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Abstract
A new approach to play games quantum mechanically is proposed. We consider
two players who perform measurements in an EPR-type setting. The payoff
relations are defined as functions of correlations, i.e. without reference to
classical or quantum mechanics. Classical bi-matrix games are reproduced
if the input states are classical and perfectly anti-correlated, that is, for a
classical correlation game. However, for a quantum correlation game, with an
entangled singlet state as input, qualitatively different solutions are obtained.
For example, the Prisoners’ Dilemma acquires a Nash equilibrium if both
players apply a mixed strategy. It appears to be conceptually impossible to
reproduce the properties of quantum correlation games within the framework
of classical games.

PACS numbers: 03.67.−a, 02.50.Le

1. Introduction

To process information has been conceived for a long time as a purely mathematical task,
independent of the carrier of information. However, problems such as identifying a marked
object in a database [1] or the factorization of large integer numbers [2] are solved in a
highly efficient way if information is stored and processed quantum mechanically. Hence,
the theory of quantum information came into existence generalizing classical bits to qubits:
linear combinations of classically incompatible states are possible, and they can be processed
simultaneously.

Game theory [3], a tool to take decisions in a rational way, has been proposed as another
promising candidate to benefit from a quantum mechanical implementation [4]. Based on
their knowledge of the circumstances, players in a classical game select from a set of possible
moves or actions to maximize their payoffs. In its quantum version, unexpected moves may
provide new solutions to the game; a strategy which includes quantum moves may outperform
a classical strategy [5]. Opinions about the true quantum character of such games are
divided, however: it has been argued that quantized games are nothing but disguised classical
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games [6]. In other words, to quantize a game is claimed equivalent to replacing the original
game by a different classical game.

In the present paper, we associate a quantum game with a classical game in a way which
addresses this criticism by imposing two constraints:

(c1) The players choose their moves (or actions) from the same set in both the classical and
the quantized game.

(c2) The players agree on explicit expressions for their payoffs which must not be modified
when switching between the classical and the quantized version of the game.

Games with these properties are expected to be immune against the criticism raised above.
In the new setting, the only ‘parameter’ is the input state on which the players act, and its
nature will determine the classical or quantum character of the game. Our approach to quantum
games, tailored to satisfy both (c1) and (c2), is inspired by Bell’s work [7]: correlations of
measurement outcomes are essential. Effectively, we will define payoff relations in terms of
correlations—these payoffs will become sensitive to the classical or quantum nature of the
input.

Section 2 introduces our notation of classical games. Then, games will be set up in a
way which resembles an EPR experiment. In section 4, correlation games will be defined
through payoffs depending explicitly on correlations. If played on a classical input state, they
reproduce classical bi-matrix games. New advantageous strategies may emerge, however, if
the same payoff relations are used in the quantum mechanical setting, as shown in section 5.
Finally, we discuss achievements and limitations of our approach.

2. Matrix games and payoffs

Consider a matrix game [8] for two players, called Alice and Bob. A large set of identical
objects are prepared in definite states, not necessarily known to the players. Each object splits
into two equivalent ‘halves’ handed over to Alice and Bob simultaneously. Let the players
agree beforehand on the following rules:

1. Alice and Bob may either play the identity move I or perform actions SA and SB ,
respectively. The moves SA,B (and I) consist of unique actions such as flipping a coin (or
not) and possibly reading it.

2. The players agree upon payoff relations PA,B(pA, pB) which determine their awards as
functions of their strategies, that is, the moves with probabilities pA,B assigned to them.

3. The players fix their strategies for repeated runs of the game. In a mixed strategy Alice
plays the identity move I with probability pA, say, while she plays SA with probability
pA = 1 − pA, and similarly for Bob. In a pure strategy, each player performs the same
action in each run.

4. Whenever the players receive their part of the system, they perform a move consistent
with their strategy.

5. The players inform an arbiter about their actions taken in each individual run. After a
large number of runs, they are rewarded according to the agreed payoff relations PA,B .
The existence of the arbiter is for clarity only: alternatively, the players get together to
decide on their payoffs.

