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Given a non-Hermitian matrix M, the structure of its minimal polynomial encodes
whether M is diagonalizable or not. This note explains how to determine the minimal
polynomial of a matrix without going through its characteristic polynomial. The approach
is applied to a quantummechanical particle moving in a square well under the influence of a
piece-wise constant PT-symmetric potential. Upon discretizing the configuration space, the
system is described by a matrix of dimension three which turns out not to be diagonalizable
for a critical strength of the interaction. The systems develops a three-fold degenerate
eigenvalue, and two of the three eigenfunctions disappear at this exceptional point, giving
a difference between the algebraic and geometric multiplicity of the eigenvalue equal to
two.
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1 Introduction

Genuinely PT-invariant operators may or may not possess a complete set of
eigenstates. In other words, PT-invariance of a matrix M is compatible with the
presence of (non-trivial) Jordan blocks while hermiticity is not. When considering
a family of PT-invariant operators depending on a parameter, their spectra often
change qualitatively if one passes through an exceptional point [1] where diagonal-
izability breaks down. It is thus important to be able to either check whether a
given matrix is diagonalizable or to locate exceptional points when presented with
a continuous family of matrices.
The purpose of this note is to describe a method which allows one to identify

exceptional points of finite-dimensional non-Hermitian matrices by means of an
algorithm. It is different from the method outlined in [2, 3] as it directly aims at
the minimal polynomial containing the relevant information about (non-) diago-
nalizability. While being more transparent in the first place, it also requires no
knowledge of the characteristic polynomial of the given matrix.
The presentation to follow is problem-based: the algorithm will be developed

while studying a specific example, the discretized PT-invariant square well. This
physical system is introduced in Section 2, and it is subjected to the test for diag-
onalizability in the subsequent section. The results will be discussed in Section 4
and some open questions will be addressed.

∗) Presented at the 3rd International Workshop “Pseudo-Hermitian Hamiltonians in Quantum
Physics”, Istanbul, Turkey, June 20–22, 2005.

Czechoslovak Journal of Physics, Vol. 55 (2005), No. 9 1183



Stefan Weigert

2 The discretized PT-symmetric square well

Consider a quantum particle in a one-dimensional box of length 4L subjected
to a piece-wise constant PT-symmetric potential,

V (x) =




−iZ, −2L < x < 0,
0, x = 0,
iZ, 0 < x < 2L,

Z ∈ R , (1)

which has proved a useful testing ground for the discussion of PT-symmetric sys-
tems [4]. Its eigenvalues are given as the zeros of a transcendental equation, and
for increasing values of Z, the lowest two real eigenvalues are known to approach
each other, finally disappearing jointly at critical values of Z.
Let us introduce a toy-version of this system by discretizing its configuration

space. This strategy has been applied successfully to describe tunnelling phenomena
in a driven double-well potential in terms of a three-state model [5]. Effectively, this
technique corresponds to turning Feynman’s “derivation” of Schrödinger’s equation
from a discrete lattice [6] upside down. Explicitly, the continuous set of points of
configuration space with labels−2L ≤ x ≤ 2L, is replaced by five equidistant points
at 0,±L, and±2L. The wave function is allowed to take nonzero values only at these
points, so it will be a vector with at most five components. However, the hard walls
of the square well at x = ±L force the wave function to vanish there, leaving us with
only three non-zero components, ψ(x) → ψk = ψ(kL), k = 0,±1. The potential
energy defined in (1) turns into a diagonal matrix, V (x) → V =diag(−iZ, 0, iZ).
The operator for the kinetic energy follows from the substitution ∂2ψ(x)/∂x2 →
(ψk+1−2ψk+ψk−1)/L2. Putting all this together, the Hamiltonian operator of the
discrete version of this system reads

H0 � 2E − H , where H =



iξ 1 0
1 0 1
0 1 −iξ


 , ξ =

Z

η
; (2)

here E is the (3× 3) identity matrix, and an overall factor η = �2/2mL2 has been
dropped. The matrix H0 inherits PT-invariance from the square well: the matrix H,
and hence H0, is invariant under the combined action of parity P, represented by a
matrix with unit entries equal to one along its minor diagonal and zero elsewhere,
and T, effecting complex conjugation. In the next section, the diagonalizability of
H, the nontrivial part of the Hamiltonian H0, will be studied.

