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Abstract
The concept of mutually unbiased bases is studied for N pairs of continuous

variables. To find mutually unbiased bases reduces, for specific states related to
the Heisenberg-Weyl group, to a problem of symplectic geometry. Given a single
pair of continuous variables, three mutually unbiased bases are identified while
five such bases are exhibited for two pairs of continuous variables. For N = 2, the
golden ratio occurs in the definition of these mutually unbiased bases suggesting
the relevance of number theory not only in the finite-dimensional setting.

PACS: 03.65.-w,03.67.-a,03.65.Ta

Mutually unbiased (MU) bases of Hilbert spaces with finite dimension d (as de-
fined by Eq. (1) below) are a useful tool. If you want to experimentally determine
the state of a quantum system, given only a limited supply of identical copies, the
optimal strategy is to perform measurements with respect to MU bases [1]. To pass a
secret message to a second party, you could use quantum cryptography to establish
a shared key, a procedure which relies on MU bases in the space C2 [2, 3] or Cd [4].
Sending a physical system carrying a spin through a noisy environment, the effect
of the interactions on the state of the spin might be modelled by a specific quantum
channel, conveniently described in terms of MU bases [5]. Finally, if you happen to
be captured by a mean king, you might be able to meet his challenge by knowing
about entangled states and MU bases [6].

Many of the ideas which underlie physical concepts defined for discrete variables,
that is, in a Hilbert space of finite dimension, survive the transition from spin opera-
tors to position and momentum operators. Quantum key distribution [7] and quan-
tum teleportation [8], for example, possess counterparts for continuous variables [9]
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which act on an infinite-dimensional Hilbert space. It is thus natural to inquire into
MU bases for continuous variables. This approach might also provide a new perspec-
tive on the existence of complete sets of MU bases in spaces of finite dimension given
by a product of prime numbers as discussed below.

Let us recall the definition of MU bases in Cd and some of their properties. Two
orthonormal bases Bb = {|ψb

j〉}j=1...d and Bb′ = {|ψb′
j 〉}j=1...d are called MU if

|〈ψb
j |ψb′

j′〉| =
{

δjj′ if b = b′ ,
κ > 0 if b 6= b′ ,

(1)

since each state of one basis gives rise to the same probability distribution when mea-
sured with respect to the other basis. The value of the overlap κ is not arbitrary but
one derives from (1) that κ ≡ 1/

√
d by using the completeness of the basis Bb, say.

Schwinger [10] describes how to construct two MU bases from any orthonormal
basis of Cd. They are found to be the eigenbases of two operators Û and V̂ each shift-
ing cyclically the elements of the other basis. These operators satisfy commutation
relations of Heisenberg-Weyl type, Û V̂ = e2πi/dV̂ Û , describing finite translations in
a discrete phase space [11]. This approach has been generalized in [12], where it is
shown that if one finds n unitaries each cyclically shifting the eigenbases of all other
unitaries then these n bases are MU.

The number of MU bases in Cd is limited to d+ 1. Such complete sets of MU bases
were constructed first in the case of d being a prime number [13] and subsequently for
d being a power of a prime [1]. For composite dimensions d = d1d2 . . . dk, the factors
being (powers of) different primes, it is currently unknown whether complete sets of
MU bases exist [14]. While it is possible to construct three MU bases for any d ≥ 2,
numerical evidence suggests that already for d = 6 (the smallest composite integer),
no four MU bases exist [15]. Interestingly, composite dimensions are rare for small
values of d but predominate for large d.

Let us now turn to continuous variables p̂ and q̂, with [q̂, p̂] = i~, acting on the
Hilbert space L2(R) of square-integrable functions on the real line. The (generalized)
eigenstates of position and momentum by |q〉, q ∈ R, and |p〉, p ∈ R, respectively, are
known to satisfy

〈q|p〉 =
1√
2π~

eiqp/~ . (2)

Thus, a natural generalization of (1) for bases {|ψb
s〉}s∈R of an infinite-dimensional

Hilbert space takes the form

|〈ψb
s|ψb′

s′〉| =
{
δ(s− s′) if b = b′ ,
k > 0 if b 6= b′ ,

(3)

where the δ-normalization of the states reflects the fact that the labels s, s′ are conti-
nous. Consequently, the eigenstates of the position and momentum operators pro-
vide an example of MU bases with k = 1/

