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We generalize the definition of quantum Anosov properties and the related Lyapunov
exponents to the case of quantum systems driven by a classical flow, i.e. skew-product
systems. We show that the skew Anosov properties can be interpreted as regular Anosov
properties in an enlarged Hilbert space, in the framework of a generalized Floquet theory.
This extension allows us to describe the hyperbolicity properties of almost-periodic
quantum parametric oscillators and we show that their upper Lyapunov exponents are
positive and equal to the Lyapunov exponent of the corresponding classical parametric
oscillators. As second example, we show that the configurational quantum cat system
satisfies quantum Anosov properties.

KEY WORDS: quantum dynamics, Lyapunov exponents, Anosov systems, parametric
oscillators, quantum chaos, Arnold’s cat map

1. INTRODUCTION

Anosov properties and Lyapunov exponents are well-established characterization
of classical dynamics and it is natural to search for similar concepts applicable
to quantum dynamics. Several definitions have been given in the literature (see
Refs. 1, 6, 13–18, 20, 21, 24 and the references therein).

Majewski and Kuna(14) defined a quantum Lyapunov exponent for N -level
quantum systems. Later,3 Emch, Narnhofer, Sewell and Thirring(1,20,24) proposed
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an axiomatic framework which allows one to define an Anosov property for
quantum mechanical systems. However, the resulting definition of a quantum
Lyapunov exponent is limited since it only applies to systems with a globally
constant hyperbolicity property.

In Ref. 6, the upper Lyapunov exponent for quantum systems in the Heisen-
berg representation has been defined, close in spirit to definitions given in Refs. 1,
14. Its usefulness has been illustrated with the example of the parametric quantum
oscillator with periodic time dependence. Moreover, it was shown that whenever
its upper Lyapunov exponent is positive, the system satisfies the discrete quantum
Anosov relations defined by Emch, Narnhofer, Sewell and Thirring.(1,20,24)

In this paper we extend the study to systems described by a Hamiltonian oper-
ator of the form H (ϕt (θ )) (with ϕt a flow on a space M), which will be referred to
as quantum skew-product system. We generalize the definition of Anosov relations
so that it applies to this type of system. As in the case of Floquet theory,(2–5,27)

it is possible to make quantum skew-product systems autonomous by embedding
the dynamics in a larger Hilbert space. The Anosov relations for quantum skew-
product systems correspond to the Anosov relations of the associated system in
this enlarged Hilbert space. We consider the parametric oscillator as an example.
We show that the quantum parametric oscillator verifies the Anosov relations for
quantum skew-product systems if its upper Lyapunov exponent is positive and the
corresponding classical dynamics is reducible (see Definition 5 or Ref. 12). Thus
the quantum parametric oscillator discussed in Ref. 6 is an Anosov quantum skew-
product system. As a second example we consider the configurational quantum
cat system,(25,26) with periodic boundary conditions, which amounts to a system
with compact configuration space.

This paper is organized in the following way: In Sec. 2 we recall the definition
of the upper Lyapunov exponent and of the Anosov properties for a quantum
system describing the motion of a particle. In Sec. 3, we present the formalism of
quantum skew-product systems and the enlarged Hilbert space which allows one
to turn the system into an autonomous one. We propose a definition of the quantum
Anosov properties for quantum skew-product systems in Sec. 4, and illustrate it
by treating the example of the almost-periodic quantum parametric oscillator in
Sec. 5. Finally, the configurational cat map is studied in Sec. 6 after adapting the
definition of the Anosov property to systems with a toroidal configuration space.

2. UPPER LYAPUNOV EXPONENTS AND QUANTUM ANOSOV

RELATIONS

A quantum mechanical particle on the real line is described by coordinate and
momentum operators x̂ and p̂ which satisfy the Heisenberg commutation relation
(we choose the units such that h = 1):

[x̂, p̂] = i.
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We consider the algebra W of finite linear combinations of Weyl operators:

W (β, γ ) = exp[i(β x̂ + γ p̂)], ∀β, γ ∈ R.

These operators satisfy the Weyl form of the commutation relations:

W (β, γ )† = W (−β,−γ ),

W (β, γ ) W (β ′, γ ′) = e− i
2 (βγ ′−γβ ′)W (β + β ′, γ + γ ′).

More abstractly, if the phase space is a real symplectic space V with symplectic
form σ , the algebra W over (V, σ ) is defined as the algebra of finite linear
combinations of the elements {W (α) | α ∈ V } such that

W (α)† = W (−α), (1)

W (α) W (α′) = e− i
2 σ (α,α′) W (α + α′) = e−i σ (α,α′) W (α′) W (α). (2)

In this paper we consider only phase spaces V of finite dimension 2n, with the
usual symplectic form

σ (α, α′) = αT
x α′

p − αT
p α′

x ∀α =
(

αx

αp

)
, α′ ∈ R

2n,

where αT
x denotes the transposed of αx . Hence, the Weyl operators can be written

as:

W (α) = exp
[
i
(
αT

x x̂ + αT
p p̂

)]
, α ∈ R

2n.