3 Diagonalizability of the PT-symmetric square well

The minimal polynomial mM of a matrix M is defined (see [7], for example)
as the polynomial of least degree in M which annihilates M, that is, mM(M) =
0. This polynomial is unique if the coefficient of its highest power is taken to
be one: the minimal polynomial is monic. Since any square matrix M of size N ,
say, is annihilated by its own characteristic polynomial, pM(M) = 0, the degree of
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the minimal polynomial cannot exceed N . Once the minimal polynomial has been
found, one needs to determine whether it has only single roots, i.e., whether

mM(λ) =
ν0(≤N)∏

ν=1

(λ−Mν) , all Mν distinct , (3)

holds. If it does, the matrix M is diagonalizable, otherwise it is not diagonalizable:
multiple roots of mM indicate the presence of Jordan blocks larger than one.
The procedure to determine the minimal polynomial of M, outlined in [3], in-

vokes the characteristic polynomial ofM and repeated applications of the Euclidean
algorithm generalized to polynomials. The method presented below, taken from [8],
aims at directly constructing the minimal polynomial. The fundamental observation
is that matrices of dimension N constitute a vector space of dimension N2. This
is seen immediately by setting up a one-to-one correspondence between matrices
of dimension three and vectors of length 9 ≡ 32, for example, by rearranging the
elements Mjk of each M systematically according to

M ⇔ (M11,M12,M13;M21,M22,M23;M31,M32,M33)T. (4)

In view of this correspondence, the Cayley–Hamilton theorem - every matrix sat-
isfies its own characteristic equation, pM(M) = 0, turns into a statement about
linear dependence of the (N + 1) vectors E ≡ M0,M,M2, . . . ,MN . In order to find
the minimal polynomial of a matrix M, one thus calculates Mn, n = 1, . . .N, and
then determines whether the vectors E and M are linearly independent; if not, one
adds M2 and asks the same question; etc. Proceeding in this way, one is obviously
able to identify linear dependence among the vectors Mn with the smallest possible
number n. This, however, comes down to the definition of the minimal polynomial
of M. Gram–Schmidt orthonormalization effectively provides a systematic test for
linear dependence among the first k elements of Mn, n = 0, . . . N .
Applying these ideas explicitly to the matrix H in (2) leads to

E ⇔ (1, 0, 0; 0, 1; 0; 0, 0, 1) , (5)
H ⇔ (iξ, 1, 0; 1, 0, 1; 0, 1,−iξ) , (6)
H2 ⇔ (1− ξ2,−iξ, 1;−iξ, 2, iξ; 1, iξ, 1− ξ2) , (7)
H3 ⇔ (2− ξ2) (iξ, 1, 0; 1, 0, 1; 0, 1,−iξ) ≡ (2− ξ2)H . (8)

It is easy to see that neither the first two nor the first three vectors in this sequence
are linearly dependent. Consequently, there must be a relation expressing H3 in
terms of the others, giving rise to the desired minimal polynomial,

(2− ξ2)H − H3 = 0 ⇒ mH(λ) = λ3 + (ξ2 − 2)λ . (9)

In addition, the characteristic polynomial of H must coincide with mH since there
is only one monic polynomial of third degree annihilating H.
If one is not able to factor the resulting minimal polynomial, one needs to

check whether the minimal polynomial and its derivative m′
H(λ) have a common
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factor. This can be achieved by applying the Euclidean algorithm to this pair of
polynomials (cf. [2, 3]). In this present case, it amounts to writing mH(λ) = (λ −
α)m′

H(λ)/3+R1(λ), implying that α = 0 and R1(λ) = (2/3)(ξ2 − 2)(λ+1/2). Two
different cases arise: if ξ �= 2, one finds that the only common factor of the minimal
polynomial and its derivative is equal to one - thus, the minimal polynomial is
of the form (3) and the matrix H must have three different eigenvalues making it
diagonalizable. If ξ2 = 2, the algorithm immediately stops and thus identifies λ2 as
the highest common factor of mH(λ) and its derivative. Consequently, the minimal
polynomial has a three-fold root λ (= 0), indicating that H is not diagonalizable.

4 Discussion and outlook

The properties of H at the exceptional points ξ± = ±
√
2 deserve a brief discus-

sion. It is not difficult to see that the geometric multiplicity of the eigenvalue 0 is
one at the exceptional points (H has only one non-zero eigenvector) while its alge-
braic multiplicity equals three (zero is a triple root of mH). Contrary to previously
studied cases, three eigenvalues coalesce for ξ → ξ±.
For all values of ξ, the vector (1,−iξ,−1) is an eigenstate of H(ξ) with eigenvalue

0, and it is well-behaved near and at the critical values ξ±. Therefore, it seems
reasonable to say that it is the eigenstates associated with the two λ-dependent
eigenvalues which disappear at the exceptional point. It is not obvious from a
physical point of view why this scenario is preferred over the familiar situation of
just one disappearing eigenstate.
The natural question to ask now is whether one can expect algorithmic tests for

diagonalizability to exist for a quantum system existing in a Hilbert space accommo-
dating a countable infinity of states. As one needs to potentially perform an infinite
number of steps, the idea of a useful algorithm gets somewhat blurred. Neverthe-
less, it is likely that one can search for systematic properties of finite-dimensional
approximations which, hopefully, behave smoothly in the limit of infinite dimension.
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