The Gram matrix of a $\mathcal{P} \mathcal{T}$-symmetric quantum system ${ }^{*}$)

Stefan Weigert
$\langle H u \mid M P\rangle$ - Hull Mathematical Physics, Department of Mathematics, University of Hull, Hull HU6 7RX, UK

Received 17 October 2003
The eigenstates of a diagonalizable $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian satisfy unconventional completeness and orthonormality relations. These relations reflect the properties of a pair of bi-orthonormal bases associated with non-hermitean diagonalizable operators. In a similar vein, such a dual pair of bases is shown to possess, in the presence of $\mathcal{P} \mathcal{T}$ symmetry, a Gram matrix of a particular structure: its inverse is obtained by simply swapping the signs of some its matrix elements.

PACS: 03.67.-w
Key words: Gram Matrix, $\mathcal{P} \mathcal{T}$ symmetry, bi-orthonormal basis

The spectrum of a non-hermitean Hamiltonian \hat{H} is real if the Hamiltonian is invariant under the combined action of self-adjoint parity \mathcal{P} and time reversal \mathcal{T},

$$
\begin{equation*}
[\hat{H}, \mathcal{P} \mathcal{T}]=0 \tag{1}
\end{equation*}
$$

and if the energy eigenstates are invariant under the operator $\mathcal{P} \mathcal{T}$ [1]. Pairs of complex conjugate eigenvalues are also compatible with $\mathcal{P} \mathcal{T}$ symmetry but the eigenstates of \hat{H} are no longer invariant under $\mathcal{P} \mathcal{T}$. Wigner's representation theory of anti-linear operators [2], when applied to the operator $\mathcal{P} \mathcal{T}$ [3], explains these observations in a group-theoretical framework. Alternatively, they follow from the properties of pseudo-Hermitean operators [4] satisfying $\eta \hat{H} \eta^{-1}=\hat{H}^{\dagger}$ equivalent to Eq. (1) if $\eta=\mathcal{P}$.

Consider a (diagonalizable) non-Hermitean Hamiltonian \hat{H} with a discrete spectrum [5]. The operators \hat{H} and and its adjoint \hat{H}^{\dagger} have complete sets of eigenstates:

$$
\begin{equation*}
\hat{H}\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle, \quad \hat{H}^{\dagger}\left|E^{n}\right\rangle=E^{n}\left|E^{n}\right\rangle, \quad n=1,2, \ldots, \tag{2}
\end{equation*}
$$

with, in general, complex conjugate eigenvalues, $E^{n}=E_{n}^{*}$. The eigenstates constitute bi-orthonormal bases in \mathcal{H} with two resolutions of unity,

$$
\begin{equation*}
\sum_{n}\left|E^{n}\right\rangle\left\langle E_{n}\right|=\sum_{n}\left|E_{n}\right\rangle\left\langle E^{n}\right|=\hat{I}, \tag{3}
\end{equation*}
$$

and as dual bases, they satisfy orthonormality relations,

$$
\begin{equation*}
\left\langle E^{n} \mid E_{m}\right\rangle=\left\langle E_{m} \mid E^{n}\right\rangle=\delta_{n m}, \quad m, n=1,2, \ldots \tag{4}
\end{equation*}
$$

[^0]It has been shown [6] that $\mathcal{P} \mathcal{T}$ symmetry of the Hamiltonian (2) implies the existence of a simple relation between the state $\left|E_{n}\right\rangle$ and its dual partner $\left|E^{n}\right\rangle$,

$$
\begin{equation*}
\left|E^{n}\right\rangle=s_{n} \mathcal{P}\left|E_{n}\right\rangle=\mathcal{P} \mathcal{C}_{s}\left|E_{n}\right\rangle, \quad s_{n}= \pm 1 \tag{5}
\end{equation*}
$$

where the signature $s=\left(s_{1}, s_{2}, \ldots\right)$ depends on the actual Hamiltonian, and the operator \mathcal{C}_{s} is given by

$$
\begin{equation*}
\mathcal{C}_{s}=\sum_{m} s_{m}\left|E_{m}\right\rangle\left\langle E^{m}\right| \neq \sum_{m} s_{m}\left|E^{m}\right\rangle\left\langle E_{m}\right|=\mathcal{C}_{s}^{\dagger} \tag{6}
\end{equation*}
$$

The unconventional completeness and orthogonality relations which are characteristic for $\mathcal{P} \mathcal{T}$-symmetric systems having real eigenvalues only are a direct consequence of Eq. (5). Numerical work suggests [7] that there is a completeness relation of the form

$$
\begin{equation*}
\sum_{n} s_{n} \phi_{n}(x) \phi_{n}(y)=\delta(x-y) \tag{7}
\end{equation*}
$$

which is a consequence of the completeness relations (3),

$$
\begin{equation*}
\sum_{n}\left|E_{n}\right\rangle\left\langle E^{n}\right|=\sum_{n} s_{n}\left|E_{n}\right\rangle\left\langle E_{n}\right| \mathcal{P}=\hat{I} \tag{8}
\end{equation*}
$$

when rewritten (in the position representation) by means of Eq. (5).
Similarly, the orthonormality condition for dual states turns into a relation which has been interpreted [8] as the existence of a non-positive scalar product among the eigenstates of \hat{H}. To see this, write the scalar product (4) in the position representation, using again (5) and $\mathcal{P} \mathcal{T}$-invariance,