In order to define the quantum Lyapunov exponent, we consider derivations on
the algebra W . We denote by δα the derivation defined as the generator of the
automorphism M �→ W (t α) MW (−tα) for all A ∈ W . Therefore we have

δα(M) ≡ [Lα, M], ∀ M ∈ W,

where [, ] is the commutator and

Lα = αT
x x̂ + αT

p p̂, α ∈ R
2n.

In particular, we can check that

[Lα, W (α′)] = − σ (α, α′) W (α′), ∀α, α′ ∈ V . (3)

We assume that the dynamics defines an automorphism of W:

U †(t, t0) MU (t, t0) ≡ M(t, t0) ∈ W, ∀ M ∈ W, ∀ t, t0 ∈ R,

where U (t, t0) denotes the unitary propagator with initial time t0.

Definition 1. (cf .[6]). The upper quantum Lyapunov exponent is defined as

λ̄ = sup
α ∈ V

λ̄α
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where

λ̄α(U, Lα, M, t0) := lim sup
t→∞

1

t
ln ‖ [Lα, M(t, t0)]‖,

and the norm is chosen as ‖M‖ = supψ∈H ‖Mψ‖/‖ψ‖.

Remark 1. According to (3), the derivation δα is well defined on W . Hence, the
norm of the commutator in the definition of the quantum Lyapunov exponent is
finite even the operator Lα is unbounded.

Since the time evolution is unitary, the exponent λ̄α can also be expressed as

λ̄α(U, Lα, M, t0) = lim sup
t→∞

1

t
ln ‖ [Lα(t0, t), M]‖, (4)

with

Lα(t0, t) := U †(t0, t)LαU (t0, t).

In the examples of Sec. 5, we will use the following

Lemma 1. If the quantum Lyapunov exponent of Weyl operators W (β) is inde-
pendent of the choice of β:

λ̄α(U, Lα, W (β), t0) = λ,

then for any observable M ∈ W:

λ̄α(U, Lα, M, t0) = λ.

Proof: By definition

λ̄α(U, Lα, W (β), t0) = lim sup
t→∞

1

t
ln ‖ [Lα(t0, t), W (β)]‖= λ,

therefore if M =
N∑

j=1

w j W (β
j
), the following function

c(t, t0) = max
j=1,...,N

{‖ [Lα(t0, t), W (β
j
)]‖, 1}

satisfies

lim sup
t→∞

1

t
ln c(t, t0) = λ.
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Hence

λ̄α(U, Lα, M, t0) = lim sup
t→∞

1

t
ln ‖ [Lα(t0, t), M]‖

= lim sup
t→∞

1

t
ln

∥∥∥∥∥
N∑

j=1

w j [Lα(t0, t), W (β
j
)]

∥∥∥∥∥

= lim sup
t→∞

1

t
ln c(t, t0) + 1

t
ln

∥∥∥∥∥
N∑

j=1

w j

c(t, t0)
[Lα(t0, t), W (β

j
)]

∥∥∥∥∥
= λ,

because the term∥∥∥∥∥
N∑

j=1

w j

c(t, t0)
[Lα(t0, t), W (β

j
)]

∥∥∥∥∥ ≤
N∑

j=1

|w j |
c(t, t0)

‖ [Lα(t0, t), W (β
j
)]‖

≤
N∑

j=1

|w j |

is bounded. �

Definition 2. A system satisfies the quantum Anosov relations,(1,20,24) if there
are 2n directions α1, . . . , α2n ∈ V such that the corresponding derivations satisfy
for all t, t0 ∈ R

U (t, t0) Lα j
U †(t, t0) = eλ j (t−t0) Lα j

, (5)

where λi are 2n complex numbers such that

Re(λ1) ≤ · · · ≤ Re(λn) < 0 < Re(λn+1) ≤ · · · ≤ Re(λ2n).

Remark 2. We have extended the definition of Ref. 1 by allowing the numbers
λ j to have an imaginary part. Moreover, we do not require that a state invariant
under the actions of U and Lα j

exist.

Remark 3. The property (5) can be written equivalently as

U (t, t0) ei s Lα j = ei s eλ j (t−t0) Lα j U (t, t0) ∀ s ∈ R.

This is to be interpreted as a relation between operators acting on the algebra of
observables A.
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This property yields a representation of the Anosov group(24) as a group of
endomorphisms on the algebra of observables A, defined as

τ (t, t0) : M �→ U (t, t0) M U †(t, t0)

and

σi (s) : M �→ ei s Lα j Me−i s Lα j .

The Anosov property can be expressed as

τ (t, t0) σ j (s) = σ j

(
seλ j (t−t0)

)
τ (t, t0).

3. QUANTUM SKEW-PRODUCT SYSTEMS AND ENLARGED

HILBERT SPACE

A quantum skew-product system is described by the following Schrödinger
equation with a non autonomous Hamiltonian in a Hilbert space H:

i
d

dt
φ(t) = H (ϕt (θ )) φ(t), (6)

where ϕt is a continuous flow on a compact metric space M while H (θ ) is a
self-adjoint operator depending on the parameter θ ∈ M such that the evolution
operator U (t, t0; θ ) exists and is strongly continuous with respect to θ ∈ M.
This form of Hamiltonian operator includes periodic, quasi-periodic and almost-
periodic time dependence according to whether M is a circle, a torus or the hull
of an almost-periodic function.