√
2π~. The appearance of generalized

eigenstates is inevitable, because no normalizable state exists which has a non-zero
overlap with all elements of a countable orthonormal basis.
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Is it possible to find three or more MU bases for one pair of continuous variables?
The momentum basis Bp results from a rotation of the position basis Bq by an angle
π/2. Thus, a third MU basis might be given by Bϑ = {|qϑ〉}qϑ∈R, the eigenbasis of the
operator q̂ϑ = q̂ cosϑ + p̂ sinϑ with eigenvalue qϑ (with ϑ ∈ (0, π/2)). Using Wigner
functions, one finds that the modulus of the overlap between states of Bq and Bϑ is

|〈qϑ|q〉|2 =
1

2π~ |sinϑ|
6= 1

2π~
. (4)

Thus, no basis Bϑ with ϑ ∈ (0, π/2) combines with Bq and Bp to give a triple of MU
bases.

There is, however, a symmetric choice of operators which does provide three MU
bases. Consider the bases B± = {|q±〉}q±∈R where q̂± = q̂ cos(2π/3) ± p̂ sin(2π/3),
obtained from rotating the position basis by the angles±2π/3, respectively. One finds

|〈q|q+〉|2 = |〈q+|q−〉|2 = |〈q−|q〉|2 =
1

2π~| |sin(2π/3)|
, (5)

so that the triple B+, B−, and Bq is MU with overlap k = 1/
√
π~
√

3 in (3). Comparing
this result with (2), we realize that, for continuous variables, the constant k in (3) may
take different values for different MU bases.

In spite of (4), it is possible to complement Bq and Bp with a third basis resulting
in an asymmetric triple of MU bases. Consider Bq−p consisting of the eigenstates of
the operator q̂ − p̂ ≡

√
2q̂π/4 which cannot be obtained from q̂ by a rotation due to the

factor
√

2. Nevertheless, one finds (as stated in [16]) that

|〈q|q − p〉|2 = |〈q − p|p〉|2 = |〈p|q〉|2 =
1

2π~
, (6)

providing us with an asymmetric triple of MU bases.
We now develop a systematic approach to MU bases for N pairs of continuous

variables residing in product states. For N = 1, we will be able to explain the ob-
servations above. For N ≥ 2, we will derive geometric conditions which express
whether product-state bases are MU or not. A set of five MU bases will be found ex-
plicitly for two continuous variables. Subsequently, we will formulate conditions to
be MU for bases which do not have to consist of product states only.

The Heisenberg-Weyl operator

T̂ (a) = exp[i(P q̂ −Qp̂)/~] (7)

which translates the position of a wavefunction byQ and boosts its momentum by P ,
will play a central role. We consider the generator x̂a of an infinitesimal translation
in the direction at = (Q,P ), using the notation:

x̂a ≡ P q̂ −Qp̂ ≡ at · j · x̂ with j =

(
0 −1
1 0

)
(8)
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where x̂ = (q̂, p̂)t. Denote the eigenstates of x̂a by |a, α〉where a identifies a particular
family of states and α labels an element of this family. They satisfy

x̂a|a, α〉 = α|a, α〉 , α ∈ R , (9)

forming complete and δ-orthonormal families of states Ba. Their position representa-
tions are given by

〈q|a, α〉 =
1√

2π~|Q|
eiP (q−α/P )2/2~Q , (10)

if both P and Q are non-zero [17]. The scalar product between states from bases with
labels a and b (6= a) is found to be

|〈b, β|a, α〉|2 =
1

2π~|bt · j · a|
. (11)

It is crucial for the following that the right-hand-side of (11) depends only on the
modulus of the symplectic product of the vectors a and b, which is equal to the (un-
signed) area of the parallelogram defined by these vectors. The particular class of
states considered here thus picks up the symplectic structure related to the commu-
tation relations [x̂a, x̂b] = −i~at · j · b. Note that Eq. (10) is consistent with (11) since
one has |q〉 ≡ |eP , α〉, with et

P ≡ (0, 1).
We are now in a position to derive sufficient conditions to have MU bases for N

pairs of continuous variables x̂n = (q̂n, p̂n), n = 1 . . . N , with [q̂n, p̂n′ ] = i~δnn′ , each
pair x̂n acting on a copy of L2(R).

