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The expectation-value representation (EVR) expresses the pure or mixed state of a quantum
system entirely in terms of real numbers which can be directly measured in experiments. The number
of required measurement is minimal. It is shown that a positive operator-valued measure (POVM)
is associated with each EVR. Consequently, each EVR gives rise to a minimal informationally
complete POVM: it is not possible to have a POVM with fewer outcomes which could describe all
possible quantum states. The resulting POVM is among the most e�cient ones since no redundant
information is acquired when using it for state reconstruction.

PACS numbers: 03.67.-w

I. INTRODUCTION

The very idea to implement information on quantum systems and to subsequently process it requires to initially
prepare a particular quantum state ρ̂in, to verify the preparation procedure and to identify the �nal state ρ̂out

produced by the desired quantum mechanical dynamics. Since a single unknown quantum state cannot be determined
unambiguously be a single measurement, and no copies of the state can be made, one needs to resort to repeated
measurements on hopefully identical states. Both the veri�cation of a state and its identi�cation are instances of state
reconstruction or estimation. It is obviously desirable to set up the quantum dynamics in such a way that only a
small number of known �nal states is possible allowone to extraxt the desired information with very high probability
from a small number of runs as in Shor's algorithm, for example.
The useful measure for the reliability of a measurement procedure to determine an unknown quantum state is the

given by its �delity F , the mean overlap of the reconstructed state with the exact state. To obtain perfect �delity, one
usually requires an in�nite number of copies of the unknown state. This might sound unrealistic from an experimental
point of view but in theoretical terms F = 1 says that the expectation values of the operators mesured form a complete
set for all density matrices of a particular size. In the following, the focus will be exactly on sets of operators which
allow, in principle, perfect reconstruction of an unknown state described by a density operator ρ̂ in a d-dimensional
Hilbert space Hd. Many such bases for hermitean operators are known already, and in some cases they have been
combined into what is called minimal informationally complete positive operator-valued measures (cf. below) which
is interesting from a conceptual point of view.

The purpose of this contribution is to elaborate on the link between state reconstruction, minimal complete sets of
hermitean operators, and positive operator-valued measures. Firstly, it aims to explain that the so-called expectation-
value representation of quantum states in �nite-dimensional Hilbert spaces can be transformed in a positve operator-
valued measure which, contrary to others, can be given analytically. Secondly, this approach will be generalized to
show that any set of d2 linearly independent operators on Hd can be transformed into a minimal informationally
complete positive operator-valued measure. In a sense, this result characterizes all possible such measures, and hence
all non-redundant experimental procedures to do state reconstruction.

II. POSITIVE OPERATOR-VALUED MEASURES

A. POVMs

Positive operator-valued measures provide the most general characterization of observable quantities compatible
with the fundamental principles of quantum mechanics. Here is a brief discussion of their properties as far as they
are relevant for the results developed below; at the same time, the notation used for POVMs will be introduced.
Consider a quantum system capable of residing in d states

∗ This work has begun while the author was a�liated with the University of Hull, Hull/UK.



2

|ψn〉, n = 1 . . . d, which form an orthonormal basis of the d-dimensional Hilbert space H = Cd. A hermitean
operator Ê = Ê† is called positive, Ê ≥ 0, if its expectation values in all states |ψn〉 do not take negative values,

〈ψn|Ê|ψn〉 ≥ 0 , n = 1 . . . d . (1)

The density matrices ρ̂ used to describe mixed states of the quantum system provide well-known examples of positive
operators, ρ̂ ≥ 0. A collection of positive operators Êα, α ∈ A, where A may be a discrete or continuous set of labels,
quali�es as a positive operator-valued measure, or POVM for short, if its elements sum up to the identity in Hd,

∑

α∈A

Êα = Î . (2)

If α is a continuous label, the symbol
∑

is understood to denote an appopriate integration over A. Taking the
expectation value of this equation in any normalized state |ψ〉, one �nds that the discrete or continuous set of positive
numbers pα = 〈ψ|Êα|ψ〉, α ∈ A, sum up to one; the numbers pα having the properties of a probability distribution
suggests to think of the operators Êα, α ∈ A, as de�ning an �operator-valued� measure.