Any solution of (6) can be written as

φ(t ; θ ) = U (t, t0; θ ) φ(t0; θ ),

with the operator U (t, t0; θ ) satisfying

i
∂

∂t
U (t, t0; θ ) = H (ϕt (θ )) U (t, t0; θ )

and U (t0, t0; θ ) = 11H.
The uniqueness of solutions of (6) allows us to deduce the relations

U (t, t1; θ ) U (t1, t0; θ ) = U (t, t0; θ ),

U (t + τ, t0 + τ ; θ ) = U (t, t0; ϕτ (θ )),

for all t, t0, t1, τ ∈ R and all θ ∈ M.
Let µ be an invariant probability measure onM. The family of Koopman operators
(T t )t∈R

, defined by

(T tψ)(θ ) = ψ(ϕt (θ )) for all ψ ∈ L
2(M, dµ),
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is a strongly continuous one-parameter unitary group of operators (see Ref. 22).
According to Stone’s theorem, there exists a self-adjoint operator G which is an
infinitesimal generator of T t :

T t = eitG for all t ∈ R.

The separable Hilbert space K = L
2(M, dµ;H) = L

2(M, dµ) ⊗ H will be
called the enlarged space of H. The family of operators U (t, t0; θ ) ∈ H depend-
ing on the parameter θ ∈ M defines a unitary operator acting in K which maps a
function θ �→ ψ(θ ) ∈ H of K to the function θ �→ U (t, t0; θ )ψ(θ ) ∈ H. To avoid
a complicated notation, we also denote this operator by U (t, t0; θ ). Moreover, we
omit the identity factor of T t ⊗ 11H in the Koopman operator in K. From the
uniqueness of solutions of (6) we can conclude that

T sU (t, t0; θ ) = U (t, t0; ϕs(θ )) T s

for all t, t0, s ∈ R and all θ ∈ M.

Definition 3. We define a unitary operator UK (t, t0) acting on the enlarged space
K by

UK (t, t0) = T −t U (t, t0; θ ) T t0 = T −(t−t0) U (t − t0, 0; θ ).

One can show that it is strongly continuous in t − t0, and Stone’s theorem implies
that there is a self-adjoint operator K on K, called generalized Floquet Hamilto-
nian, such that

UK (t, t0) = e−i (t−t0)K .

The solution of the associated Schrödinger equation

i
d

dt
ψ(t) = Kψ(t) (7)

reads ψ(t) = UK (t, t0) ψ(t0) ∈ K, and it is linked to a solution φ of the Schrödinger
Eq. (6) in H by

φ(t) = T t ψ(t) = ψ(t, ϕt (θ )).

Proposition 1. We denote H (θ ) the Hermitian operator onK which maps ψ ∈ K
to the function θ �→ H (θ ) ψ(θ ) ∈ H of K. We assume that H (θ ) is a self-adjoint
operator of K. We have the formal equality

K = G + H (θ ).
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Proof: The operator UK (t, t0) is strongly differentiable on D(K ), and we can
write formally

i
∂

∂t
UK (t, t0) = KUK (t, t0) for all t, t0 ∈ R.

Therefore

K = i
∂

∂t
UK (t, t0)|t=t0

= i
∂

∂t

(
T −(t−t0) U (t − t0, 0; θ )

)∣∣
t=t0

= i
∂

∂t

(
T −(t−t0)

)∣∣
t=t0

U (0, 0; θ ) + i
∂

∂t
U (t, t0; θ )|t=t0

= G + H (θ ).

�

4. QUANTUM SKEW-PRODUCT ANOSOV PROPERTIES

For a quantum skew-product system defined by the Schrödinger Eq. (6) with
a Hamiltonian of the form H (x̂, p̂, ϕt (θ )), we define the Anosov property by

Definition 4. A quantum skew-product system satisfies the quantum skew-
product Anosov relations if there exist 2n continuous functions α1, . . . , α2n: M →
V such that the corresponding derivations satisfy for all t, t0 ∈ R and θ ∈ M

U (t, t0; θ ) Lα j (ϕ
t0 (θ)) U †(t, t0; θ ) = eλ j (t−t0) Lα j (ϕ

t (θ)), (8)

where Lα j (θ) = α jx (θ )T x̂ + α jp (θ )T p̂ and λ j are 2n complex numbers such that

Re(λ1) ≤ · · · ≤ Re(λn) < 0 < Re(λn+1) ≤ · · · ≤ Re(λ2n).

The operators W (α(θ )) = exp[i(αx (θ )T x̂ + αp(θ )T p̂)] and Lα j (θ) define operators

W (α) and Lα acting on the enlarged Hilbert space K = L2(M, µ) ⊗ H, given by

(W (α) ψ)(θ ) = W (α(θ )) ψ(θ ) for all ψ ∈ K,

and

(Lα j
ψ)(θ ) = Lα j (θ) ψ(θ ) for all ψ ∈ D

(
Lα j

) ⊂ K.