These conventions are sufficient to play a classical game. As an example, consider the
class of symmetric bi-matrix games with payoff relations

PA(pA, pB) = KpApB + LpA + MpB + N

PB(pA, pB) = KpApB + MpA + LpB + N
(1)
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where K,L,M and N are real numbers. Being functions of two real variables, 0 � pA,B � 1,
the payoff relations PA,B reflect that each player may choose a strategy from a continuous
one-parameter set. The game is symmetric since

PA(pA, pB) = PB(pB, pA). (2)

Look at pure strategies with pA,B = 0 or 1 in equation (1):

PA(1, 1) = PB(1, 1) = r = K + L + M + N

PA(1, 0) = PB(0, 1) = s = L + N

PA(0, 1) = PB(1, 0) = t = M + N

PA(0, 0) = PB(0, 0) = u = N

(3)

leading to the payoff matrix for this game

Bob

I SB (4)

Alice
I

SA

(
(r, r)

(t, s)

(s, t)

(u, u)

)
In words: if both Alice and Bob play the identity I, they are paid r units; Alice playing the
identity I and Bob playing SB pays s and t units to them, respectively; etc. Knowledge of the
payoff matrix (4) and the probabilities pA,B is, in fact, equivalent to (1) since the expected
payoffs PA,B are obtained by averaging (4) over many runs.

Let Alice and Bob act rationally: they will try to maximize their payoffs1 by an appropriate
strategy [3]. If the entries of the matrix (4) satisfy s < u < r < t , the Prisoners’ Dilemma
[8] arises: the players opt for strategies in which unilateral deviations are disadvantageous;
nevertheless, the resulting solution of the game, a Nash equilibrium, does not maximize their
payoffs.

In view of the conditions (c1) and (c2) the form of the payoff relations PA,B in (1) seems
to leave no room to introduce quantum games which would differ from classical ones. In the
following, we will introduce payoff relations which are sensitive to whether a game is played
on classical or quantum objects. With classical input, they will reproduce the classical game,
and the conditions (c1) and (c2) will be respected throughout.

3. EPR-type setting of matrix games

Correlation games will be defined in a setting which is inspired by EPR-type experiments [9].
Alice and Bob are spatially separated, and they share information about a Cartesian coordinate
system with axes ex, ey, ez. The physical input used in a correlation game is a large number
of identical systems with zero angular momentum, J = 0. Each system decomposes into a
pair of objects which carry perfectly anti-correlated angular momenta JA,B , i.e. JA + JB = 0.

In each run, Alice and Bob will measure the dichotomic variable e · J/|e · J| of their halves
either along the common z-axis (e → ez) or along specific directions eA and eB respectively.
The directions eA and eB are contained in two planes PA and PB each containing the z-axis,
as shown in figure 1. The vectors eA and eB are characterized by the angles θA and θB which
they enclose with the z-axis:

ez · eA,B = cos θA,B 0 � θA,B � π. (5)

In principle, Alice and Bob could be given the choice of both the directions eA,B and the
probabilities pA,B . However, in traditional matrix games each player has access to one

1 The authors do not consider this the only possible definition of rationality.
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Figure 1. The players’ strategies consist of defining angles θA,B which the directions eA,B make
with the z-axis; for simplicity, the planes PA,B are chosen as the xz- and yz-plane, respectively.

continuous variable only, namely pA,B . To remain within this framework, we impose a
relation between the probabilities pA,B ∈ [0, 1], and the angles θA,B ∈ [0, π ]:

pA,B = g(θA,B). (6)

The function g maps the interval [0, π ] to [0, 1], and it is specified before the game begins.
This function is, in general, not required to be invertible or continuous. Relation (6) says
that Alice must play the identity (measurement along ez) with probability pA ≡ g(θA) if she
decides to select the direction eA as her alternative to ez; furthermore, she measures with
probability pA = 1 − g(θA) along eA. For an invertible function g, Alice can choose either a
probability pA or a direction θA and find the other variable from equation (6). If the function
g is not invertible, some values of probability are associated with more than one angle, and it
is more natural to have the players choose a direction first. For simplicity we will assume the
function g to be invertible, if not specified otherwise.

