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The eigenstates of a diagonalizable PT -symmetric Hamiltonian satisfy unconventional
completeness and orthonormality relations. These relations reflect the properties of a
pair of bi-orthonormal bases associated with non-hermitean diagonalizable operators. In a
similar vein, such a dual pair of bases is shown to possess, in the presence of PT symmetry,
a Gram matrix of a particular structure: its inverse is obtained by simply swapping the
signs of some its matrix elements.
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The spectrum of a non-hermitean Hamiltonian Ĥ is real if the Hamiltonian is
invariant under the combined action of self-adjoint parity P and time reversal T ,

[Ĥ,PT ] = 0 , (1)

and if the energy eigenstates are invariant under the operator PT [1]. Pairs of com-
plex conjugate eigenvalues are also compatible with PT symmetry but the eigen-
states of Ĥ are no longer invariant under PT . Wigner’s representation theory of
anti-linear operators [2], when applied to the operator PT [3], explains these ob-
servations in a group-theoretical framework. Alternatively, they follow from the
properties of pseudo-Hermitean operators [4] satisfying ηĤη−1 = Ĥ† equivalent to
Eq. (1) if η = P .

Consider a (diagonalizable) non-Hermitean Hamiltonian Ĥ with a discrete spec-
trum [5]. The operators Ĥ and and its adjoint Ĥ† have complete sets of eigenstates:

Ĥ|En〉 = En|En〉 , Ĥ†|En〉 = En|En〉 , n = 1, 2, . . . , (2)

with, in general, complex conjugate eigenvalues, En = E∗
n. The eigenstates consti-

tute bi-orthonormal bases in H with two resolutions of unity,∑
n

|En〉〈En| =
∑

n

|En〉〈En| = Î , (3)

and as dual bases, they satisfy orthonormality relations,

〈En|Em〉 = 〈Em|En〉 = δnm , m, n = 1, 2, . . . (4)
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It has been shown [6] that PT symmetry of the Hamiltonian (2) implies the
existence of a simple relation between the state |En〉 and its dual partner |En〉,

|En〉 = snP|En〉 = PCs|En〉 , sn = ±1 , (5)

where the signature s = (s1, s2, . . .) depends on the actual Hamiltonian, and the
operator Cs is given by

Cs =
∑
m

sm|Em〉〈Em| 	=
∑
m

sm|Em〉〈Em| = C†
s . (6)

The unconventional completeness and orthogonality relations which are charac-
teristic for PT -symmetric systems having real eigenvalues only are a direct conse-
quence of Eq. (5). Numerical work suggests [7] that there is a completeness relation
of the form ∑

n

snφn(x)φn(y) = δ(x − y) , (7)

which is a consequence of the completeness relations (3),
∑

n

|En〉〈En| =
∑

n

sn|En〉〈En|P = Î , (8)

when rewritten (in the position representation) by means of Eq. (5).
Similarly, the orthonormality condition for dual states turns into a relation

which has been interpreted [8] as the existence of a non-positive scalar product
among the eigenstates of Ĥ. To see this, write the scalar product (4) in the position
representation, using again (5) and PT -invariance,

〈En|Em〉 = sn〈En|P|Em〉 = sn

∫
dxφn(x)φm(x) = δnm , (9)

or (φn, φm) = snδnm, in the notation of [7].
Let us now turn to the properties of the Gram matrix G of a PT -symmetric

quantum system. For a general bi-orthonormal pair of bases one defines the Gram
matrix by

Gmn = 〈Em|En〉 ; (10)

its inverse G−1 exists since the states {|Em〉} are linearly independent, and its
matrix elements are given by(

G−1
)
mn

= 〈Em|En〉 ≡ Gmn . (11)

Given the states {|Em〉} and hence G, one finds the dual states {|En〉} through the
inversion of G:

|En〉 =
∑
m

|Em〉〈Em|En〉 =
∑
m

Gmn|Em〉 ≡
∑
m

(
G−1

)
mn

|Em〉 . (12)
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Equation (5) establishes a simple link between each state |Em〉 and its partner
|Em〉. It will be shown now to imply a simple relation between G and its inverse,

G−1 = SGS , where S = diag(s1, s2, . . .) , (13)

with S a real diagonal matrix, being determined entirely by the signature s of the
system studied. To derive this relation, multiply the resolutions of unity given in
(3) with each other,

Î =

(∑
m

|Em〉〈Em|
)(∑

n

|En〉〈En|
)

=
∑
m,n

Gmn|Em〉〈En| , (14)

and use Eq. (5) giving

Î =
∑
m,n

GmnsmP|Em〉〈En|Psn . (15)

Finally, multiply this equation with 〈Ek|P from the left and with P|El〉 from the
right to find

Gkl ≡
(
G−1

)
kl

=
∑
m,n

Gmnsmδkmsnδnl = skGklsl , (16)

which is the matrix version of Eq. (13).
As a result, the inverse G−1 of the Gram matrix G is obtained by multiplying

each of the matrix elements Gmn by the product smsn which takes the values ±1
only. Due to s2

m = 1, the diagonal elements of the Gram matrix and those of
its inverse are necessarily equal. Furthermore, having determined the eigenstates
|Em〉 of a PT -symmetric Hamiltonian operator Ĥ and hence its Gram matrix via
〈Em|En〉, the dual states are given by

|En〉 =
∑
m

smsnGmn|Em〉 , (17)

thus considerably simplifying Eq. (12): the usually cumbersome inversion of G can
be avoided.
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