The algebra of observables considered here is the algebra of finite linear combi-
nations of W (α).
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Proposition 2. The quantum skew-product Anosov relations (8) are satisfied in
the Hilbert space H if and only if in the enlarged space K = L

2(M, µ) ⊗ H,
the dynamics generated by the Hamiltonian K = G + H (θ ) satisfies the standard
quantum Anosov properties(1):

UK (t, t0) Lα j
U †

K (t, t0) = eλ j (t−t0) Lα j
.

Proof: The quantum skew-product Anosov relations

U (t, t0; θ ) Lα j (ϕ
t0 (θ)) U †(t, t0; θ ) = eλ j (t−t0) Lα j (ϕ

t (θ)),

can be extended as an equality between operator acting on K, by considering the
operators as multiplication operators with respect to the variable θ .

Using the equality

T t Lα j (θ)T −t = T tα jx (θ )TT −t ⊗ x̂ + T tα jp (θ )T T −t ⊗ p̂ = Lα j (ϕ
t (θ))

for all t ∈ R, the quantum skew-product Anosov relations become

U (t, t0; θ )T t0 Lα j
T −t0U (t, t0; θ ) = T −t eλ j (t−t0)Lα j

T t .

According to the Definition 3, we obtain

UK (t, t0)Lα j
U †

K (t, t0) = eλ j (t−t0)Lα j
.

�

5. EXAMPLE OF ALMOST-PERIODIC QUANTUM PARAMETRIC

OSCILLATOR

In Ref. 6, it was shown that the upper quantum Lyapunov exponent of the
periodic quantum parametric oscillator is positive in the classical instability region.
We extend here this result for a wide class of driven quantum parametric oscillators.
Moreover we show that, under some conditions, the system verifies the quantum
skew-product Anosov properties.

The parametric quantum oscillator is described by the Hamiltonian (we take
the mass = 1):

H (t) = 1

2
p̂2 + 1

2
f (t) x̂2 (9)

where f is an almost-periodic real valued function.
The classical dynamics corresponding to the Hamiltonian (9) has the same

form as the eigenvalue equation of the almost-periodic Schrödinger operator:

−ẍ + V (t) x = Ex (10)
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with f (t) = E − V (t). The Schrödinger operator Scl = −d2/dt2 + V (t) with an
almost-periodic potential V is in Weyl’s ‘limit point’ case, and thus admits an
essentially unique self-adjoint extension.

We will now analyze the one-parameter family of systems defined by varying
E on C and, in particular, when E is real and in the resolvent set ρ of Scl .

Theorem 1. For any observable M ∈ W , in the instability region E ∈ ρ ∩ R,
there is a stable direction αs , which depends on t0, for which

λ̄αs

(
U, Lαs

, M, t0
) = −λc < 0,

whereas for all other directions α

λ̄α(U, Lα, M, t0) = λc > 0.

where λc is the Lyapunov exponent of the classical system. Thus the upper quantum
Lyapunov exponent is positive,

λ̄ = sup
α

λ̄α = λc > 0.

Proof: The spectral parameter E is in the resolvent set ρ of the operator Scl if
and only if the classical system

d

dt

(
p

q

)
=

(
0 V (t) − E

1 0

)(
p

q

)
(11)

has an exponential dichotomy.(8) In particular, if E ∈ ρ, the system (10) has two
linearly independent solutions q+ ∈ L

2([0,+∞[) and q− ∈ L
2(] − ∞, 0]).

The functions

m± = p±
q±

and m̃± = p±
q± + i p±

, with p± = dq±
dt

,

defined for E /∈ R and E ∈ ρ ∩ R, respectively, are almost-periodic.(10,23)

The classical Lyapunov exponent associated with the dynamics of (10) is defined
as

λc = sup

(
lim sup
t→+∞

1

2t
ln(|p|2 + |q|2)

)
,

where the supremum is taken over all non trivial solutions (p, q) of (11), and it
satisfies(7)

λc = − lim sup
t→+∞

1

2t
ln(|p+|2 + |q+|2)

= lim sup
t→+∞

1

2t
ln(|p−|2 + |q−|2). (12)
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In order to determine the upper quantum Lyapunov exponent, we first need to
calculate Lα(t0, t) which we write in the form

Lα(t, t0) = αx (t, t0) x̂ + αp(t, t0) p̂. (13)

The propagator F(t, t0) of the classical Eq. (11), defined by(
p(t)
x(t)

)
= F(t, t0)

(
p(t0)
x(t0)

)
, F(t, t) = 1 ∀t,

may be written as

F(t, t0) = P(t)

( ψ+(t)
ψ+(t0) 0

0 ψ−(t)
ψ−(t0)

)
P(t0)−1 (14)

where ψ±(t) = q±(t) + ip±(t) and

P(t) =
(

m̃+(t) m̃−(t)

1 − i m̃+(t) 1 − i m̃−(t)

)
.

