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Abstract

We study sets of pure states in a Hilbert space of dimension d which are mu-
tually unbiased (MU), that is, the moduli of their scalar products are equal to zero,

one, or 1/
√
d. These sets will be called a MU constellation, and if four MU bases

were to exist for d = 6, they would give rise to 35 different MU constellations. Us-
ing a numerical minimisation procedure, we are able to identify only 18 of them in
spite of extensive searches. The missing MU constellations provide the strongest
numerical evidence so far that no seven MU bases exist in dimension six.

PACS: 03.65.-w,03.67.-a,03.65.Ta

1 Introduction

The dynamics of an autonomous Hamiltonian system with a single degree of freedom
differs considerably from that of a system with two or more degrees of freedom. Non-
trivial interactions among the degrees of freedom usually lead to an effectively unpre-
dictable time evolution. From a kinematical point of view, however, there is not much of
a difference: the composite system simply inherits the fundamental symplectic struc-
ture of its constituents.

Schwinger associates one degree of freedom with a quantum system whenever the
dimension d of its Hilbert space is a prime number [1]. Quantum systems with two or
more degrees of freedom are obtained by tensoring copies of these building blocks. Our
classically trained intuition wants to make us believe that the kinematics of composite
quantum systems will not depend on the dimensions of the building blocks. In other
words, we expect that composite quantum systems with dimensions d1 = 2 × 3 and
d2 = 3 × 3, for example, are structurally identical.

The concept of mutually unbiased (MU) bases [2] appears to invalidate this expecta-
tion since complete sets of MU bases seem to exist in prime power dimensions only.
They are an important, physically motivated tool allowing one to reconstruct quantum
states with optimal efficiency [3]. Given a quantum system of dimension d, a complete
set of MU bases in C

d consists of d(d + 1) pure states |ψb
j〉, b = 0, 1, . . . , d, j = 1, . . . , d,

which satisfy the conditions

∣

∣

∣
〈ψb

j |ψb′

j′〉
∣

∣

∣
=

{

δbb′ if b = b′ ,
1√
d

if b 6= b′ .
(1)
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Thus, the states form (d + 1) orthonormal bases, and scalar products between states
taken from different bases have constant modulus. If the dimension d is a prime or
the power of a prime, complete sets of MU bases do exist, and it is impossible to have
more than (d+1) such bases. For composite dimensions d = 6, 10, 12, . . ., however, their
existence poses an open problem despite many efforts reviewed in [4].

The purpose of this paper is to systematically search for subsets of complete sets of
MU bases which we will call MU constellations. Essentially, a MU constellation consists
of groups of d or fewer vectors having scalar products as in (1). Three MU bases, known
to exist in any dimension d, are a well-known example of a MU constellation. It has
been conjectured [5] that four MU bases, another MU constellation, do not exist in
dimension six. The non-existence of a MU constellation consisting of three MU bases
plus one additional vector, related to the Heisenberg-Weyl group, has been shown in
[6]. There are, however, many other entirely unexplored MU constellations.

We focus on MU constellations in dimension six, the smallest value for d not equal
to the power of a prime. We will find that many MU constellations with less than 42
states are highly unlikely to exist. These missing MU constellations will provide the
strongest numerical evidence so far that no seven MU bases exist in dimension six.
Based on our findings, we will formulate a simple argument to explain the observed
lack of MU constellations beyond three MU bases.

This paper is organised as follows. In the next section, we introduce the concept of
MU constellations and embed them in well-defined searchable spaces. Then, in Section
3 the search for MU constellations is cast into the form of a numerical minimisation.
Section 4 describes the results of the searches, and they will be discussed in the final
section.

2 Constellations of quantum states in C
d

In this section we define mutually unbiased constellations of quantum states and we em-
bed them in appropriate spaces to search for them.

2.1 Mutually unbiased constellations

A MU constellation in C
d consists of (d + 1) sets of xb pure states |ψb

j〉, b = 0, 1, . . . , d,
j = 1, . . . , xb, which satisfy the conditions (1). The (d + 1) integers xb ∈ {0, . . . , d − 1}
specify all possible types of MU constellations which will be denoted by

{x}d ≡ {x0, x1, . . . , xd}d , x ∈ (Z mod (d− 1))d+1 . (2)

If the number xb in a MU constellation {x}d equals zero, it corresponds to an empty
set and will be suppressed. For example, {2, 1, 2, 0}4 ≡ {2, 1, 2}4 denotes a MU constel-
lation in C

4 which consists of two pairs of orthonormal vectors and one single vector.
Since the ordering of the bases within a constellation will be irrelevant, we arrange
them in decreasing order, using the shorthand xa if there are a bases with x elements:
{2, 1, 2}4 thus becomes {22, 1}4.

