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Abstract
A non-Hermitian operator does not necessarily have a complete set of
eigenstates, contrary to a Hermitian one. An algorithm is presented which
allows one to decide whether the eigenstates of a given PT-invariant operator
on a finite-dimensional space are complete or not. In other words, the
algorithm checks whether a given PT-symmetric matrix is diagonalizable. The
procedure neither requires to calculate any single eigenvalue nor any numerical
approximation.

PACS number: 03.67.−w

1. Introduction

The physical interpretation of PT-invariant operators—and hence their relevance for the
description of physical systems—continues to be debated [1–3]. There is, however, no doubt
about the cathartic role of PT-symmetry: it has become more evident what it means to let go
hermiticity in exchange for a weaker property such as PT-invariance. The success and ease to
describe quantum mechanical systems in terms of Hermitian operators is based on two of their
generic properties, namely, the existence of real eigenvalues and their diagonalizability, i.e.
the completeness of their orthonormal eigenstates. These properties do not necessarily persist
if a quantum system was described by a PT-symmetric Hamiltonian: its eigenvalues could be
complex, and its eigenfunctions would, in general, neither be pairwise orthogonal nor form a
complete set. Given a PT-invariant operator, it thus appears desirable to decide whether it is
diagonalizable or not.

The purpose of this contribution is to provide an algorithm answering the question of
whether a given PT-invariant Hamiltonian operator in a finite-dimensional space does or does
not possess a complete set of eigenstates. It is convenient to represent such an operator as
a PT-symmetric matrix M, say. A procedure will be outlined which, after a finite number of
steps, will announce whether the matrix M at hand is diagonalizable or not. In principle, the
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algorithm can be carried out by hand for matrices of any dimension, and no approximations
are necessary.

Often, the question of diagonalizability will arise in a more general setting where one
considers not just a single matrix but a family of PT-symmetric matrices M(ε), ε ∈ R. The
parameter ε measures the strength ε ∈ R of a ‘perturbation’ which destroys hermiticity while
it respects PT-invariance. As the parameter varies, all of the cases described previously may
occur: typically, two real eigenvalues merge into a single real one at a critical value of ε,
subsequently splitting into a pair of two complex conjugate eigenvalues, or vice versa. These
dramatic modifications are accompanied by changes in the nature of the eigenstates of the
PT-invariant operator, possibly no longer spanning the space on which M(ε) acts.

This behaviour can be understood in terms of so-called exceptional points [4] which are
known to occur when a matrix is subjected to the perturbation depending analytically on a
parameter such as ε. At an exceptional point, the corresponding matrix is not diagonalizable,
and its spectrum may undergo a qualitative change. For a Hermitian operator subjected to a
parameter-dependent Hermitian perturbation, exceptional points cannot occur.

If one applies the algorithm testing for diagonalizability to a parameter-dependent matrix
M(ε), it will output a polynomial in ε instead of a number. Its zeros correspond to those
values of the perturbation parameter where the matrix family M(ε) has exceptional points.
The matrices corresponding to these values of the perturbation are not diagonalizable, and the
spectra of matrices for nearby values of the parameter may differ qualitatively.

The following section summarizes the properties of PT-invariant systems in terms of
(2 × 2) matrices. Then, the link between diagonalizability and the so-called minimal
polynomial is reviewed. In section 3, the algorithmic test is presented which consists of
constructing the minimal polynomial of the matrix followed by a search for degenerate roots
by means of the Euclidean algorithm. Various methods are known to effectively calculate the
minimal polynomial of a matrix, outlined in section 4. Simple examples are studied in
section 5, leading to some general conclusions about the structure of PT-symmetric
Hamiltonian operators in finite-dimensional spaces. Section 6 summarizes the results and
discusses the challenge to extend them to state spaces of infinite dimension.

2. PT-invariant systems

A matrix H is PT-invariant [5],

[H, PT] = 0, (1)

if it commutes with the product of parity P and the anti-unitary operation of time reversal
T, represented here by complex conjugation, T†HT = H∗. Equation (1) implies that
the characteristic polynomial of any PT-symmetric operator H has real coefficients only.
Consequently, its roots are either real or come in complex-conjugate pairs. One way to show
this is to construct a basis in which the Hamiltonian has real matrix elements only [6].