According to her chosen strategy, Alice will measure the quantity e · J/|e · J| with
probability pA along the z-axis, and with probability pA = 1 − pA along the direction
eA. Similarly, Bob can play a mixed strategy, measuring along the directions ez or eB with
probabilities pB and pB , respectively. Hence, Alice’s moves consist of either SA (rotating a
Stern–Gerlach type apparatus from ez to eA, followed by a measurement) or of I (a measurement
along ez with no previous rotation). Bob’s moves I and SB are defined similarly. It is convenient
to denote the outcomes of measurements along the directions eA, eB , and ez by a, b and c,
respectively.

After each run, the players inform the arbiter about the chosen directions and the results of
their measurements. After N → ∞ runs of the game, the arbiter possesses a list L indicating
the directions of the measurements selected by the players and the measured values of the
quantity e · J/|e · J|. The arbiter uses the list to determine the strategies played by Alice and
Bob by simply counting the number of times (NA, say) that Alice measured along eA, giving
pA = lim

N→∞
(N − NA)/N , etc. Finally, the players are rewarded according to the payoff

relations (1).

4. Correlation games

We now develop a new perspective of matrix games in the EPR-type setting. The basic idea
is to define payoffs PA,B = PA,B(〈ac〉, 〈cb〉) which depend explicitly on the correlations of
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the actual measurements performed by Alice and Bob. The arbiter will extract the numerical
values of the correlations 〈ac〉 etc. from the list L in the usual way. Consider, for example,
all cases with Alice measuring along eA and Bob along ez. If there are Nac such runs, the
correlation of the measurements is defined by

〈ac〉 = lim
Nac→∞

(
Nac∑
n=1

ancn

Nac

)
(7)

where an and cn take the values ±1 [9]. The correlations 〈ab〉 and 〈cb〉 are defined similarly.
A symmetric bi-matrix correlation game is determined by a function g in (6) and by the

relations

PA(〈ac〉, 〈cb〉) = KG(〈ac〉)G(〈cb〉) + LG(〈ac〉) + MG(〈cb〉) + N

PB(〈ac〉, 〈cb〉) = KG(〈ac〉)G(〈cb〉) + MG(〈ac〉) + LG(〈cb〉) + N
(8)

where, in view of later developments, the function G is taken to be

G(x) = g
(π

2
(1 + x)

)
x ∈ [0, 1]. (9)

As they stand, the payoff relations (8) refer to neither a classical nor a quantum mechanical
input. Hence, condition (c2) from above is satisfied: the payoff relations used in the
classical and the quantum version of the game are identical, namely given by equations (8).
Furthermore, Alice and Bob choose from the same set of moves in both versions of the game:
they select directions eA and eB (with probabilities pA,B associated with θA,B via (6)) so that
condition (c1) is satisfied. Nevertheless, the solutions of the correlation game (8) will depend
on the input being either a classical or a quantum mechanical anti-correlated state.

4.1. Classical correlation games

Alice and Bob play a classical correlation game if they receive classically anti-correlated pairs
and use the payoff relations (8). In this case, the payoffs turn into

P cl
A,B = PA,B(〈ac〉cl, 〈cb〉cl) (10)

where the correlations, characteristic for classically anti-correlated systems [9], are given by

〈ac〉cl = −1 + 2θA/π 〈cb〉cl = −1 + 2θB/π. (11)

Use now the definition of the function G in (9) and the link (6) between probabilities pA,B and
angles θA,B to obtain

G(〈ac〉) = g(θA) = pA (12)

G(〈cb〉) = g(θB) = pB. (13)

For classical input, the equations (8) reproduce the payoffs of a symmetric bi-matrix
game (1),

P cl
A (pA, pB) = KpApB + LpA + MpB + N

P cl
B (pA, pB) = KpApB + MpA + LpB + N.