The numbers xb are limited to (d−1) since there is only one way to complete (d−1)
orthonormal vectors to a basis of the space C

d, apart from an irrelevant phase factor.
More explicitly, the complement of (d−1) orthonormal vectors |ψj〉 ∈ C

d, j = 1, . . . , d−
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1, is a unique one-dimensional subspace spanned by |ψ⊥〉, say. Due to the completeness
relation for an orthonormal basis, the projector on this subspace must have the form

|ψ⊥〉〈ψ⊥| = Id −
d−1
∑

j=1

|ψj〉〈ψj | , (3)

where Id is the identity in C
d.

The completion of (d − 1) orthonormal vectors into a basis is consistent with the
conditions of mutual unbiasedness (1). The identity (3) implies that the state |ψ⊥〉 is MU
with respect to any vector |v〉 satisfying |〈ψj |v〉| = 1/

√
d, hence any MU constellation

containing the states {|ψj〉} remains MU if the state |ψ⊥〉 is added to the set.
MU constellations in C

d are a partially ordered set with respect to the relation ≤ de-
fined by

{x}d ≤ {y}d ⇐⇒ xb ≤ yb , for all b = 0, 1, . . . , d . (4)

The ordering refers only to the number of vectors in each basis; it does not imply any
relation between the subspaces spanned by the vectors in corresponding ’partial bases’
of the constellations {x}d and {y}d. If (4) holds, we will say that {y}d contains {x}d;
alternatively, {x}d is said to be smaller than {y}d. For example, the MU constellation
{22, 1}4 is contained in four MU bases {34}4 because

{22, 1}4 ≤ {34}4 (5)

is true. The ordering induced by (4) is only partial since constellations such as {3, 1}4

and {22}4 cannot be compared to each other. Thus, MU constellations possess a lattice
structure with a unique minimal element, ∅, and (d + 1) MU bases {(d − 1)d+1}d, if
existing, provide a unique maximal element.

Here is an important consequence of the lattice structure. A set of k ∈ {2, . . . , d+1}
complete MU bases {(d−1)k}d in dimension d exists only if all smaller MU constellations
{x}d exist, i.e. those with

{x0, x1, . . . , xk−1}d ≤ {(d− 1)k}d , 0 ≤ xb ≤ d− 1 , b = 0, 1, . . . , k − 1 . (6)

Hence, if any MU constellation {x0, x1, . . . , xk}d is found missing then k complete MU
bases cannot exist. This observation has been exploited in [5] where the unsuccessful
numerical search for four MU bases, i.e. the MU constellations {54}6, is used to argue
that no seven MU bases exist for d = 6. Similarly, it has been shown in [6] that it is
impossible in C

6 to extend two MU bases {52}6 of a specific type to the MU constellation
{53, 1}6, excluding thus the existence of seven MU bases based on a specific construc-
tion.

Evidence for the non-existence of any small MU constellation is evidence for the
non-existence of the corresponding complete set of MU bases. This observation is cru-
cial for the main thrust of this paper.

2.2 Constellation spaces

In Section 4, we will numerically search for all MU constellations {x}6 in C
6 contained

in {54}6, i.e. in four MU bases. To do this, we need to search through a space which is
guaranteed to contain a specific MU constellation if it exists; at the same time, the search
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space should be as small as possible to maximize computational efficiency. From now
on, we will only consider MU constellations which contain at least one complete basis,

{x}d ≡ {d− 1, x1, . . . , xd}d , (7)

which is a mild restriction allowing that allows considerable simplifications.
To associate an appropriate space with a given MU constellation {x}d of type (7),

we will need to write it in dephased form. Once dephased, its first (d − 1) vectors are
given by those of the standard basis Bz , while the components of the first vector of the
second basis and the first component of each remaining vector are equal to 1/

√
d. For

example, upon dephasing a MU constellation {23, 1}3, it takes the form











1 0
0 1
0 0



 ,
1√
3





1 1
1 eiα11

1 eiα21



 ,
1√
3





1 1
eiβ11 eiβ12

eiβ21 eiβ22



 ,
1√
3





1
eiγ11

eiγ21











, (8)

with specific values for the eight angles α11, . . . , γ21. It is shown in Appendix A that
any given MU constellation of type (7) can be written in dephased form by applying
transformations which leave invariant the conditions (1).