Let us briefly review the properties of PT-symmetric systems by considering the most
general PT-invariant matrix of dimension 2,

H =
(

a b

b∗ a∗

)
, a, b ∈ C, (2)

with parity given by the Pauli matrix σx in the standard representation. For real numbers a and
b, the matrix H is not only PT-invariant but also Hermitian. Thus, its eigenvalues are real, and
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its orthonormal eigenstates span C
2. For a∗ �= a and b = 0, H has a pair of complex conjugate

eigenvalues and two orthonormal eigenstates. Matrices of the form

H =
(

i b

b −i

)
, b ∈ [−1, 1], (3)

are particularly interesting. For |b| < 1, one finds a pair of two complex conjugate eigenvalues,

E± = ±
√

b2 − 1 ∈ iR, (4)

associated with two non-orthogonal eigenstates,

1√
2b

(
b

i − √
b2 − 1

)
,

1√
2b

(
b

i +
√

b2 − 1

)
. (5)

When b = ±1 in (3), H has a two-fold degenerate eigenvalue, E0 = 0, and there is only one
eigenstate, namely,

1√
2

(∓1
i

)
. (6)

This situation, impossible for a Hermitian matrix, is usually described by saying that the
algebraic multiplicity of the eigenvalue E0 is 2 while its geometric multiplicity equals 1: the
characteristic polynomial of M has a double root associated with a single eigenvector only.
In this case, the matrix H is not diagonalizable: a similarity transformation sending it to a
diagonal matrix cannot exist since its eigenstates would span the space C

2.

3. Diagonalizability and the minimal polynomial of a matrix

Each square matrix M of dimension N satisfies the identity

pM(M) = 0, (7)

where pM(λ) is the characteristic polynomial of M,

pM(λ) = det(λE − M), (8)

with E being the unit matrix of dimension N. In other words, the characteristic polynomial of
M annihilates the matrix M. The polynomial pM(λ) has degree N and it is a monic polynomial,
that is, the coefficient multiplying the highest power of λ is equal to 1. Obviously, many
other monic polynomials of higher degree also annihilate M: simply take p2

M(λ), p3
M(λ), . . . .

It is less obvious, however, whether one can find polynomials of degree less than N which
annihilate M. This, in fact, depends on the properties of the matrix M.

Define [7] the minimal polynomial of the matrix M as the monic polynomial mM(λ) of
least degree which annihilates M:

mM(M) = 0. (9)

The minimal polynomial mM(λ) is unique [7], and its degree N0 is less than or equal to
the degree of the characteristic polynomial, N0 � N . The minimal polynomial divides the
characteristic polynomial without a remainder,

pM(λ) = dM(λ)mM(λ), (10)

where dM(λ) is a non-zero polynomial of degree less than N. The characteristic and the minimal
polynomial of the matrix M coincide in the case where dM(λ) ≡ 1.

In general, the minimal polynomial has ν0 roots Mν ,

mM(λ) =
ν0∏

ν=1

(λ − Mν)
µν , ν0 � N, (11)
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with multiplicities µν summing to N0 = µ1 + µ2 + · · · + µν0 . Here is the important property
of the polynomial mM(λ): the matrix M is diagonalizable if and only if each root Mν in (11)
has multiplicity 1, µν ≡ 1, ν = 1, . . . , ν0, that is,

mM(λ) =
ν0∏

ν=1

(λ − Mν), all Mν distinct. (12)

No polynomial of degree less than mM(λ) annihilates the matrix M.
Let us illustrate the properties of minimal polynomials using low-dimensional matrices.

Consider the matrix A with entries (1, 1, 2) on the diagonal, and zero elsewhere. Its
characteristic polynomial is given by

pA(λ) = (λ − 1)2(λ − 2), (13)

while its minimal polynomial reads

mA(λ) = (λ − 1)(λ − 2), (14)

being of the form (11), with N0 = ν0 = 2. This is easy to verify since mA(A) = A2 − 3A +
2E = 0 holds, while none of its factors annihilates M: both (M−E) and (M−2E) are different
from zero. Thus, the minimal polynomial divides the characteristic one, pA(λ) = (λ−1)mA(λ),
leading to dA(λ) = (λ − 1). Due to (14), the matrix A is diagonalizable—a correct but hardly
surprising result since the matrix A has been diagonal from the outset.