(14)

The game-theoretic analysis of the classical correlation game is now straightforward—for
example, appropriate values of the parameters (r, s, t, u) lead to the Prisoners’ Dilemma, for
any invertible function g.
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4.2. Quantum correlation games

Imagine now that Alice and Bob receive quantum mechanical anti-correlated singlet states

|ψ〉 = 1√
2
(|+,−〉 − |−, +〉). (15)

The payoff relations (8) which read in this case

P
q

A,B = PA,B(〈ac〉q, 〈cb〉q) (16)

defining a quantum correlation game.
As before, Alice and Bob transmit the results of their measurements (on their quantum

halves) to the arbiter who, after a large number of runs, determines the correlations 〈ac〉q and
〈cb〉q by the formula (7)

〈ac〉q = −cos θA 〈cb〉q = −cos θB (17)

in contrast to (11).
The inverse of relation (6), then, links the probabilities and correlations through

〈ac〉q = −cos(g−1(pA)) 〈cb〉q = −cos(g−1(pB)). (18)

Plugging these expressions into the right-hand side of (16), we obtain quantum payoffs:

P
q

A(pA, pB) = KQg(pA)Qg(pB) + LQg(pA) + MQg(pB) + N

P
q

B(pA, pB) = KQg(pA)Qg(pB) + MQg(pB) + LQg(pA) + N
(19)

where

Qg(pA,B) = g
(π

2
(1 − cos(g−1(pA,B)))

)
∈ [0, 1]. (20)

The payoffs P
q

A,B turn out to be nonlinear functions of the probabilities pA,B while the payoffs
P cl

A,B of the classical correlation game are linear in both PA and PB . The impact of this
modification on the solutions of the game will be studied in the following section.

5. Nash equilibria of quantum correlation games

What are the properties of the quantum payoffs P
q

A,B compared to the classical ones, P cl
A,B?

The standard approach to ‘solving games’ consists in studying Nash equilibria. For a bi-
matrix game a pair of strategies (p�

A, p�
B) is a Nash equilibrium if each players’ payoff does

not increase upon unilateral deviation from it

PA(pA, p�
B) � PA(p�

A, p�
B) for all pA

PB(p�
A, pB) � PB(p�

A, p�
B) for all pB.

(21)

In the following, we will study the differences between classical and quantum correlation
games which are associated with two paradigmatic games: the Prisoners’ Dilemma (PD) and
the Battle of Sexes (BoS).

The payoff matrix of the PD has been introduced in (4). It will be convenient to use the
notation of game theory: C ∼ I corresponds to Cooperation, while D ∼ SA,B is the strategy
of Defection. A characteristic feature of this game is that the condition s < u < r < t

guarantees that the strategy D dominates the strategy C for both players and that the unique
equilibrium at (D,D) is not Pareto optimal (an outcome of a game is Pareto optimal if there
is no other outcome that makes one or more players better off and no player worse off ). This
can be seen in the following way. The conditions (21) read explicitly

0 � (Kp�
B + L)(p�

A − pA) for all pA

0 � (Kp�
A + L)(p�

B − pB) for all pB

(22)
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with K and L from (3). The inequalities have only one solution

p�
A = p�

B = 0 (23)

which corresponds to (D,D), a pure strategy for both players. The PD is said to have a pure
Nash equilibrium.

The BoS is defined by the following payoff matrix:

Bob
I SB (24)

Alice
I

SA

(
(α, β)

(γ, γ )

(γ, γ )

(β, α)

)
where I and SA,B are pure strategies and α > β > γ . Three Nash equilibria arise in the classical
BoS, two of which are pure: (I, I ) and (SA, SB). The third one is a mixed equilibrium where
Alice and Bob play I with probabilities

p�
A = α − γ

α + β − 2γ
p�

B = β − γ

α + β − 2γ
. (25)

For the quantum correlation game associated with the PD, the conditions (21) turn into

0 � (KQg(p
�
B) + L)(Qg(p

�
A) − Qg(pA)) (26)

0 � (KQg(p
�
A) + L)(Qg(p

�
B) − Qg(pB)) (27)

where the range of Qg(pA,B) has been defined in (20). Thus, the conditions for a Nash
equilibrium of a quantum correlation game are structurally similar to those of the classical
game except for nonlinear dependence on the probabilities pA,B . The only solutions of (27)
therefore read

Qg(p
�
A) = Qg(p

�
B) = 0 (28)

generating upon inversion a Nash equilibrium at

(p�
A)q = (p�

B)q = Q−1
g (0) = g

(
arccos

(
1 − 2

π
g−1(0)

))
(29)

where the transformed probabilities now come with a subscript q indicating the presence of
quantum correlations. The location of this new equilibrium depends on the actual choice of
the function g, as is shown below.