Using the fact that for quadratic Hamiltonians the Heisenberg equations of motion
for the operators x̂(t) and p̂(t) have the same form as the classical equations for
x(t) and p(t),

⎧⎪⎨
⎪⎩

d

dt
p̂(t) = i U †(t, t0) [H, p̂] U (t, t0) = (V (t) − E) x̂(t)

d

dt
x̂(t) = i U †(t, t0) [H, x̂] U (t, t0) = p̂(t),

we can write (
U †(t, t0) p̂ U (t, t0)

U †(t, t0) x̂ U (t, t0)

)
= F(t, t0)

(
p̂

x̂

)
.

Thus, using the relation

Lα(t, t0) =
(

αp

αx

)T(U †(t, t0) p̂ U (t, t0)

U †(t, t0) x̂ U (t, t0)

)
=

(
αp(t, t0)

αx (t, t0)

)T( p̂

x̂

)
,

we obtain (
αp(t, t0)

αx (t, t0)

)
= (P(t0)−1)T

(
ψ+(t)
ψ+(t0) 0

0 ψ−(t)
ψ−(t0)

)
P(t)T

(
αp

αx

)
. (15)

From Lemma 0, we can choose M = W (β) = ei(βx x̂+βp p̂) without loss of general-
ity. Then, according to (3),

[Lα(t0, t), M] = (αp(t0, t)βx − αx (t0, t)βp)M = −σ (α(t0, t), β)M,



710 Sapin, Jauslin and Weigert

implying that

‖[Lα(t0, t), M]‖ = |αp(t0, t)βx − αx (t0, t)βp| = |σ (α(t0, t), β)|,
where we have used ‖ M ‖= 1. By (15), the stable direction αs is given by(

αps

αxs

)
=

(−q+(t0)

p+(t0)

)
∈ R

2.

Indeed we obtain (
αps(t0, t)

αxs(t0, t)

)
= ψ+(t)

(−1 + i m̃+(t)

m̃+(t)

)
,

and ∥∥[
Lαs

(t0, t), A
]∥∥ = |(1 + i m̃+(t)) βx + m̃+(t) βp| |ψ+(t)|.

According to (12), the quantum Lyapunov exponent in this direction is

λαs

(
U, Lαs

, A, t0
) = lim sup

t→+∞
1

t
ln(|ψ+(t)|)

= lim sup
t→+∞

1

2t
ln(|p+(t)|2 + |q+(t)|2)

= −λc < 0.

For all other directions α ∈ R
2, it is easy to check that the upper Lyapunov exponent

is positive,

λα(U, Lα, A, t0) = − lim sup
t→+∞

1

t
ln(|ψ+(t)|)

= − lim sup
t→+∞

1

2t
ln(|p+(t)|2 + |q+(t)|2)

= λc > 0.

�
Remark 4. The result of Theorem 1 can be extended to the multidimensional
case where

H (t) = 1

2
p̂2 + 1

2
x̂T A(t) x̂

with A(t) a real symmetric matrix depending almost-periodically on time. Writ-
ing A(t) = E 11 + V (t), the equations of motion of the corresponding classical
system have the same form as the eigenvalue equation of the Schrödinger oper-
ator Scl = −d2/dt2 + V (t). In the instability region E ∈ ρ ∩ R, there will be n
stable directions αs j

, depending on t0, with negative Lyapunov exponent, while
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they will be positive for the remaining directions. The main argument is again the
exponential dichotomy in the resolvent set.(9,11)

To study of the Anosov properties for the almost-periodic quantum parametric
oscillator, we formulate it as a quantum skew-product system,

H (ϕt (θ )) = 1

2
p̂2 + 1

2
f̃ (ϕt (θ )) x̂2 (16)

where f̃ is the extension of the almost-periodic function f to a continuous function
on its hull and ϕt is the associated minimal flow (see Ref. 10). As before we
introduce a parameter E by writing f̃ (ϕt (θ )) = E − V (ϕt (θ )), and we denote the
hull of the almost-periodic function by M.

The corresponding classical system is now given by

d

dt

(
p

x

)
=

(
0 E − V (ϕt (θ ))

1 0

)(
p

x

)
. (17)

Definition 5. A linear system of differential equations

y′(t) = M(ϕt (θ )) y(t)

with y(t) ∈ R
n, ϕt is a continuous flow on a compact metric space M, and

M(θ ) a matrix depending continuously on θ ∈ M, is called reducible if it can be
transformed into a system with constant coefficients

z′ = C z

by a transformation y(t) = T (ϕt (θ ))z(t) where T (θ ) is a non singular matrix
continuous on M.

Remark 5. The system (17) is reducible, for instance, when the potential is quasi-
periodic with frequencies satisfying a Diophantine condition ([19], Theorem 1.2).