Here is the instructive part of the example: consider the matrix

B =

1 b 0

0 1 0
0 0 2


 , b ∈ C, (15)

which is different from A as long as b is different from zero. The characteristic polynomial of
B equals that of A but the matrix B must have a different minimal polynomial since mA(B) �= 0.
It is not difficult to verify that no linear or quadratic polynomial annihilates B as long as b �= 0.
This implies that its minimal polynomial coincides with its characteristic polynomial,

pB(λ) = mB(λ), dB(λ) ≡ 1. (16)

Consequently, the minimal polynomial of B does not have the form specified in (12), and the
matrix B is not similar to a diagonal matrix. Inspection shows that B indeed contains a (2 × 2)

Jordan block for any non-zero value of b.
For PT-invariant matrices, both the polynomials dH(λ) and mH(λ) have real coefficients

only, just as the characteristic polynomial. This will be shown once the function dM(λ) in (10)
has been defined in general (cf section 4.2).

4. An algorithmic test for diagonalizability

A square matrix M of dimension N is diagonalizable if its minimal polynomial is a product
of factors (λ − Mν) with all numbers Mν, ν = 1, 2, . . . , n � ν0, distinct, as shown in
equation (12). Consequently, to test for diagonalizability of a given matrix M, one needs to

(i) find the minimal polynomial mM(λ) of the matrix M;
(ii) determine whether the polynomial mM(λ) has single roots only.

To calculate numerically the roots of either the characteristic or the minimal polynomial is
not a valid approach since, in general, the exact roots of a polynomial cannot be specified in
a finite procedure. Any algorithmic implementation must generate answers to (i) and (ii) in a
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finite number of steps. Note that even if the first step has been implemented, it is unlikely that
the minimal polynomial will emerge in factorized form.

Interestingly, it is possible to construct the minimal polynomial of a matrix and to check
for degenerate roots in a finite number of steps. In both cases one searches for common factors
of polynomials, which is achieved algorithmically by the Euclidean division algorithm. These
results seem to have been put together for the first time in [8] in order to decide algorithmically
whether a given matrix is diagonalizable. As it stands, it could be applied to the non-Hermitian
matrix governing the motion of two-coupled damped classical oscillators studied in [9].

In the following, a slightly simplified approach to the problem of diagonalizability is
presented, adapted to matrices with PT-symmetry. Before implementing the steps (i) and (ii),
the Euclidean algorithm for polynomials will be presented briefly to establish notation.

4.1. The Euclidean division algorithm for polynomials

Given two integer numbers p0 > p1, say, the Euclidean division algorithm outputs their
greatest common divisor, denoted by gcd(p0, p1) ∈ N0, after a finite number of steps. It
works as follows: first, you need to express the larger number as q1-fold multiple of the
smaller number plus a remainder p2,

p0 = q1p1 + p2, q1, p2 ∈ N0, p1 > p2 � 0. (17)

This relation implies that any common divisor of p0 and p1 divides p2 as well, hence
gcd(p0, p1) = gcd(p1, p2). Thus, it is sufficient to search for the greatest common divisor of
the pair (p1, p2). This can be achieved by increasing each index in (17) by one and feeding
in the pair (p1, p2) instead of (p0, p1), etc. Since p0 > p1 and p1 > p2, the algorithm
will stop after a finite number of iterations and produce a remainder equal to zero, pk+1 = 0,
say. The non-zero remainder pk generated in the penultimate step is the desired result,
gcd(p0, p1) = pk . If gcd(p0, p1) = 1, the numbers p0 and p1 are relatively prime, otherwise
a common divisor different from one has been identified.

A polynomial in the variable λ can be written as a unique product of linear factors
(λ − λn) where the numbers λn ∈ C are its roots. This representation makes polynomials
similar to integer numbers in some respects. The equivalent of the Euclidean algorithm, when
applied to two polynomials, outputs their greatest common divisor, which is a polynomial
itself. This result is based on the fact that any two polynomials p0(λ) and p1(λ), with
deg p0(λ) > deg p1(λ) are related by

p0(λ) = q1(λ)p1(λ) + p2(λ), deg p1(λ) > deg p2(λ) � 0, (18)

