣∣
r=0

= −An , n = 1, . . . , 2s + 1 . (19)

Consequently, particles with a spin residing in different eigenstates |An〉 of the operator HA will be
separated spatially by this apparatus. From a conceptual point of view, the procedure is equivalent to
the method outlined above for a spin 1/2.

4. Determination of the eigenvalues: Once the apparatus app(HA) has been set up, one needs to carry out
measurements on (particles carrying) a spin s prepared in the homogeneous mixture ρ̂ = IN/N . The
output of each individual measurement will be one of the eigenvalues An of the matrix A, according
to the ‘projection postulate:’

app(Â) : ρ̂ = IN/N
pn−→ (An; ρ̂n) , pn = Tr [ρ̂ρ̂n] =

1
N

. (20)

In words, the action of the apparatus is, with probability pn = 1/N , to throw the system prepared
in state ρ̂ into an eigenstate ρ̂n ≡ |An〉〈An| of the observable Â; the outcome of the measurement is
given by the associated eigenvalue An.

After sufficiently many repetitions, all eigenvalues will be known, although the outcome of an individual
measurement cannot be predicted due to the probabilistic character of quantum mechanics. It is
necessary to repeat the experiment a number of times until all values An have been obtained. Since
the spin s has been prepared initially in a homogeneous mixture, ρ̂ = IN/N , the (2s + 1) possible
outcomes occur with equal probability. The probability not to have obtained one specific value An

after N0 � N measurements equals (2s/(2s+1))N0 	 exp[−N0/2s], decreasing exponentially with
N0.

5. Determination of the eigenstates: As before it is possible to either calculate the eigenstates |An〉 of
the matrix A on the basis of the known eigenvalues, or to determine them experimentally by methods
of state reconstruction (see [8] for details).
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4 Summary and outlook

As a result of the five steps just described, a hermitean (N × N) matrix A has been diagonalized without
calculating the zeroes of its characteristic polynomial by traditional means. The fourth step solves the hard
part of the eigenvalue problem since it provides the eigenvalues An of the matrix A – information which
cannot be obtained in closed form if N ≥ 5. One might best describe the measuring device app(HA)
as a ‘special purpose machine’ which is based on the ‘collapse of the wave function’ as computational
resource. However, one could avoid to use the notion of ‘collapse’ or ‘projection’ by characterizing the
process indirectly using the concept of ‘repeatable measurements’ described in [9].

By construction, the quantum mechanical diagonalization is not based on the representation of a math-
ematical equation in terms of a physical system which then would ‘simulate’ it. Similarly, no ‘software
program’ runs which would implement an diagonalization algorithm. Therefore, the method resembles
neither an analog nor a digital calculation.

It is worthwhile to point out that the quantum mechanical approach to the diagonalization of hermitean
matrices is based on the assumption that the behaviour of a spin s is described correctly by non-relativistic
quantum mechanics. Note, finally, that quantum diagonalization does not depend on a particular interpre-
tation of quantum mechanics.
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