The simplest example of a POVm consists of only one element, the identity Î in Hd. The completeness relation of
the states |ψn〉,

d∑
n=1

|ψn〉〈ψn| = Î (3)

provides an example of a POVM which consist of d orthonormal projectors Ên ≡ |ψn〉〈ψn|, which are positive since
〈ψm|Ên|ψm〉 = δmn ≥ 0.

It is possible,however, that a POVM contains a number D larger than the the dimension d of the underlying Hilbert
space. Here is a POVM de�ned for a qubit with Hilbert space H2 consisting of three operators,

Ê1 =
√

2
1 +

√
2
|−〉〈−| , Ê2 =

√
2

1 +
√

2
(|−〉 − |+〉) (〈−| − 〈+|) , (4)

and Ê3 = Î − Ê1 − Ê2; the states |±〉 are eigenstates of the z-component of a spin 1/2. Clearly, the elements of the
POVM cannot be orthonormal projections for D > d, since Hd cannot accomodate more than d orthogonal states but
this is not required anyway. It is possible in principle to implement the POVM just de�ned experimentally, and it
has the following interesting property. Imagine that you are being asked to �nd out whether you have been sent the
state |+〉 or the state (1/

√
2)(|−〉 + |+〉). Using the above POVM to perform a mesurement on the unknown state

|?〉, you will �nd an outcome corresponding to one of the three operators given above. In the �rst case, associated
with Ê1, you know that the state provided cannot have been |+〉 since 〈+|Ê1|+〉 = 0; similarly, you know that the
unknown state must have been |+〉 if the measurement outcome corresponds to Ê2 since only this state has a non-zero
component �along� Ê2. If the third outcome occurs, no nothing can be said about |?〉. If one were to perform an
measurement with any two orthonormal projections, no conclusions about |?〉 could be drawn from a single run. By
invoking an appropriately constructed POVM, however, it is possible to extract the desired information with some
probability even from a single experiment.
The �nal example of a POVM has uncountably many elements: de�ne

Ên =

√
2π

2d + 1
|n〉〈n| , (5)

where |n〉 is a coherent state of a spin 1/2, labeled with the vector n, poining from the origin in R3 to the point Pn

on the unit sphere S. The overcompleteness relation of the coherent states implies that these operators are a indeed
a POVM,

∫

S
Ên dn =

√
2π

2d + 1

∫

S
|n〉〈n| dn = Î . (6)
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B. Minimal informationally complete POVMs

Some POVMs have the additional property that they are informationally complete, which says that it is possible
to write each density matrix ρ̂ as a linear combination of its elements Êα, that is,

ρ̂ =
∑

α∈A

ραÊα . (7)

There are density matrices which are not multiples of the identity Î, hence this operator alone does not provide an
IC-POVM. Similarly, the projectors |ψn〉〈ψn| on a complete set of orthonormal states do not allow one to represent
each density operator. If one uses the coherent-state POVM de�ned in (6), however, lead to

ρ̂ =
∫

S
ρn Ên dn , (8)

where ρn is the so-called P-symbol of ρ̂, a real function on the unit sphere, taking values between zero and one.
Minimal informationally complete POVMs, or MIC-POVMs, are POVMs which contain the least number of ele-

ments such that (7) holds for all operators ρ̂. This requirement is equivalent to saying that the operators Êα should
form a (minimal) basis of the vector space of hermitean operators acting on a Hilbert space Hd. Counting the number
of real parameters necessary to parameterize all such operators, conveniently represented as hermitean matrices of
size (d× d), one concludes that a MIC-POVMs must contain d2 (linearly independent) elements.
Not every set of d2 operators spanning all hermitean operators on Hd is a POVM. To see this, let us look at the

simple example of a spin 1/2. Any spin observable Â can be written as

Â = A0Î+ A · σ̂ ,

with a real number A0 and a real three-component vector A, and σ̂ is a operator with Pauli matrices as components.
However, the four operators (Î, σ̂) do not constitute a POVM since the expectation value of each spin component in
normalized states ranges form −1 to +1. All is not lost: the three inde�nite operators turn positive by adding the
identity:

0 ≤ 〈ψ|
(
Î+ σ̂i

)
|ψ〉 ≤ 2 , i = x, y, z .