which is the equivalent of (17). The polynomials q1(λ), with deg q1(λ) = (deg p0(λ) −
deg p1(λ)), and hence p2(λ), are found from long division. If p0(λ) and p1(λ) have a
common factor, then p2(λ) must have this factor as well. Thus, it is sufficient to search for
gcd(p1(λ), p2(λ)) instead of gcd(p0(λ), p1(λ)) but the degrees of the polynomials involved
have effectively been reduced. Consequently, this procedure can be repeated all over again
and it halts once a vanishing remainder has been obtained, pk+1(λ) = 0, say. Then, the
greatest common factor of the polynomials p0(λ) and p1(λ) is given by the last non-zero
remainder polynomial, pk(λ), calculated in the next-to-last application of the algorithm. If
deg pk(λ) = 0, the initial polynomials are ‘relatively prime,’ otherwise their greatest common
divisor is a polynomial of degree at least 1.
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4.2. Step (i): Finding the minimal polynomial of a matrix

The function dM(λ) relates the minimal polynomial mM(λ) of the matrix M to its characteristic
polynomial pM(λ) according to equation (10). Hence, the minimal polynomial associated with
M is known once the characteristic polynomial and the function dM(λ) have been determined.

Two steps are required to construct the function dM(λ) [7]. First, you need to calculate
the matrix DM = adj (λE − M), given by the transposed cofactors—or signed minors—of the
matrix (λE − M). The adjoint of a matrix, C say, always exists, and it satisfies the relation

C adj C = (det C)E. (19)

For det C �= 0, equation (19) leads to the familiar expression of the inverse matrix of C.
According to [7], the polynomial dM(λ) is given by the greatest (monic) common divisor

of the N2 elements of adj (λE − M),

dM(λ) = gcd{(DM)nm|n,m = 1, . . . , N}, (20)

Thus, in a second step, you need to apply the Euclidean algorithm to all pairs of entries of the
matrix adj (λE − M). Having thus identified the function dM(λ), the minimum polynomial of
M follows from (10),

mM(λ) = pM(λ)

dM(λ)
. (21)

Now it is possible to show that, for a PT-invariant matrix, the polynomials dM(λ) and
mM(λ) have real coefficients only, just as does the characteristic polynomial. Using a basis in
which all elements of H are real, leads to

(DH(λ))∗ = (adj(λE − H))∗ = adj(λ∗E − H) = DH(λ∗). (22)

which states that in this basis the adjoint of H has only real matrix elements (except for the
unknown λ). Taking (20) into account this leads to

(dH(λ))∗ = gcd{(DH)nm(λ∗)|n,m = 1, . . . , N} = dH(λ∗), (23)

which, in conjunction with (pH(λ))∗ = pH(λ∗) and equation (21) implies indeed (mH(λ))∗ =
mH(λ∗).

Let us verify that this procedure outputs the correct minimal polynomials for the matrices
A and B introduced in section 3. The adjoint of the matrix (λE − B) reads

adj(λE − B) = adj


λ − 1 −b 0

0 λ − 1 0
0 0 λ − 2




=

(λ − 1)(λ − 2) b(λ − 2) 0

0 (λ − 1)(λ − 2) 0
0 0 (λ − 1)2


 . (24)

Due to the simplicity of the matrices involved, the Euclidean algorithm can be run ‘by
inspection:’ for b �= 0, the only common factor among the entries in (24) is given by
dB(λ) = 1. Consequently, the minimal and the characteristic polynomial of B coincide as
stated in equation (16). If the parameter b takes the value zero, B turns into A, and a non-
constant greatest common divisor emerges, dA(λ) = (λ−1). Using equation (10), one obtains
the minimal polynomial mA(λ) = (λ − 1)(λ − 2), agreeing with equation (14).

In [8], a different approach to determine the minimal polynomial of a matrix M has
been presented which, ultimately, is also based on finding the greatest common divisor of
specific polynomials. According to [10], any method to determine whether the matrices
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M0 ≡ E, M, M2, . . . , MN−1, are linearly dependent, can be used to construct the minimal
polynomial of M; two such methods are described in this reference, and a third one can be
found in [11]. The latter approaches have in common that they are not based on the Euclidean
algorithm. For actual calculations, it is convenient to resort to a Mathematica program [12]
to find the minimal polynomial of a matrix M.