In a first step, we restrict the candidates for MU bases to N -fold tensor products
of the states in (9),

|~a, ~α〉 ≡ |a1, α1〉 ⊗ . . .⊗ |aN , αN〉 ≡
N⊗

n=1

|an, αn〉 , (12)

which define a complete and δ-orthonormal basis B~a. Using (11), the modulus of the
scalar product of |~a, ~α〉 and |~b, ~β〉 is given by

|〈~a, ~α|~b, ~β〉|2 =
N∏

n=1

|〈an, αn|bn, βn〉|2 =
1

(2π~)N

N∏
n=1

1

|at
n · j · bn|

, (13)

which can be written as

|〈~a, ~α|~b, ~β〉|2 = (2π~)−N |~at · jN · ~b|−1 (14)

where
~a = a1 ⊗ . . .⊗ aN , jN = j⊗N , (15)

etc. Thus, in order that some bases B~a, B~b, . . ., be MU, the unsigned symplectic prod-
ucts between any pairs of the vectors ~a, ~b, . . . must take one and the same value,

|~at · jN · ~b| = |~bt · jN · ~c| = . . . = K > 0 , (16)
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reducing the search for MU bases of product form (11) to the search of product vectors
~a, ~b, . . . in R2N satisfying (16). Having found a solution {~a, ~b, . . .} for some value of
the constantK, one finds a solution for any other positiveK ′ by rescaling each vector
with the factor

√
K/K ′.

What is the maximal number of vectors satisfying (16) for N pairs of continuous
variables? Lacking a general solution, we consider this problem of symplectic geom-
etry in some detail for N = 1 and N = 2.

N = 1: The constraints (16) now read |at · j · b| = |bt · j · c| = |ct · j · a| = k > 0. In
fact, only three vectors need to be written here since one can show that it is impossible
to have a fourth vector d of symplectic product k with a,b and c satisfying these
conditions. This does not exclude, however, the existence of four or more MU bases
built from an entirely different set of states.

Working out the unsigned symplectic product of the vectors (0,−1), (1, 0), and
(1, 1) leads to k = 1, correctly reproducing the asymmetric solution presented in (6).
Similarly, the set of unit vectors (0,−1) and (±

√
3/2, 1), which is invariant under

three-fold rotations, describes the symmetric configuration (5), with k =
√

3/2. These
apparently different solutions are, in fact, closely related. Consider all real 2× 2 ma-
trices m with unit determinant which, under conjugation, leave the matrix j invariant
up to a sign,

mt · j ·m = ±j ; (17)

we will call these matrices unsigned symplectic. They clearly form a group which con-
sists of the union of all real symplectic 2 × 2 matrices, denoted by Sp(1,R), and all
these matrices multiplied by the matrix j in (8) which (is not symplectic but) satisfies
(17) with the minus sign. Due to (17), symplectic products at · j · b remain invariant
up to a sign under transformations of the form a → m ·a. Using unsigned symplectic
transformations, it becomes possible to map the triple of vectors (0,−1), (1, 0), and
(1, 1) into a configuration with three-fold rotational symmetry which is equivalent to
the three MU bases in (5), up to a non-unitary scaling transformation as described
after Eq. (16).

N = 2: MU bases correspond to sets of product vectors ~a = a1⊗a2, ~b = b1⊗b2, . . . ,
with equal unsigned symplectic products. We now exhibit five vectors which satisfy
(16) with K = 1, namely(

1
0

)
⊗

(
1
0

)
,

(
0
1

)
⊗

(
0
1

)
,

(
1
1

)
⊗

(
1
1

)
,(

1
1−R

)
⊗

(
1
R

)
,

(
1

2−R

)
⊗

(
1

1 +R

)
. (18)

Here the number R is the golden ratio, i.e. the positive solution of R2 = R + 1. Each
coefficient of the five vectors is a sum of integer multiples of the numbers 1 and
R. Hence, we find that the coefficients are elements of a number field given by a
quadratic extension of the integers (just as the field of complex numbers is an exten-
sion of the real numbers where i, the solution of r2 + 1 = 0, plays the same role as
R). Thus the link between MU bases and number theory which pervades the finite-
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dimensional case (surveyed in, e.g. [18]) also exists for continous-variables. Inter-
estingly, MU bases for multiple qubits [19] or qutrits [20, 21] must contain entangled
states, contrary to what we find here.

In a second step, we construct MU bases for N continuous variables from states
not limited to the tensor products (12). To do so we introduce metaplectic operators
which represent linear canonical phase space transformations in Hilbert space. Ex-
plicitly, consider the transformation A′ = M·A, with A = (q1, · · · , pN) ≡ (q,p) ∈ R2N

and M being a symplectic matrix of size 2N × 2N . Then there is a unitary operator
ÛM such that the translation operators T̂ (A)–each a product of N operators of the
form (7)–transform according to

ÛMT̂ (A) = T̂ (M ·A)ÛM , (19)

defining the metaplectic ÛM. If symplectic transformations are composed, M = M′ ·
M′′, then the corresponding metaplectic operators are composed in the same manner:
ÛM = ÛM′ÛM′′ .