Now it is straightforward to associate a space of constellations with the MU constel-
lation {23, 1}4: the space C4(2

3, 1) is defined as the set of vectors one obtains from (8) if
the eight angles α11, . . . , γ21, are allowed to vary freely between 0 and 2π. Each point in
this space will be called a constellation [23, 1]4, and it corresponds to a set of seven (not
necessarily different) pure states in C

4. Not all constellations [23, 1]4 are a MU constel-
lation {23, 1}4, but each MU constellation {23, 1}4 is represented by at least one point
of the space C4(2

3, 1).
In general, each MU constellation {x}d is embedded in space Cd(x) of constellations

[x]d, defined in analogy to C4(2
3, 1). Simply write down the dephased form of the

MU constellation {x}d at hand; then, varying the angles α11, . . . , between 0 and 2π,
generates the space of constellations

Cd(x) ∋ [x]d = [d− 1, x0, . . . , xd]d . (9)

The space Cd(x) has the structure of a multi-dimensional torus due to the periodicity of
the angles used to parameterize it.

Let us now determine the dimension of the space Cd(x) associated with a MU con-
stellation (7). It contains

S = d− 1 + s (10)

quantum states where

s =
d
∑

b=1

xb (11)

is the number of states in all groups but the first one. Since each of these vectors except
the first one brings (d− 1) phases, the entire constellation [x]d depends on

pd ≡ p ([d− 1, x1, x2, . . . , xd]d) = (d− 1)(s− 1) (12)

independent real parameters. For example, the constellation space Cd((d − 1)d+1) associ-
ated with (d+ 1) complete MU bases has dimension (d− 1)(d2 − d− 1).
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How many constraints does the requirement of mutual unbiasedness in (1) impose
on the parameters of a constellation [x]d? The states of a constellation are normalized,
and the conditions on scalar products involving vectors of the first basis are satisfied
by construction, so that there remains exactly one condition for each pair of different
states taken from the last d bases. Consequently, the number of constraints is given by

cd ≡ cd ([d− 1, x1, x2, . . . , xd]d) =
1

2
s(s− 1) . (13)

The number of free parameters equals the number of constraints,

pd = cd = (d− 1)(2d− 3) , (14)

whenever one considers a constellation with s = 2(d−1) states within the last d groups.
Constellations with pd = cd will be called critical ones, denoted by [x]d. Constellations
of type [d − 1, x1, . . . , xd]d with more than S = 3(d − 1) states are subjected to more
constraints than they possess free parameters. These overdetermined constellations will
be referred to as [x]d.

3 Numerical search for MU constellations

This section explains the numerical method we use to identify MU constellations. The
basic idea is to define a continuous function on the space of constellations C that takes
the value zero if and only if the input is a MU constellation. We then search for the zeros
of this function in the neighborhood of a large number of randomly chosen points in C,
using standard numerical methods.

3.1 MU constellations as global minima

Suppose you want to find the MU constellation {x}d. To do so, consider the associated
space of constellations Cd(x) which can be parameterized by pd angles denoted by ~α =
(α1, . . . , αpd

)T . Defining

χbb′

jj′ =

{

δjj′ if b = b′ ,
1√
d

if b 6= b′ ,
(15)

the non-negative function F : R
pd → R

F (~α) =
d
∑

1≤b≤b′

xb
∑

j=1

xb′
∑

j′=1

(

|〈ψb
j |ψb′

j′〉| − χbb′

jj′

)2

, (16)

equals zero if and only if the input [x]d coincides with a MU constellation {x}d.
It is thus possible, in principle, to prove the (non-) existence of a MU constella-

tion by determining whether the smallest value of the function F (~α) is non-zero. This
means to identify its (possibly degenerate) global minimum which, unfortunately, is not
simple: the global minimisation of a nonlinear function such as a polynomial of fourth
order in sufficiently many variables may already pose a NP-hard problem [7]. A well-
known strategy is to search for minima by starting from random initial points which,
however, may turn out to be local ones. By repeating the process sufficiently often, one
will detect global minima as well—if they exist.
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A numerical search along similar lines has been reported in [5], restricted, however,
to the MU constellations {54}6 and {57}6, that is, four or seven MU bases. This limita-
tion allows for a different parametrization which exploits the fact that complete bases
in dimension d are associated with d-dimensional unitary matrices.