4.3. Step (ii): Identifying degenerate roots of a polynomial

Once the minimal polynomial mM(λ) has been found, one needs an algorithm to decide whether
it has single roots only [8]. Imagine a polynomial m(λ) to have an s-fold root λ0, 2 � s � N .
Its factorization reads

m(λ) = (λ − λ0)
s . . . , (25)

where the dots indicate a polynomial of degree (N − s). Its derivative takes the form

dm

dλ
= (λ − λ0)

s−1 . . . , (26)

the dots standing again for some polynomial of degree (N − s). Obviously, the polynomial
and its derivative are not relatively prime: m(λ) and m′(λ) have a factor (λ − λ0)

s−1

of order at least one in common. Thus, applying the division algorithm to the pair
(mM(λ),m′

M(λ)) checks whether the polynomial mM(λ) has the form (12). If the procedure
outputs gcd(mM(λ),m′

M(λ)) ∝ 1, all roots of mM are distinct and the associated matrix M is
diagonalizable, otherwise it is not.

This concludes the description of an algorithm to test for diagonalizability of a given
PT-symmetric matrix M. No fundamental changes are necessary if one studies a parameter-
dependent family of matrices M(ε). However, the algorithm will output conditions polynomial
in the parameter ε, indicating specific parameter values where diagonalizability breaks down.
It is convenient to study the resulting modifications by working out some simple examples,
illustrating at the same time the proposed algorithm.

5. Examples

5.1. Matrices of dimension (2 × 2)

Let us apply the algorithm described above to the matrix H in (2) assuming the numbers a and
b to be different from zero. Its characteristic polynomial reads

pH(λ) = det(λE − H) = λ2 − 2(Re a)λ + |a|2 − |b|2, (27)

while its minimal polynomial is found via the function dH(λ), given as the highest common
factor of the entries of the matrix

DH(λ) = adj(λE − H) =
(

λ − a∗ −b

−b∗ λ − a

)
. (28)

By inspection, a non-constant factor only exists among the four entries of DH(λ) if
b = Im a = 0. In this case, H turns into a real multiple of the identity, hence it is diagonalizable.
This observation illustrates a fine point of the construction of the minimal polynomial: even
upon identifying a non-constant function dH(λ), the minimal polynomial mH(λ) may still be
of the form (12). For b = Im a = 0, the characteristic polynomial turns into (λ − Re a)2,
implying indeed mH(λ) = (λ− Re a). Here, the function dH(λ) = (λ− Re a) removes factors
of the characteristic polynomial which stem from the degeneracy of an eigenvalue of H.
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From now on, either b or Im a are assumed to be different from zero, hence dH(λ) = 1,
and the minimal polynomial mH(λ) is given by equation (27),

mH(λ) = pH(λ), (29)

which concludes the first step of the algorithm.
In the second step of the algorithm, the search for multiple roots of mH(λ) ≡ p0(λ), one

needs to determine the highest common factor of the minimal polynomial and its derivative,

m′
H(λ) = 2(λ − Re a) ≡ p1(λ). (30)

Applying the Euclidean algorithm to the pair (mH(λ),m′
H(λ)) means to solve for a polynomial

q1(λ) = Aλ + B and for p2(λ), such that

mH(λ) = (Aλ + B)m′
H(λ) + p2(λ), A,B ∈ R. (31)

The unknowns are easily obtained as

A = 1
2 , B = − 1

2 Re a, p2(λ) = (Im a)2 − |b|2 	 λ0. (32)

Two possibilities now arise: either p2(λ) equals zero or it does not. The first case occurs if

(Im a)2 = |b|2, (33)

and the algorithm comes to a halt. As mentioned above, the greatest common divisor of
the initial polynomials is then given by the penultimate (monic) remainder polynomial, i.e.
p1(λ) = (λ − Re a). It follows that mH(λ) and its derivative do have a common non-
constant divisor, so that H cannot be brought to diagonal form. It is easy to verify that
mH(λ) = (λ − Re a)2 when (33) holds, confirming that the minimal polynomial of H has a
double root Re a. Furthermore, a simple calculation shows that the matrix H has indeed only
one eigenstate if the relation Im a = ±|b| holds. Note that this result covers the example of a
non-diagonalizable H of section 2, where a = i and b = ±1 had been considered.