Using this idea one easily constructs MIC-POVMs for a spin-1/2:

Êα =
1
4

(
Î+ nα · σ̂α

)
≥ 0 , α = 1 . . . 4, where

4∑
α=1

nα = 0 ; (9)

the four unit vectors nα must not lie in a plane. Note that the expressions in the brackets are proportional to the
projectors on the states |nα〉 implying that one can also write Êα = |nα〉〈nα|/2.

For qudits living in Hd, one can use the following approach to ascertain the existence of MIC-POVMs. Consider
any set of d2 linearly independent non-negative operators F̂α ≥ 0, say, satisfying the relation

d2∑
α=1

F̂α = Ĝ > 0 .

Since Ĝ is strictly positive, it has a unique, strictly positive square root Ĝ
1
2 , with an inverse Ĝ−

1
2 , enjoying these

properties as well. Thus, one map the original operators to new one according to F̂α → Êα = Ĝ−
1
2 F̂αĜ−

1
2 . This

invertible transformation preserves positivity, hermiticity and the rank of the original operators; in addition, the new
operators satisfy the desired relation

d2∑
α=1

Êα = Î ,

hence giving rise to a MIC-POVM.
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III. MINIMAL POVMS FROM THE EXPECTATION-VALUE REPRESENTATION

A. The Expectation-Value Representation of Quantum Mechanics

If you randomly pick d2 points nn, n = 1 . . . d2, on the unit sphere, then the projection operators Q̂n = |nn〉〈nn|
on the associated coherent states |nn〉 are (in almost all cases) linearly independent . This means that they provide
a basis for the hermitean operators on Hd,

Â =
1
d

d2∑
n=1

AnQ̂n ,

with unique real coe�cients An. The trace of the product of two operators on Hd has all the properties of a scalar
product which can be used to introduce the basis dual to the projectors Q̂n by the requirement

1
d
Tr

[
Q̂n′Q̂n

]
= δn′n , n, n′ = 1. . . . d2 . (10)

The hermitean operators Q̂n provide a basis for observables just as the original ones,

Â =
1
d

d2∑
n=1

AnQ̂n ,

with a second set of real expansion coe�cients An. Having de�ned the dual basis via (10), one �nds that the expansion
coe�cients in one basis are given by the scalar product of the operator at hand with the corresponding element of
the dual basis,

An = Tr
[
Q̂nÂ

]
, and An = Tr

[
ÂQ̂n

]
, n = 1. . . . d2 . (11)

The coe�cients An have an interesting property: recalling that the Q̂n are projections, the second set of equations in
(11) takes the form

An = 〈nn|Â|nn〉 . (12)

This means that any operator Â is determined entirely by its expectation values in d2 appropriate coherent states.
If applied to a density matrix ρ̂ of a qudit, i.e. a spin (d − 1)/2, this result says that it is possible to parameterize
the quantum state in terms of d2 numbers pn = 〈nn|ρ̂|nn〉, each of which corresponds to a probability which can
be measured with an ordinary Stern-Gerlach apparatus.[1] When expressed in this way, ρ̂ is said to be given in
the expectation-value representation which provides a faithful representation of the quantum system involving only
measurable quantities.

B. Obstacles

Let us now explore the link between the expectation-value representation and MIC-POVMs. Being positive sei-
de�nite, the d2 operators Q̂n are promising candidates for a minimal informationally POVM. The only remaining
condition is that they must add up to the identity. Being linearly independent, one can expand the identity in terms
of the projectors,

Î =
1
d

d2∑
n=1

InQ̂n . (13)

If all coe�cients In = Tr[Q̂n] were positive, it would be a simple matter to de�ne a POVM: simply use the rescaled
projectors InQ̂n as its elements. However, the assumption that all In are positive is inconsistent whatever the choice
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of the directions nn. Taking the trace over both sides of (13) and recalling that Tr[Q̂n] = 1 leads to the `summation
rule'

d2 =
d2∑

n=1

In . (14)

If one multiplies Eq. (13) with Q̂m and takes the trace, one sees that the Gram matrix links the two sets of ce�cients
of the identity,

Îm =
d2∑

n=1

GmnÎn , m = 1 . . . d2 .