$$
\begin{equation*}
\left\langle E^{n} \mid E_{m}\right\rangle=s_{n}\left\langle E_{n}\right| \mathcal{P}\left|E_{m}\right\rangle=s_{n} \int \mathrm{~d} x \phi_{n}(x) \phi_{m}(x)=\delta_{n m} \tag{9}
\end{equation*}
$$

or $\left(\phi_{n}, \phi_{m}\right)=s_{n} \delta_{n m}$, in the notation of [7].
Let us now turn to the properties of the Gram matrix G of a $\mathcal{P} \mathcal{T}$-symmetric quantum system. For a general bi-orthonormal pair of bases one defines the Gram matrix by

$$
\begin{equation*}
\mathrm{G}_{m n}=\left\langle E_{m} \mid E_{n}\right\rangle ; \tag{10}
\end{equation*}
$$

its inverse G^{-1} exists since the states $\left\{\left|E_{m}\right\rangle\right\}$ are linearly independent, and its matrix elements are given by

$$
\begin{equation*}
\left(\mathrm{G}^{-1}\right)_{m n}=\left\langle E^{m} \mid E^{n}\right\rangle \equiv \mathrm{G}^{m n} . \tag{11}
\end{equation*}
$$

Given the states $\left\{\left|E_{m}\right\rangle\right\}$ and hence G, one finds the dual states $\left\{\left|E^{n}\right\rangle\right\}$ through the inversion of G:

$$
\begin{equation*}
\left|E^{n}\right\rangle=\sum_{m}\left|E_{m}\right\rangle\left\langle E^{m} \mid E^{n}\right\rangle=\sum_{m} \mathrm{G}^{m n}\left|E_{m}\right\rangle \equiv \sum_{m}\left(\mathrm{G}^{-1}\right)_{m n}\left|E_{m}\right\rangle \tag{12}
\end{equation*}
$$

Equation (5) establishes a simple link between each state $\left|E_{m}\right\rangle$ and its partner $\left|E^{m}\right\rangle$. It will be shown now to imply a simple relation between G and its inverse,

$$
\begin{equation*}
\mathrm{G}^{-1}=\mathrm{SGS}, \quad \text { where } \quad \mathrm{S}=\operatorname{diag}\left(s_{1}, s_{2}, \ldots\right) \tag{13}
\end{equation*}
$$

with S a real diagonal matrix, being determined entirely by the signature s of the system studied. To derive this relation, multiply the resolutions of unity given in (3) with each other,

$$
\begin{equation*}
\hat{I}=\left(\sum_{m}\left|E^{m}\right\rangle\left\langle E_{m}\right|\right)\left(\sum_{n}\left|E_{n}\right\rangle\left\langle E^{n}\right|\right)=\sum_{m, n} \mathrm{G}_{m n}\left|E^{m}\right\rangle\left\langle E^{n}\right| \tag{14}
\end{equation*}
$$

and use Eq. (5) giving

$$
\begin{equation*}
\hat{I}=\sum_{m, n} \mathrm{G}_{m n} s_{m} \mathcal{P}\left|E_{m}\right\rangle\left\langle E_{n}\right| \mathcal{P} s_{n} \tag{15}
\end{equation*}
$$

Finally, multiply this equation with $\left\langle E^{k}\right| \mathcal{P}$ from the left and with $\mathcal{P}\left|E^{l}\right\rangle$ from the right to find

$$
\begin{equation*}
\mathrm{G}^{k l} \equiv\left(\mathrm{G}^{-1}\right)_{k l}=\sum_{m, n} \mathrm{G}_{m n} s_{m} \delta_{k m} s_{n} \delta_{n l}=s_{k} \mathrm{G}_{k l} s_{l} \tag{16}
\end{equation*}
$$

which is the matrix version of Eq. (13).
As a result, the inverse G^{-1} of the Gram matrix G is obtained by multiplying each of the matrix elements $\mathrm{G}_{m n}$ by the product $s_{m} s_{n}$ which takes the values ± 1 only. Due to $s_{m}^{2}=1$, the diagonal elements of the Gram matrix and those of its inverse are necessarily equal. Furthermore, having determined the eigenstates $\left|E_{m}\right\rangle$ of a $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian operator \hat{H} and hence its Gram matrix via $\left\langle E_{m} \mid E_{n}\right\rangle$, the dual states are given by

$$
\begin{equation*}
\left|E^{n}\right\rangle=\sum_{m} s_{m} s_{n} \mathrm{G}_{m n}\left|E_{m}\right\rangle \tag{17}
\end{equation*}
$$

thus considerably simplifying Eq. (12): the usually cumbersome inversion of G can be avoided.

References

[1] M. Znojil: J. Phys. A 36 (2003) 7639 (see for an extensive list of references).
[2] E.P. Wigner: J. Math. Phys. 1 (1960) 409.
[3] St. Weigert: J. Opt. B 5 (2003) S416.
[4] A. Mostafazadeh: J. Math. Phys. 43 (2002) 205; 2814; 3944; 6343; 44 (2003) 974.
[5] J. Wong: J. Math. Phys. 8 (1967) 2039.
[6] St. Weigert: Phys. Rev. A 68 (2003) 062111.
[7] C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 270401.
[8] G.S. Japaridze: J. Phys. A 35 (2002) 1709.

[^0]: *) Presented at the 1st International Workshop "Pseudo-Hermitian Hamiltonians in Quantum Physics", Prague, Czech Republic, June 16-17, 2003