Finally, if a and b do not satisfy (33), the remainder polynomial p2(λ) does not
vanish. Being a constant, the algorithm is bound to stop after the next iteration. Determine
q2(λ) = (Cλ + D) and p3(λ), such that

(λ − Re a) = (Cλ + D)((Im a)2 − |b|2) + p3(λ), C,D ∈ R, (34)

holds, i.e.,

C = 1

(Im a)2 − |b|2 , D = −Re a

(Im a)2 − |b|2 , p3(λ) = 0. (35)

The algorithm halts indeed due to p3(λ) = 0, and the penultimate remainder is p2(λ) ∝ 1,
indicating that the minimal polynomial does not have any degenerate roots, and H is
diagonalizable.

In summary, the matrix H is diagonalizable for all parameter values except when
Im a = ±|b|. In this case, the algebraic multiplicity of its eigenvalue is 2, while its geometric
multiplicity is 1; otherwise the multiplicities both equal 2. It is important to note that these
conclusions have been reached without determining the eigenvalues.

5.2. Matrices of dimension (4 × 4)

It is instructive to apply the algorithm to a PT-invariant matrix of dimension 4,

H =




iε s 0 0
s −iε δ 0
0 δ iε s

0 0 s −iε


 , s, δ > 0, (36)
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which depends on a perturbation parameter ε. As before, the action of T on a matrix effects
complex conjugation of its entries, while P is now given by a (4 × 4) matrix with entries equal
to 1 along its minor diagonal and zero elsewhere. Equation (1) is then readily verified. The
characteristic polynomial of H is given by

pH(λ) = λ4 + αελ
2 + βε, (37)

with αε = 2ε2 − 2s2 − δ2 and βε = ε4 − (2s2 + δ2)ε2 + s4. The minimal polynomial of H
coincides with the characteristic one, mH(λ) ≡ pH(λ), since the only common factor of the
matrix elements of DH is equal to 1, dH(λ) = 1. To see this, it is sufficient to calculate the two
matrix elements [DH]14 = −s2δ, and [DH]23 = −(λ2 + ε2)δ, for example. Whatever the value
of ε, for non-zero s and δ the only common divisor is 1, so that dH(λ) = 1.

Let us now determine gcd(mH(λ),m′
H(λ)) by the Euclidean algorithm, where mH(λ) ≡

p0(λ) is given in equation (37) and m′
H(λ) ≡ p1(λ) = 4λ3 + 2αελ. Comparing powers of λ in

equation (31) with the polynomials just defined, one obtains

A = 1

4
, B = 0, p2(λ) = αε

2
λ2 + βε. (38)

The algorithm only stops here if αε = βε = 0 which would require s = δ = 0, contrary to
both s and δ being different from zero. If αε = 0 is assumed, H is diagonalizable for all ε since
βε cannot take the value zero, and the algorithm stops after the next step, outputting βε ∝ 1
as greatest common factor. Assume now αε �= 0 and apply the division algorithm to the pair
(p1(λ), p2(λ)). The unknown constants in q2(λ) = Cλ + D, and the remainder polynomial
p3(λ) are found to be

C = 8

αε

, D = 0, p3(λ) = 2

αε

(
α2

ε − 4βε

)
λ. (39)

For the algorithm to stop, one must have p3(λ) = 0. This, however, does not happen whatever
the value of ε since α2

ε − 4βε = δ2(4s2 + δ2) > 0. The next iteration of the algorithm leads to

E = α2
ε

4
(
α2

ε − 4βε

) , F = 0, p4(λ) = βε, (40)

where q3(λ) = Eλ + F . Producing a remainder polynomial of degree zero in λ, the condition
for the minimal polynomial to have multiple roots is finally given by

βε = ε4 − (2s2 + δ2)ε2 + s4 = 0. (41)

This fourth-order polynomial in ε has roots

±ε± = ±√
σ ± �σ, σ = s2 +

δ2

2
> 0, �σ =

√
σ 2 − s4 ∈ (0, σ ). (42)

For each of these four real values of the parameter ε, the matrix H is not diagonalizable. In
other words, the algebraic and geometric multiplicity of the eigenvalues of H do not coincide,
and its eigenstates do not span the space C

4. It is important to note that the eigenvalues of the
matrix H are not known at this stage.

5.3. The global structure of H

Let us now determine the global properties of H. This is easily done upon combining (42)
with the characteristic polynomial (37) in its factorized form,

pH(λ) = (λ − λ+)(λ + λ+)(λ − λ−)(λ + λ−) (43)
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Figure 1. Parameter space of the matrix H defined in (36). The matrix H is not diagonalizable on
the full lines which divide the parameter space into five regions: region I: four real eigenvalues;
regions II: two real and one pair of complex-conjugate eigenvalues; regions III: two pairs of
complex-conjugate eigenvalues.