Recalling that all Îm are equal to unity, one �nds from these equations that

1 = GmmÎm +
d2∑

n6=m

GmnÎn > Îm , m = 1 . . . d2 ,

since the diagonal elements of G equal one while all its other elements are positive and the coe�cients Îm have been
assumed to positive. This leads to a contradiction: summing the d2 inequality gives d2 >

∑
m Îm , contradicing the

sum rule (14).
In view of this result, it might be a good idea to expand the identity in the dual basis,

Î =
1
d

d2∑
n=1

Q̂n , (15)

the coe�cients being equal to one, In = 〈nn |̂I|nn〉 ≡ 1. However, this relation does again not constitute a POVM
because not all of the operators Q̂n are positive, as will be shown now. The elements of Gram matrix G of the basis
Q̂n, de�ned by pairwise scalar products of basis elements, are positive,

Gnn′ = Tr
[
Q̂nQ̂n′

]
= |〈nn|nn′〉|2 > 0 , n, n′ = 1. . . . d2 .

Therefore, the inverse G−1 of the Gram matrix, known to exist for linearly independent Q̂n, must have at least one
negative entry in each row, otherwise, the o�-diagonal elements of the product G−1G could not vanish as is necessary.
Since a second expression for the matrix elements of G−1 is given by the scalar products of the elements of the dual
basis, there will be at least one pair of indices, n0, n

′
0, say, such that

Gn0n′0 = Tr
[
Q̂n0Q̂n′0

]
< 0 . (16)

This relation is incompatible with all operators Q̂n, n = 1 . . . d2, being positive semi-de�nite: the eigenvalues of a
product of two positive semi-de�nite operators are real and non-negative implying that the trace in (16) cannot take
a negative value. Thus, one of the two operators in (16) cannot be positive semi-de�nite, and the identity in (15) is
not given as a sum of only non-negative operators.

C. Constructing new MIC-POVMs

In the following, the minimal informationally complete sets {Q̂n, n = 1 . . . d2} and {Q̂n, n = 1 . . . d2} will be used
to construct MIC-POVMs.

1. FSC-construction

The method described by FSC to construct a POVM out of any set of positive operators can be applied to any sum
of the projection operators Q̂n with positive coe�cients,

Ŝ =
d2∑

n=1

αnQ̂n , αn > 0 . (17)
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The following argument shows that the hermitean operator Ŝ is strictly positive. De�ned as the sum of positive
semi-de�nite operators, the expectation value of Ŝ in any state |ψ〉 is cleary non-negative, 〈ψ|Ŝ|ψ〉 ≥ 0. However,
Ŝ having a zero eigenvalue would lead to a contradiction: assume that there is a normaliable state |ψ0〉 which Ŝ

annihilates, Ŝ|ψ0〉 = 0, and expand the projector Ŝ0 = |ψ0〉〈ψ0| in terms of the basis Q̂n. The sum of its non-negative
expansion coe�cients

Sn = Tr[Ŝ0Q̂n] = |〈ψ0|nn〉|2

would vanish since
d2∑

n=1

αnSn = 〈ψ0|
d2∑

n=1

αnQ̂n|ψ0〉 = 〈ψ0|
(
Ŝ|ψ0〉

)
= 0 ,

which is only possible if each term Sn of the sum vanishes individually. Hence, Ŝ0 is zero and |ψ0〉 cannot be a
normalizable state leaving us with Ŝ > 0. Consequently, Ŝ has a unique square root and an inverse, which is all one
needs to complete the FSC-construction. Explicitly, the resulting family of MIC-POVMs is given by

{Ên = αnŜ−
1
2 Q̂nŜ−

1
2 , αn > 0 , n = 1 . . . d2} ,

where, unfortunately, no analytic expressions for the square roots are available if d > 4.

2. Analytic MIC-POVMs

The expansions (13) and (15) did not de�ne POVms since neither the expansion coe�cients In on the one hand nor
the elements of the basis Q̂n on the other hand are non-negative. It will be shown now that minor modi�cations are
su�cient in order to obtain MIC-POVMs.