Theorem 2. Let the classical system (17) be reducible. Then the corresponding
quantum parametric oscillator satisfies the quantum skew-product Anosov prop-
erties for E being in the resolvent set, E ∈ ρ: there exist two measurable functions
α± : M → R

2 and λ± such that ± Re(λ±) > 0 and

U (t, t0; θ ) Lα±(ϕt0 (θ)) U †(t, t0; θ ) = eλ±(t−t0) Lα±(ϕt (θ)),

with Lα±(θ) = αx±(θ ) x̂ + αp±(θ ) p̂.
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Proof: Using reducibility and the hyperbolic character of the flow of (17) in the
resolvent set, we obtain

F(t, t0; θ ) = g(ϕt (θ )) exp

[
(t − t0)

(
λ+ 0

0 −λ+

)]
g(ϕt0 (θ ))−1

where g is a is a non singular matrix for all θ ∈ M and Re(λ+) ≥ 0.
Consequently,(

U †(t, t0; θ ) p̂ U (t, t0; θ )

U †(t, t0; θ ) x̂ U (t, t0; θ )

)
= F(t, t0; θ )

(
p̂

x̂

)

= g(ϕt (θ ))

(
e(t−t0)λ+ 0

0 e−(t−t0)λ+

)
g(ϕt0 (θ ))−1

(
p̂

x̂

)
.

Swapping t with t0 in this equation and using the identity U †(t, t0; θ ) = U (t0, t ; θ ),
we obtain

U (t, t0; θ ) Lα(ϕt0 (θ)) U †(t, t0; θ ) =
(

αp(ϕt0 (θ ))

αx (ϕt0 (θ ))

)T(U (t, t0; θ ) p̂ U †(t, t0; θ )

U (t, t0; θ ) x̂ U †(t, t0; θ )

)

=
(

αp(ϕt0 (θ ))

αx (ϕt0 (θ ))

)T

g(ϕt0 (θ ))

(
e−(t−t0)λ+ 0

0 e(t−t0)λ+

)

× g(ϕt (θ ))−1

(
p̂

x̂

)
.

Thus, we can deduce the stable and unstable directions(
αp−(θ )

αx−(θ )

)
= (g(θ )−1)T

(
1

0

)
and

(
αp+(θ )

αx+(θ )

)
= (g(θ )−1)T

(
0

1

)
.

Writing g = (gi j )1≤i, j≤2, we obtain
{

αp−(θ ) = g22(θ ) det(g(θ ))−1

αx−(θ ) = −g12(θ ) det(g(θ ))−1 and

{
αp+(θ ) = −g21(θ ) det(g(θ ))−1

αx+(θ ) = g11(θ ) det(g(θ ))−1 ,

with

U (t, t0; θ ) Lα±(ϕt0 (θ)) U †(t, t0; θ ) = e±λ+(t−t0) Lα±(ϕt (θ)).

�

6. QUANTUM ANOSOV PROPERTIES ON A TORUS: THE

CONFIGURATIONAL QUANTUM CAT SYSTEM

6.1. Quantum Anosov Properties on a Torus

In this section we study the Anosov properties for systems whose config-
uration space is a torus, adapting the definitions of Sec. 2 appropriately. The
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coordinate operators x̃ j are the self-adjoint operators of multiplication by x j de-
fined everywhere on the Hilbert space of square integrable functions on the torus
of dimension n that we represent by H = L

2([0, 1]n). The momentum operators
p̃ j = −i d

dx j
are unbounded self-adjoint operator defined on the subspaces

Dp j = {ψ ∈ H | ψ ′ ∈ H and ψ(. . . , 0, . . .) = ψ(. . . , 1, . . .)} ⊂ H

of absolutely continuous (with respect to the variable x j ) functions with periodic
boundary conditions.

The coordinate and position operators verify the Heisenberg commutation
relations [x j , pk] = δ jk but only on the subspaces

D′
pk

= {ψ ∈ H | ψ ′ ∈ H and ψ(. . . , 0, . . .) = ψ(. . . , 1, . . .) = 0}
which are not dense in H.

Instead one can work with exponentials of these operators, which can be

extended to unitary operators defined on H. Indeed the operators ei (βT x̃ + γ T p̃)

(defined on an intersection of D′
p j

) can be extended as unitary operators for all
β ∈ 2πZ

n and all γ ∈ R
n , defined by their action on ψ ∈ H as

ei (βT x̃ + γ T p̃) ψ(x) = ei βT(x+γ /2) ψ(x + γ ). (18)

We choose as algebra of observables the algebra A generated by the operators

ei (βT x̃ + γ T p̃) for all β ∈ 2πZ
n and all γ ∈ R

n . These operators satisfy the Weyl
form of the commutation relations (1,2), therefore A is isomorphic to the subalge-
bra WT of W defined by restricting the coefficients of the Weyl operators W (β, γ )
such that β ∈ 2πZ

n . We denote this isomorphism by φ : A → WT ⊂ W .
We assume that the dynamics defines an automorphism of A:

τ (t, t0) : M �→ U (t, t0)MU †(t, t0) ∀M ∈ A,∀t, t0 ∈ R,

where U (t, t0) denotes the unitary propagator on H with initial time t0.
As we recall in the Remark 3., the Anosov properties give a representation of

the Anosov group(24) as a group of endomorphisms on the algebra of observables
A. Here we consider the translation automorphisms for all α = (αx , αp) ∈ R

2n

defined by their action on the operators ei (βT x̃ + γ T p̃) ∈ A, by

σα(s) : ei (βT x̃+γ T p̃) �→ eis
(
αT

x γ−αT
p β

)
ei(βT x̃+γ T p̃).