with roots

±λ± = ±
√

σ ± �σ − ε2, (44)

expressed directly in terms of σ and �σ .
To graphically represent the parameter space of H and its properties, it is convenient to

eliminate the parameter s by the scaling ε → sε and δ → sδ. This effectively amounts
to sending s → 1, and equation (41) simplifies to ε4 − 2(1 + δ2/2)ε2 + 1 = 0, plotted in
figure 1.

Imagine to move along the dashed horizontal line, determined by a fixed positive value
of δ > 0 and variable ε. For ε = 0, the matrix H is Hermitian, hence it has four distinct
real eigenvalues and four orthonormal eigenstates. In region I, where 0 < |ε| <

√
σ − �σ ,

equation (44) says that the eigenvalues remain real and distinct; a complete, not necessarily
orthonormal set of four eigenstates continues to exist since (41) does not hold. When
ε = ±√

(σ − �σ), two eigenvalues coincide numerically, and the corresponding two
eigenstates merge into a single one, leaving H with an incomplete basis. Then, for√

σ − �σ < |ε| <
√

σ + �σ , in region II, two real eigenvalues and a pair of complex-
conjugate ones exist, with H being diagonalizable throughout since (41) does not hold. At
ε = ±√

(σ + �σ), the remaining two real eigenvalues degenerate to a single one, leaving
H non-diagonalizable again with only three eigenstates. Finally, in region III, defined by√

σ + �σ < |ε|, the matrix H is diagonalizable and it comes with two pairs of complex-
conjugate eigenvalues.

Finally, for δ = 0, the matrix H in (36) decouples into a pair of identical two-dimensional
matrices. The left boundary of region I sees the real eigenvalues of H degenerate pairwise
which is consistent with the observations made earlier. At ε = ±1, only two eigenstates exist
while all four eigenvalues coincide numerically. Beyond this value of ε, there are two pairs of
identical complex-conjugate eigenvalues, and the associated basis is complete.

For PT-symmetric systems described by matrices of higher dimensions it is, in general,
not possible to find the roots of the characteristic polynomial. Nevertheless, a discussion of
the parameter space can still be given: to this end one needs to detect the number of real and
complex eigenvalues for each set of parameter values; an algorithm capable of doing this will
be presented in [13].
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6. Discussion and outlook

An algorithm has been presented which allows one to determine whether a given PT-invariant
matrix M is diagonalizable. To do so, it is not necessary to determine the roots of its
characteristic polynomial. In terms of linear algebra, the algorithm decides whether the given
matrix is similar [7] to a diagonal matrix or to a matrix containing at least one Jordan block of
dimension two or more. Somewhat surprisingly, this question seems to have been addressed
only recently from an algorithmic point of view.

It seems worthwhile to point out that the test for multiple roots of a polynomials can, in
fact, be used without any change to determine whether the eigenvalues of a given Hermitian
matrix are degenerate or not. The present author is not aware that this observation has been
made before.

When applied to a family of PT-symmetric matrices, the algorithm outputs polynomial
conditions polynomial in the perturbation parameter. These conditions are satisfied for sets
of matrices all of which are not diagonalizable, and they divide the full parameter space into
regions of diagonalizable matrices with qualitatively different spectra. When combined with
an algorithm to identify the number of real and complex eigenvalues of M, a complete picture
of the system’s properties in the entire parameter space can be established.

Many PT-symmetric systems—including the first one studied from this perspective [5]—
have been defined on Hilbert spaces with countably infinite dimension. Various concepts such
as eigenvalues and eigenstates or the difference between algebraic and geometric multiplicities
of degenerate eigenvalues continue to exist in the more general case [4]. Although Hermitian
operators in finite- and infinite-dimensional spaces, have many properties in common, various
other concepts of the matrix case are not easily carried over to the more general situation.
For any algorithm, finiteness is a crucial feature: the number of steps required to identify a
potential common factor of two polynomials is always finite, no matter what their degree. It
will be interesting to see whether algorithmic tests for diagonalizability of operators acting on
spaces with countably infinite dimension can be found.
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