Rewrite (13) in the form

Î =
1
d

N+∑
n+=1

In+Q̂n+ −
1
d

N−∑
n−=1

|In− | Q̂n− , N+ + N− = d2 , (18)

rearranging the sum in such a way that the sums contain terms with non-negative and negative coe�cients, In+ ≥ 0
and In− < 0, respectively. Adding on both sides a (C/d)-fold multiple of the identity, with C =

∑
n− I

n− < 0, one
�ndsM check

next
equa-
tion(1− C) Î =

1
d

N+∑
n+=1

In+Q̂n+ +
1
d

N−∑
n−=1

|In− | (Î− Q̂n−) . (19)

This can be written as

Î =
N+∑

n+=1

Ên+ +
N−∑

n−=1

Ên− ≡
d2∑

n=1

Ên , (20)

where rede�ne
things
with-
out
modu-
lus?

Ên+ =
In+

d + C
Q̂n+ , Ên− =

|In− |
d + C

(Î− Q̂n+) , (21)

are d2 positive semi-de�nite operators each being either of rank one or of rank (d − 1). In view of (20), they form
a MIC-POVM. The physical interpretation of this POVM is as follows: when it is measured there are d2 possible
outcomes, N+ of which correspond to �nding the particle in the coherent state |nn+〉, while the remaining N− cases
correspond to �nding the state in a (d− 1)-dimensional subspace orthogonal to the states |nn−〉. The case of a qubit
is special since both the operators Ên+ and Ên−are of rank one. It will be shown below that the present construction
leads to other (or the same set of) POVMs as introduced above.
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Not surprisingly, a similar modi�cation enables one to �nd a MIC-POVM from the dual basis. The second expansion
of the identity can be rewritten as

(
1− C̃

d

)
Î =

1
d

Ñ+∑
n+=1

Q̂n+ +
1
d

Ñ−∑
n−=1

(
Q̂n− − qn− Î

)
, (22)

where qn− < 0 denotes the smallest eigenvalue of Q̂n− and the number C̃ is their sum,

C̃ =
Ñ−∑

n−=1

qn− < 0 . (23)

By construction, all of the operators

ε̂n+ =
1

d− C̃
Q̂n+ , ε̂n− =

1
d− C̃

(Q̂n− − qn− Î) , (24)

are positive semi-de�nite which is obvious for the �rst ones and the second set has been shifted appropriately, so that
�nally

Î =
Ñ+∑

n+=1

ε̂n+ +
Ñ−∑

n−=1

ε̂n− ≡
d2∑

n=1

ε̂n . (25)

It is not di�cult to see that the two MIC-POVMs just constructed are not dual to each other, hence intrinsically
di�erent: taking the scalar products within each basis one has immediately

Tr
[
ÊnÊn′

]
≥ 0 , and Tr[ε̂nε̂n′ ] ≥ 0 , n, n′ = 1 . . . N , (26)

which says that both sets of operators lead to Gram matrices with non-negative entries only making it impossible
that they would be inverses of each other.

D. Generalization

Having gained some experience with the construction of MIC-POVMs, one generalize the FCS-approach described
above. E�ectively, it is possible to relax the condition of having d2 non-negative operators and avoid the appearance
of the analytically inaccessible square root of an operator. To couch the result to be shown now in positive terms:
every set of d2 linearly independent hermitean operators acting on Hd can be used to de�ne a MIC-POVM.
Consider d2 hermitean operators κ̂n on Hd bounded by the inequalites

κ−n ≤ κ̂n ≤ κ+
n , n = 1 . . . d ,

where the paira of numbers −∞ < κ±n < ∞ are, respectively, the maximal and the minimal eigenvalue of κ̂n, not
both of which can be equal to zero simultaneously. Upon shifting and rescaling according to

K̂n =
1

κ+
n − κ−n

(
κ̂n − κ−n Î

)
, n = 1 . . . d ,

one obtains non-negative operators bounded by zero and one,

0 ≤ K̂n ≤ 1 , n = 1 . . . d ,

as is necessary for the elements of a POVM. The conditions
1
d
Tr

[
K̂nK̂n′

]
= δn′

n

de�ne a unique dual set of d2 operators K̂n. Hence, it is straighforward to write down the expansion of the identity,