The use of metaplectic operators has been implicit in our earlier discussion where
we obtained a set of states |a, α〉, satisfying (9), which are MU with respect to the
position eigenstates |q〉. We now show that these states can be obtained directly by
application of a metaplectic operator. Expand (19) in A and consider the linear term
to obtain ÛMx̂A = x̂M·AÛM. First, let N = 1 and choose the symplectic matrix m such
that m · a = (0, 1)t, so x̂m·a = q̂. The eigenfunctions of x̂a in (9) are then generated by
|a, α〉 = Ûm|q〉. The symplectic matrix satisfying m · (Q,P )t = (0, 1)t is

m =

(
1 0
µ 1

) (
P −Q

1/Q 0

)
(20)

where µ ∈ R parametrises a shear along the line defining the states |a, α〉. It affects
the phase of 〈q|a, α〉, but not its magnitude.

In order to discuss a more general construction of MU bases (withN ≥ 1) we use a
general expression [22] for a metaplectic operators which correspond to a symplectic
matrix M of dimension 2N ,

ÛM =
exp(iΘ)√
|det(M− I)|

∫
dA

(2π~)N
exp

[
i

2~
At ·N ·A

]
T̂ (A); (21)

here Θ is a phase which need not concern us further, N = 1
2
J(M + I)(M − I)−1 is

a symmetric matrix, J = j ⊕ . . . ⊕ j a block diagonal generalization of j in (8), and
the integration is over the 2N dimensions of phase space, dA = dQ1 dQ2 . . . dPN . The
matrices M and N may be written using blocks of dimension N ×N ,(

q′

p′

)
=

(
Mqq Mqp

Mpq Mpp

) (
q
p

)
, N =

(
Nqq Nqp

Npq Npp

)
. (22)

Consider the action of ÛM onN -fold products of position eigenstates, |q〉 ≡ |q1〉⊗. . .⊗
|qN〉. Using (21) and (22), we find that states ÛM|q〉 ≡ |M,q〉 are unbiased relative to
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the position eigenstates, i.e.,

|〈q′|M,q〉|2 =
1

(2π~)N

1

|det(M− I)det(Npp)|
. (23)

It follows from the composition property of metaplectic matrices that different states
of the type |M,q〉 are also unbiased with respect to each other, and that the magnitude
of their overlap can be calculated by composing the underlying symplectic matrices:

|〈M,q|M′,q′〉|2 = |〈q|Û−1
M ÛM′|q′〉|2 = |〈q|(M−1M′),q′〉|2 , (24)

where the final expression is evaluated using (23). Thus, the problem of finding
MU bases associated with metaplectic operators can be solved by finding symplec-
tic transformations such that the resulting expressions on the right-hand-side of (23)
take the same values. This may allow for a much larger set of MU bases than (16).

Our principal results are conditions for bases related by a metaplectic transforma-
tion to be MU, namely (16) (for which we found a solution (18)) and more generally
(24) (as yet unexplored). To conclude we point out open questions. Even in the case
of N = 1, it is not know whether more than three MU bases exist. To have only three
MU bases would be slightly surprising as the limit of d→∞ passing through prime
dimensions suggests the existence of an unlimited number of MU bases. The result
(4) confirms this expectation in a restricted sense–any pair of bases Bϑ and Bϑ′ is MU
but with possibly different values for the overlap. Future studies will reveal whether
the pairwise unbiased bases Bϑ, ϑ ∈ (0, π/2) are as useful as a complete set of MU
bases.

It is also unknown whether the bases Bq and Bp can be supplemented by a third
MU basis qualitatively different from the one presented in (6). Let the state |ψ〉 be a
member of such a basis. The conditions |〈q|ψ〉| = |〈p|ψ〉| = 1/

√
2π~ imply that its

expansion coefficients in the position and momentum basis are constant multiples of
phase factors exp[if(q)] and exp[ig(p)], respectively, related to each other by a Fourier
transform,

eig(p) =
1√
2π~

∫ ∞

−∞
eif(x)e−ipq/~dq . (25)

Thus, if the only pairs of functions (f(q), g(p)) solving this integral equation consist
of quadratic polynomials, then there are no MU bases beyond the ones exhibited so
far. Unfortunately, the entire set of its solutions is not known to us.

Acknowledgements: We thank Tony Sudbery for his comments and the London
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