Definition 6. A system on a torus satisfies the quantum Anosov relations if there
are 2n directions α1, . . . , α2n ∈ R

2n such that for all t, t0 ∈ R

τ (t, t0) σα j
(s) = σα j

(
seλ j (t−t0)

)
τ (t, t0). (19)
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where λi are 2n complex numbers such that

Re(λ1) ≤ · · · ≤ Re(λn) < 0 < Re(λn+1) ≤ · · · ≤ Re(λ2n).

These relations are algebraic, therefore we can express them in the algebraW using
the isomorphism between A and WT . We denote τw(t, t0) the automorphisms of
WT defined by τw(t, t0) = φτ (t, t0) φ−1. We assume that τw(t, t0) can be extended
to an automorphism of W (i.e. for β real and not only in β ∈ 2πZ

n).
The derivations can be expressed in terms of the translation operators of W

as follows: for all W (β) ∈ WT , β = (β, γ ),

σα(s)(W (β)) = eisLα W (β) e−isLα = eis
(
αT

x γ−αT
p β

)
W (β) ∈ WT

where we have used (2), and the notation W (α) = ei Lα .
We remark that the derivations defined here are not inner derivations, i.e. we

do not impose αx ∈ 2πZ
2. According to (3), the derivations are well defined for

all M ∈ WT by δα(M) = [Lα, M] ∈ WT for all α = (αx , αp) ∈ R
2n .

These remarks prove the following

Lemma 2. A system on a torus (such that τw(t, t0) can be extended to an auto-
morphism of W) satisfies the quantum Anosov relations, if there are 2n directions
α1, . . . , α2n ∈ R

2n such that for all t, t0 ∈ R

τw(t, t0)(ei s Lα j ) = ei s eλ j (t−t0) Lα j , (20)

where λi are 2n complex numbers such that

Re(λ1) ≤ · · · ≤ Re(λn) < 0 < Re(λn+1) ≤ · · · ≤ Re(λ2n).

Remark 6. These definitions can also be formulated for discrete time unitary
dynamics:

τ (k) : M �→ U k
F M (U †

F )k ∈ A ∀ M ∈ A, ∀ k ∈ Z,

In this case, the Anosov conditions (19) and (20) become respectively

τ (k) σα j
(s) = σα j

(s ek λ j ) τ (t, t0) and

τw(k)(ei s Lα j ) = ei s ek λ j Lα j .
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6.2. Example of Anosov System on a Torus: The Configurational

Quantum Cat System

We consider a charged particle of mass m = 1 constrained to move in a unit
square with periodic boundary conditions (period 1) subject to external periodic
time dependent electromagnetic fields. It was shown in Refs. 25, 26 that the
external fields can be chosen in such a way that the configuration space of the
particle is mapped periodically to itself according to Arnold’s cat map. This system
has a discrete time dynamics given by the time evolution operator over one period
T or Floquet operator UF = U (T, 0). The time evolution is thus defined by the
iteration of the operator UF acting on the Hilbert space H = L

2([0, 1]2):

UF = e− i T
2 p̃2

e− i
2 (x̃T V T p̃ + p̃T V x̃)

with p̃ =
(

p̃1

p̃2

)
, x̃ =

(
x̃1

x̃2

)
, and V is a matrix such that exp(V ) is Arnold’s cat

map:

eV = C =
(

2 1

1 1

)
.

The Floquet operator UF is the product of two unitary operators: The first one,
e− i T

2 p̃2
, describes the free-particle propagation during a time interval T . The

second factor, DV = e− i
2 (x̃T V T p̃ + p̃T V x̃), is the kick operator which acts during

an infinitesimally short-time interval. DV can be extended to unitary operator of
dilatation defined on H by:

DV ψ(x) = e− tr(V )/2 ψ(e−V x) = e− 3
2 ψ(C−1x). (21)

Lemma 3. The quantum dynamics given by UF is a well defined automorphism
τ (k) on the algebra of observables A, in particular UF satisfies for all M ∈ A

τ (k)(M) = U k
F M (U †

F )k ∈ A.

Moreover the automorphism τw(k) of WT , defined by isomorphism from τ (k), can
be extended to an automorphism of W .

Proof: According to (21) and (18), the operator DV satisfies

D†
V

ei (βT x̃ + γ T p̃) DV = ei (βT C−1 x̃ + γ T C p̃).

The evolution over one period T is thus given for all β ∈ 2πZ
2 and all γ ∈ R

2 by

τ (1)(ei
(
βT x̃+γ T p̃)) = UF ei

(
βT x̃+γ T p̃

)
U †

F

= ei(βTC−1 x̃+(−TβTC−1+γ TC) p̃) ∈ A
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since C is a unimodular matrix and thus βT C−1 ∈ 2πZ
2.