Î =
1
d

d2∑
n=1

InK̂n , In = Tr
[
ÎK̂n

]
, (27)
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where, as before, some of the coe�cients inevitably will be negative. Using the same remedy as above, one, namely
to e�ectively replace the operators K̂n− with negative coe�cients by (Î− K̂n−), also being bounded by zero and one,
one produces a set of d2 non-negative operators summing up to the identity

Î =
N+∑

n+=1

ε̂n+ +
N−∑

n−=1

ε̂n− ≡
d2∑

n=1

ε̂n , (28)

where

ε̂n+ =
In+

d + C
K̂n+ , ε̂n− =

|In− |
d + C

(Î− K̂n−) , (29)

C being de�ned as before as the sum of the moduli of the negative coe�cients. The last two equations are the main
result of this paper.

1. State reconstruction in terms of POVMs

Suppose now that a MIC-POVM Ên, n = 1 . . . d2, has been de�ned, and an unknown density matrix ρ̂ is assumed to
be available in an arbitrary large number of copies. The most elegant approch to use the PoVM for state reconstruction
passes through the dual set of operators Ên, de�ned by the equivalent of the condition (10). Once these operators
have been found, and the collection of numbers

pn(ρ̂) = Tr
[
ρ̂Ên

]
∈ [0, 1] , n = 1 . . . d2 ,

have been measured, one can write down an explicit formula for the density matrix

ρ̂ =
1
d

d2∑
n=1

pn(ρ̂)Ên .

Formally, this result is very similar to what is known from the expectation-value representation involving discrete P -
and Q-symbols. However, it is fundamentally di�erent in the sense that the numbers pn(ρ̂) are `honest' probabilities
emerging from an experiment performed with a single apparatus. check

these
formu-
las!E. Example of a spin 1/2

Let us illustrate the construction of new MIC-POVMs by for a spin-1/2 system with Hilbert space H2. To make
the example as explicit as possible, let us consider three pairwise orthogonal unit vectors ni , i = 1, 2, 3, in R3, and

n4 =
1√
3

(n1 + n2 + n3) . (30)

These four vectors clearly do not satisfy the condition given in (9), hence the four projection operators Q̂n =
|nα〉〈nα| , n = 1 . . . 4 , do not form a POVM. By applying the procedure outlined above one can associate to them a
unique MIC-POVM with elements

Êi =
2√

3(
√

3 + 1)
|ni〉〈ni| , i = 1, 2, 3 ,

Ê4 =
2

(
√

3 + 1)
| − n4〉〈−n4| ;

note that the only the forth of the vectors acquires an additional minus sign. This result follows from the fact that
one can express the expansion coe�cients for any four vectors not on a circle on the unit sphere of the identity in the
present situation in the form

In =
4

1 + fn · nn
, n = 1 . . . 4 ,
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where the vector f1 ∈ R3 is determined by

f1 = −n2 ∧ n3 + n3 ∧ n4 + n4 ∧ n2

(n2 ∧ n3) · n4
,

and the other three vectors follow from this relation by cyclic permutation of the indices 1 through 4. A straightforward
calculation leads to

Ii =
4√

3(
√

3− 1)
> 0 , i = 1, 2, 3 ,

I4 =
4

(1−√3)
< 0 ,

i.e. only one negative coe�cient which needs to be eliminated by adding a multiple of the identity to the expension
of the identity.

IV. CONCLUSIONS

Starting from the expectation-value representation of quantum mechanics in d-dimensional Hilbert spaces, new
simple POVMs with d2 elements have been de�ned which are informationally complete. Mathematically speaking,
the elements of these POVMs provide a basis in the Hilbert-Schmidt space of operators acting on Hd while, from
a physical point of view, they are suited to reconstruct unknown quantum states if an arbitrarily large number of
systems in the same state are available. Repeated measurements with a single such POVM produce (d2− 1) numbers
which are in a one-to-one correspondence with a density matrix ρ̂. The POVMs obtained here have the important
property that they can be written down analytically in �nite Hilbert spaces of any dimension. Since any set of d2

linearly independent operators can be used as a starting point, a wide range of possibilities opens up to construct
MIC-POVMs most suited for the application at hand. More?

SICPOVM?

[1] Since a density matrix ρ̂ has unit trace, only (d2 − 1) expectation values will be necessay in this case.