Note that the choice of the function F (~α) is not unique.1 The expression (16) is
convenient because efficient minimisation tools are available for a sum of squares. In
particular, the Levenberg-Marquardt algorithm [8, 9], often used in Regressional Anal-
ysis, cleverly switches between the method of steepest descent and the Gauss-Newton
algorithm to speed up convergence. To search for zeros of the function F (~α), we use
the function optimize.leastsq from the Open-Source Python package SciPy [10]
which implements the LM-algorithm.

The function F (~α) achieves its maximum

Fmax =
1

2

d
∑

b=1

xb(xb − 1) +

(√
d− 1√
d

)2 d
∑

1≤b<b′

xbxb′ , (17)

if all states coincide, each having components equal to 1/
√
d only. For typical constel-

lations such as {52, 4, 1}6 or {5, 33}6, one finds Fmax = 33.2 and Fmax = 25.0, respec-
tively. The top image of Fig. 1 shows a two-dimensional contour plot of F (~α) in the
45-dimensional constellation space C6(5, 4

2, 2). Ranging between 2.6 and 3.6, the func-
tion F (~α) exhibits one maximum, one minimum, and two saddle points. This structure
is consistent with (16) because F (~α) reduces to a simple trigonometric polynomial of
two variables if all but the first two angles α1 ≡ u, α2 ≡ v, are fixed.

Considering the range of the function F , it appears reasonable to say that a MU
constellation [x]d parameterized by ~α has been found if F (~α) assumes a value below

Fc = 10−7 . (18)

This criterion, stronger than the one used in [5] is entirely arbitrary, and smaller values
could be used at the expense of computational time. The numerical data presented
below will retrospectively justify the chosen value of the threshold for zeros of F.

3.2 Testing the numerical search

We begin by presenting searches for MU constellations which are known to exist. The
data provide evidence that the numerical minimization of F (~α) defined in Eq. (16) is a
reliable tool to identify MU constellations.

3.2.1 Three complete MU bases

It is known that one can construct three complete MU bases in the space C
d without

refering to the prime decomposition of d [6]. Let us check the proposed minimisation
method by searching for the MU constellations {(d−1)3}d in dimensions d = 2, 3, . . . , 8.
Table 1 displays the success rates obtained for a total of 1,000 searches in each of these
dimensions. The input consists of constellations [(d − 1)3]d chosen randomly in the

1We have also considered an everywhere differentiable variant of (16) obtained by subtracting the

square of χbb′

jj′ from |〈ψb
j |ψ

b′

j′ 〉|
2. We noticed, however, that the success rate to find existing MU constella-

tions is systematically lower.
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constellation space Cd((d − 1)3) ≡ [0, 2π)pd , with pd = (d − 1)(2d − 3). Each dephased
constellation [(d− 1)3]d corresponds to 3(d− 1) pure states in C

d.
The searches are successful in all dimensions. The rate of success systematically

decreases for larger dimensions if even and odd dimensions are considered separately.
This overall trend is not surprising in view of the constant number of samples taken
in ever bigger spaces Cd. The success rate is consistently higher in even dimensions
which might be attributed to the possibility of constructing different types of triples of
MU bases resulting from the factor of two in d = 4, 6, 8.

3.2.2 MU constellations in dimension five

Next, we test the minimisation procedure by systematically searching for MU constel-
lations of the form {4, x, y, z}5, i.e. all MU constellations in dimension d = 5 contained
in four MU bases. The results from 1,000 searches for each MU constellation have been
collected in Table 2. The success rate gradually decreases from 100% for MU constella-
tions with 16 or fewer parameters to 10% for MU constellations with 44 parameters. All
MU constellations are identified. In view of later developments the table also makes
explicit the number of free parameters for each dephased constellation.