Similar arguments apply to the pure Nash equilibria of the BoS game while the mixed
classical equilibrium (25) is transformed into

(p�
A)q = Q−1

g (p�
A) = g

(
arccos

(
1 − 2

π
g−1

(
α − γ

α + β − 2γ

)))

(p�
B)q = Q−1

g (p�
B) = g

(
arccos

(
1 − 2

π
g−1

(
β − γ

α + β − 2γ

)))
.

(30)

When defining a quantum correlation game we need to specify a function g which
establishes the link between probabilities pA,B and angles θA,B . We will study the properties
of quantum correlation games for g-functions of increasing complexity. In the simplest case,
the function g is (i) invertible and continuous; next, we choose a function g being (ii) invertible
and discontinuous or (iii) non-invertible and discontinuous. For simplicity, all examples will
be worked out for piecewise linear g-functions. The generalization to smooth g-functions
turns out to be straightforward, and the results do not change qualitatively as long as the g
function preserves its characteristic features.
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1

g

0 θ π

Figure 2. The invertible and continuous g-function g1(θ) = θ/π .

 1 

g

δ  

0 ε θ π

Figure 3. Invertible and discontinuous g-function defined in equation (31).

5.1. Continuous and invertible g-functions

Consider the function g1(θ) = θ/π defined for θ ∈ [0, π ] shown in figure 2. We have
g1(0) = 0, g1(π) = 1, and the classical and quantum correlations coincide at θ = 0, π/2, and
π . In view of (29) the function g1 can have no effect on pure Nash equilibria and the classical
solution of the PD is not modified in the quantum game.

However, solutions p�
A,B ∈ (0, 1) correspond to a mixed classical equilibrium. It will

be modified if g(π/2) �= p�
A,B i.e. when the angle associated with p�

A,B is different from
π/2. For example with the function g1(θ) the probabilities of the mixed equilibrium of
the quantum correlation BoS are (p�

A)q = 1 − (1/π) arccos{(α − γ )/(α + β − 2γ )} and
(p�

B)q = 1 − (1/π) arccos{(β − γ )/(α + β − 2γ )}. A similar result holds for the function
g2(θ) = 1 − θ/π .

5.2. Invertible and discontinuous g-functions

For simplicity we consider invertible functions that are discontinuous at one point only.
Piecewise linear functions are typical examples. One such function, shown in figure 3, is

g3(θ) =
{
δ(1 − θ/ε) if θ ∈ [0, ε]
δ + (1 − δ)(θ − ε)/(π − ε) if θ ∈ (ε, π)

(31)

where δ ∈ (0, 1) and ε ∈ (0, π).
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 1 

g  

δ  

        
0 2/π θ π

Figure 4. Invertible and discontinuous g-function defined in equation (33).

The classical solution of the PD, p�
A = p�

B = 0, disappears; the new quantum solution is
found at

(p�
A)q = (p�

B)q =
{

δ + (1−δ)

(π−ε)
{arccos(1 − 2ε/π) − ε} if ε ∈ [

0, π
2

]
δ
{
1 − 1

ε
arccos(1 − 2ε/π)

}
if ε ∈ (

π
2 , π

]
.

(32)

If, for example, δ = 1/2 and ε = π/4, we obtain a mixed equilibrium at (p�
A)q = (p�

B)q = 5/9.

The appearance of a mixed equilibrium in a quantum correlation PD game is an entirely non-
classical feature.

The presence of a mixed equilibrium in the quantum correlation PD gives rise to an
interesting question: is there a Pareto-optimal solution of (C,C) in a quantum correlation
PD with some invertible and discontinuous g-function? No such solution exists for invertible
and continuous g-functions. Also, the (C,C) equilibrium in PD cannot appear in a quantum
correlation game played with the function (31): one has g−1(1) = π which cannot be equal to
g−1(0) when g is invertible. As a matter of fact, the solution (C,C) for the PD can be realized
in a quantum correlation PD if one considers g from (32) with ε = π/2:

g4(θ) =
{

δ(1 − 2θ/π) if θ ∈ [
0, π

2

]
1 − 2(1 − δ)(θ − π/2)/π if θ ∈ (

π
2 , π

] (33)

where δ ∈ (0, 1), depicted in figure 4.
This function satisfies g−1(0) = g−1(1) = π/2. Therefore, one has cos{g−1(1)} =