Therefore in WT the automorphism is given by

τw(1)(W (β, γ )) = W (C−1 β, −T C−1 β + C γ ) (22)

which can be extended as a automorphism of W by replacing β ∈ 2πZ
2 by

β ∈ R
2. �

Theorem 3. The configurational quantum cat system satisfies quantum discrete
time Anosov properties: There exist two stable directions α1 and α2, such that

τw(k)(ei s Lα j ) = ei s e−kλ Lα j j = 1, 2,

and two unstable directions α3 and α4,

τw(k)(ei s Lα j ) = ei s ekλ Lα j j = 3, 4,

where λ > 0 is such that e±λ are the eigenvalues of Arnold’s cat map C.

Proof: In order to avoid complicate notation, we write W (s α j ) instead of eisLα j .
Equation (22) allows one to conclude that

τw(1)(ei s L (0,αp ) ) = τw(1)(W (0, sαp)) = W (0, s C αp).

Therefore α1 = (0, v−) and α3 = (0, v+) are respectively stable and unstable di-
rections, where v± are the eigenvectors of C with Cv± = e±λv±.

The other pair of stable and unstable directions are α2 = ((C2 − 11) v+, T v+)
and α4 = ((C2 − 11) v−, T v−). Indeed, using the Eq. (22), we observe that

τw(1)(W (s(C2 − 11)v±, sT v±))

= W (sC−1(C2 − 11)v±, s(−T C−1(C2 − 11) + T C)v±)

= W (s(C2 − 11)C−1 v±, sT C−1v±)

= W (se∓λ(C2 − 11)v±, se∓λT v±).

�

Remark 7. The derivations δα1
and δα3

are inner derivations, but δα2
and δα4

are
not because the coefficients of each eigenvector v± are rationally independent.

Remark 8. The Lyapunov exponents for systems on the torus can be defined by
adapting Definition 1, and using the isomorphism φ : A → WT ⊂ W

λ̄α(U, Lα, M, t0) := lim sup
t→∞

1

t
ln ‖φ−1([Lα, φ(τ (t, t0)(M))])‖,

where M ∈ A and ‖M‖ = supψ∈H ‖Mψ‖/‖ψ‖.
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It follows immediately from the Anosov properties that the upper Lyapunov
exponent for the configurational Arnold cat is λ = λ > 0.

7. SUMMARY AND DISCUSSION

If one searches for quantum mechanical systems with a genuinely com-
plicated time evolution, non-autonomous systems are promising candidates, in
particular for strong dependence on initial conditions. In order to distinguish be-
tween potentially different types of quantum dynamics, we have discussed two
concepts in this paper. Our definitions of a quantum mechanical Lyapunov expo-
nent and of quantum Anosov relations adapt existing notions in such a way that
they apply not only to autonomous but to driven quantum systems as well. By
their very construction, these concepts are intrinsically quantum mechanical: no
reference to a classical counterpart of the systems is made in the definitions. This
is an important feature since the discussion of a quantum system should, in our
view, rely as little as possible on classical notions.

The quantum Lyapunov exponent and the quantum Anosov property are in-
deed appropriate to distinguish qualitatively different quantum dynamics. To see
this, we have considered two specific solvable models the dynamics of which is
well understood: the quantum parametric oscillator and the configurational quan-
tum cat map. In the case of the driven oscillator, for example, we have found that the
quantum Lyapunov exponents are non-zero for those parameter values where the
time evolution of the corresponding classical oscillator is unstable. We have shown
that it is possible to devise quantum mechanical tools which make rigorous the ex-
istence of qualitatively different dynamics for non-autonomous quantum systems.

The two quantum systems used as examples to illustrate these concepts are
constructed using classical models. This is motivated by the fact that they allow
explicit calculations for the quantum models. We emphasize, however, that the
Lyapunov exponents are defined in an intrinsically quantum mechanical way. If
one were to add small perturbations in these models, we expect that the non-zero
Lyapunov exponents will continue to exist while the exact equivalence to classical
systems will be destroyed.

Finally, we should emphasize that our approach is complementary to a sub-
stantial amount of work done in the field of quantum chaos where one succeeds
to describe important properties of a quantum system such as energy levels and
their statistics in the semiclassical limit. In this approach, the link to the classical
counterpart of the quantum system under study is a vital ingredient while the
phenomena of interest do not necessarily have an interpretation of chaos in the
sense of dynamical systems. Our results point in a different direction: they indicate
that there are quantum tools which allow one to distinguish qualitatively different
quantum dynamics just as there are classical tools to distinguish between classical
regular and chaotic dynamical systems.
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2. S. Guérin and H. R. Jauslin, Control of quantum dynamics by laser pulses: Adiabatic Floquet
theory. Adv. Chem. Phys. 125:147–267 (2003).

3. J. S. Howland, Two problems with time-dependent Hamiltonians, in Mathematical Methods and
Applications of Scattering Theory, J. A. De- Santo, A. W. Saenz and W. W. Zachary eds. (Springer
lecture Notes in Physics, vol. 130, Springer-Verlag, New York, 1980), pp. 163–168.

4. J. S. Howland, Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207:315–
335 (1974).

5. H. R. Jauslin and J. L. Lebowitz, Spectral and stability aspects of quantum chaos. Chaos 1(1):114–
121 (1991).
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