To judge the quality of the minimisation procedure, it is instructive to plot the distri-
bution of the minimal values of F (~α) obtained in the space C5(4

3, 2), say. The histogram
at the top of Fig. 2 shows that global minima, defined by F < 10−7, are separated from
local minima by several orders of magnitude, justifying the criterion (18). For a ran-
dom sample of these ’zeros,’ we have been able to reduce the value of F (~α) to less than
10−20, simply by running the search for longer.

Note that by detecting one MU constellation in a particular run, all MU constel-
lations contained in it have also been found. Thus, Table 2 does not only report 370
incidences of the MU constellation {42, 22}5 but since MU constellations form a lattice
due to (4), all successful searches to the right and below this entry also confirm its
presence, adding a further 983 detected cases.

The bottom image of Fig. 1 plots the contours of the function F (~α) in a two-
dimensional neighbourhood of a zero, i.e. of a MU constellation of type {43, 2}5. Qual-
itatively, it resembles the random cross-section depicted above it.

3.2.3 MU constellations in dimension seven

In dimension seven, a complete set of eight MU bases exists. Thus, we expect a nu-
merical search to successfully identify all MU constellations with no more than four
partial bases. The largest constellation, {64}7, now depends on 102 parameters, more
than double the number occurring in dimension five. Due to this substantial expansion
of the parameter space, however, the search for zeros of the function F (~α) is likely to
succeed less frequently.

These expectations are confirmed by the results collected in Table 3. As in dimen-
sion five, the success rates decreases if MU constellations containing more states are
being searched for. Although the spaces searched are considerably larger, we still find
four out of five MU constellations of the form {6, x, y, z}7 after 1,000 attempts. Overall,
the success rates show a structure different from the one observed in dimension five:
the high detection rate for small MU constellations drops sharply when the constella-
tions approach any of the critical constellations {x}7. Importantly, all but one of the
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overdetermined MU constellations {x}7 beyond the ‘line’ of critical MU constellations
have been identified. It is true that the success rate is small but the basin of attrac-
tion for global minima is likely to be only a tiny region in the high-dimensional search
space.

The quality of the zeros is excellent: they correspond to values of F (~α) below 10−12,
being clearly different from the vast majority of local minima producing values in the
order of 10−3. This is illustrated in the upper histogram of Fig. 3 which combines all
the minima obtained for overdetermined constellations {x}7. We associate the clusters
of values at 10−13 and at 10−3 with global and local minima, respectively.

It is straightforward to check that the numerically identified MU constellations re-
produce the numbers χbb′

jj′ in (15), correct to seven significant digits. We are thus confi-
dent to have identified these overdetermined MU constellations in dimension seven.

4 MU constellations in dimension six

Knowing that the numerical procedure to minimise F (~α) defined in (16) generates re-
liable data, we now turn to the main findings of this paper which are related to dimen-
sion six.

In Table 4, we present the success rates to identify all MU constellations contained
in four MU bases {54}6, i.e.

{5, x, y, z}6 , 1 ≤ x, y, z ≤ d− 1 . (19)

We will proceed as in dimensions d = 5 and d = 7 but, in order to give our results
additional weight, we have performed 10,000 searches for each MU constellation.

The results exhibit a structure which differs qualitatively from the findings in neigh-
boring dimensions. The success rates decrease as before if the search aims at MU con-
stellations with increasing numbers of free parameters. However, after dropping to
zero on the line of critical constellations {x}6, there is no evidence for a single overde-
termined MU constellation {x}6.

It is true that only a few of these MU constellations had been identified in dimen-
sion seven; considering their abundance in d = 5, however, their complete absence
in d = 6 is a striking feature which we consider to be statistically relevant. Note that
the lattice structure due to (4) allows us to conclude that unsuccessful searches for MU
constellations contained in {54}6 also count against its existence. Since none of the con-
stellations it contains have been found, Table 4 effectively reports a total of 170,000
negative instances for the MU constellation {54}6.