1 − 2g−1(0)/π , which is the condition for (C,C) to be an equilibrium in the PD. Cooperation
(C,C) will also be an equilibrium in PD if the g-function is defined as

g5(θ) =
{

2(1 − δ)θ/π + δ if θ ∈ [
0, π

2

]
2δ(θ − π/2)/π if θ ∈ (

π
2 , π

] (34)

where δ ∈ (0, 1). Figure 5 shows this function.
With the g-functions (33), (34) both the pure and mixed classical equilibria of the BoS

will also be susceptible to change. The shifts in the pure equilibria in the BoS will be similar to
those of the PD but the mixed equilibrium of the BoS will move depending on the location of δ.

Another example of an invertible and discontinuous function is given by

g6(θ) =
{
(1 − δ)θ/ε + δ if θ ∈ [0, ε]
δ(π − θ)/(π − ε) if θ ∈ (ε, π ]

(35)

where δ ∈ (0, 1) and ε ∈ (0, π) and it is plotted in figure 6.
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 1 

δ  

g

        
0 2/π θ π

Figure 5. Invertible and discontinuous g-function defined in equation (34).

 1 

δ  

g  

0 ε θ π

Figure 6. Invertible and discontinuous g-function defined in equation (35).

In this case the pure classical equilibria p�
A = p�

B = 0 of the PD as well as of the BoS
remain unaffected because these equilibria require θ = π , and the function is not discontinuous
at π . One notices that if the angle corresponding to a classical equilibrium is 0, π/2, or π ,
and there is no discontinuity at π/2, then the quantum correlation game cannot change that
equilibrium. With the function (35) in both the PD or the BoS the pure equilibrium with
p�

A = p�
B = 1 corresponds to the angle θ = ε where classical and quantum correlations are

different (for ε �= π/2). Consequently, the equilibrium p�
A = p�

B = 1 will be shifted and the
new equilibrium depends on the angle arccos(1 − 2ε/π). The mixed equilibrium of the BoS
will also be shifted by the function (35). Therefore, one of the pure equilibria and the mixed
equilibrium may shift if the g-function (35) is chosen. The following function (see figure 7)

g7(θ) =
{

1 − (1 − δ)θ/ε if θ ∈ [0, ε]
δ(θ − ε)/(π − ε) if θ ∈ (ε, π ]

(36)

where δ ∈ (0, 1) and ε ∈ (0, π), cannot change the pure equilibrium at p�
A = p�

B = 1.
However, it can affect the equilibrium p�

A = p�
B = 1, both in PD and BoS, and it can shift the

mixed equilibrium of BoS.
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 1 

g

δ

0 θ ε π

Figure 7. Invertible and discontinuous g-function defined in equation (36).

 1 

g  

∗p  

0      ∗
1θ 2/π ∗

2θ θ π

Figure 8. Non-invertible and continuous g-function defined in equation (37).

5.3. Non-invertible and discontinuous g-functions

A simple case of a continuous and non-invertible function (cf figure 8) is given by

g8(θ) =
{

2θ/π if θ ∈ [
0, π

2

]
2 − 2θ/π if θ ∈ (

π
2 , π

]
.

(37)

Consider a classical pure equilibrium with p�
A = p�

B = 0. Because g−1(0) = 0 or π ,
two equilibria with g{arccos(±1)} are generated in the quantum correlation game, but these
coincide and turn out to be same as the classical ones. Similarly, the function (37) does not
shift the pure classical equilibrium at p�

A = p�
B = 1. However, if p�

A,B ∈ (0, 1) corresponds
to a mixed equilibrium such that g−1(p�) = θ�

1 , θ�
2 �= π/2, then, in the quantum correlation

game, p�
A,B will not only shift but also bifurcate. The resulting values will differ from p�

A,B .
Are the equilibria in a classical correlation game already susceptible to a non-invertible

and continuous g-function like (37)? When the players receive the classical pairs of objects,
the angles θ�

1 , θ�
2 are mapped to themselves, resulting in the same probability p�, obtained now

using the non-invertible and continuous g-function (37). Therefore, in a classical correlation
game played with the function (37) the bifurcation observed in the quantum correlation game
does not show up, in spite of the fact that there are two angles associated with one probability.
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6. Summary and discussion

In this paper, we propose a new approach to introduce a quantum mechanical version of
bi-matrix games. One of our main objectives has been to find a way to respect two constraints
when ‘quantizing’: on the one hand, no new moves should emerge in the quantum game (c1)
and, on the other hand, the payoff relations should remain unchanged (c2). In this way, we
hope to circumvent objections which have been raised against existing procedures to quantize
games. New quantum moves or modified payoff relations do not necessarily indicate a true
quantum character of a game if their emergence can be understood in terms of a modified
classical game.

Correlation games are based on payoff relations which are sensitive to whether the input
is anti-correlated classically or quantum mechanically. The players’ allowed moves are fixed
once and for all, and a setting inspired by EPR-type experiments is used. Alice and Bob
are both free to select a direction in prescribed planes PA,B ; subsequently they individually
measure, on their respective halves of the supplied system, the value of a dichotomic variable
either along the selected axis or along the z-axis. When playing mixed strategies, they must
use probabilities which are related to the angles by a function g which is made public in the
beginning. After many runs the arbiter establishes the correlations between the measurement
outcomes and rewards the players according to fixed payoff relations PA,B . The rewards
depend only on the numerical values of the correlations—by definition, they do not make
reference to classical or quantum mechanics.

The payoffs P cl
A,B and P

q

A,B correspond to one single game since both expressions emerge
from the same payoff relation PA,B . If the incoming states are classical, correlation games
reproduce classical bi-matrix games. If the input consists of quantum mechanical singlet states,
however, the correlations turn quantum and the solutions of the correlation game change. For
example, in a generalized Prisoners’ Dilemma a mixed Nash equilibrium can be found. This
is due to an effective nonlinear dependence of the payoff relations on the probabilities since
the comparison of equations (14) and (19) shows that ‘quantization’ leads to the substitution

pA,B → Qg(pA,B). (38)

As the payoffs of traditional bi-matrix games are bi-linear in the probabilities, it is difficult,
if not impossible, to argue that the quantum features of the quantum correlation game would
arise from a disguised classical game: there is no obvious method to let the payoffs of a
classical matrix game depend nonlinearly on the strategies of the players.

Our analysis of the Prisoners’ Dilemma and the Battle of Sexes as quantum correlation
games shows that, typically, both structure and location of classical Nash equilibria are
modified. The location of the quantum equilibria depends sensitively on the properties of the
function g but, apart from exceptional cases, the modifications are structurally stable. It is not
possible to create any desired type of solution for a bi-matrix game by a smart choice of the
g-function.

Finally, we would like to comment on the link between correlation games and Bell’s
inequality. In spite of the similarity to an EPR-type experiment, it is not obvious how to
directly exploit Bell’s inequality in correlation games. Actually, its violation is not crucial for
the emergence of the modifications in the quantum correlation game, as one can see from the
following argument. Consider a correlation game played on a mixture of quantum mechanical
anti-correlated product states

ρ̂ = 1

4π

∫
�

d�
∣∣e+

�, e−
�

〉〈
e+
�, e−

�

∣∣ (39)
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where the integration is over the unit sphere. The vectors e±
� are of unit length, and

∣∣e±
�

〉
denote the eigenstates of the spin component e� · Ŝ with eigenvalues ±1, respectively. The
correlations in this entangled mixture are weaker than for the singlet state |ψ〉

〈ac〉ρ = − 1
3 cos θA etc. (40)

The factor 1/3 makes a violation of Bell’s inequality impossible. Nevertheless, a classical
bi-matrix game is modified as before if ρ̂ is chosen as input state of the correlation game.
To put this observation differently: the payoffs introduced in equation (8) depend on the two
correlations 〈ac〉 and 〈cb〉 only, not on the third one present in Bell’s inequality, 〈ab〉.

An interesting development of the present approach consists of defining payoffs of
correlation games in such a way that they become sensitive to a violation of Bell’s inequality.
In this case, the construction would assure that the game involves non-classical probabilities,
impossible to obtain by whatever classical game.
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