The minimal values of F (~α) obtained for most of the constellations on and near
the critical line are not below 1.1 × 10−4 except for {5, 4, 3, 2}6, {5, 42, 2}6, and {5, 33}6,
where values close to 10−6 have been obtained. We have not been able to push the
these values below the threshold of 10−7, even by running the search considerably
longer. The bottom histogram Fig. 2 shows that the minima obtained for {5, 42, 2}6

cluster at values of 10−3, orders of magnitude away from the criterion (18) for a global
minimum. The second histogram in Fig. 3 combines the results for all overdetermined
constellations {x}6, showing that throughout the minimal values found are well above
the threshold of 10−7.

As an aside, the absence of the MU constellation {52, 4, 1}6 from Table 4 suggests, by
the inclusion {53, 1}6 ≥ {52, 4, 1}6, that no three complete MU bases plus one additional
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mutually unbiased state exist. This result generalizes the impossibility to extend two
MU bases {52}6 related to the Heisenberg-Weyl group to a MU constellation {53, 1}6

[6].

5 Summary and Discussion

We have defined constellations of quantum states in the space C
d which are mutually

unbiased. The search for these MU constellations has been cast in the form of a global
minimisation problem which can be approached by standard numerical methods. Our
conclusions are based on a total of 433,000 searches in dimensions five to seven which
would take approximately 16,000 hours on a single Pentium 4 desktop PC.

The results of the searches performed in dimension six provide strong evidence that
not all MU constellations of the form {5, x, y, z}6 exist. Here are our main conclusions
drawn from Table 4:

• the largest existing MU constellations are {5, 42, 1}6 and {52, 3, 1}6 both containing
15 (≡ S + 1) mutually unbiased states;

• the smallest non-existing MU constellations are {5, 33}6 and {5, 4, 3, 2}6 each con-
sisting of 14 (≡ S) states;

• only one critical MU constellation {x}6 exists, namely {53}6 corresponding to
three MU bases with 18 states;

• no overdetermined MU constellation {x}6 exists.

We have been able to positively identify 18 out of 35 MU constellations in dimension
six. On the basis of the numerical data, we consider it highly unlikely that the 15 unob-
served critical and overdetermined MU constellations do exist, making the existence of
four MU bases exceedingly improbable.

Let us discuss these results in a general framework. Critical constellations [x]d have
been defined by the equality pd = cd. If pd parameters need to satisfy cd ≡ pd equations,
one would expect some isolated solutions to exist in a generic situation. As three MU
bases are critical constellations in any dimension d, they are expected to exist gener-
ically. In the overdetermined case, there are more constraints than free parameters,
cd > pd, and no MU constellations are expected. This observation agrees with the fact
that one can actually construct three MU bases without referring to the decomposition
of d into its prime factors.

The counting of parameters indicates how special large sets of mutually unbiased
states are. For any d > 2, the d(d+1) quantum states of a complete set of MU bases pos-
sess too few parameters to generically satisfy the conditions imposed on them by mu-
tual unbiasedness. In dimension seven, for example, such a set consists of 56 pure states
depending on 288 independent parameters which need to satisfy 1176 constraints. This
is only possible if the constraints conform to some fundamental structure prevailing in
the space C

7—obviously, the number-theoretic consequences of d = 7 being a prime
number spring to mind. In other words, the constraints must degenerate at one or more
points of the constellation space C7 so that sufficiently many MU bases can arise. This
observation could explain why Table 3 seems to say that overdetermined constellations
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are easier to detect than critical ones: beyond the critical constellations [x]7, the addi-
tional free parameters in a constellation [x]7 might make it easier to locate the points of
C7 where the constraints degenerate.

The implications of counting parameters apply not only to d = 2 where precisely
three MU bases exist but they also agree with the data in Table 4: not a single overdeter-
mined MU constellation of the form {5, x, y, z}6 has been observed. Thus, it is natural
to suspect that all overdetermined MU constellations {x} will be missing in dimension
six. More generally, suppose it is the smallest prime in the decomposition of d that
limits the number of MU bases. Then, for dimensions that contain only a single factor
of two, we also expect that no overdetermined MU constellations {x}2d exist. For ex-
ample, we consider it unlikely in dimension ten to find MU constellations of the form
{9, x, y, z}10 with x+ y + z = 18.

We conclude by emphasizing that the results of the numerical searches presented
in Table 4 provide strong evidence for the absence of seven MU bases in dimension six.
It is thus likely that the kinematics of quantum systems with dimensions d1 = 2 × 3
and d2 = 3 × 3, respectively, will differ structurally. Due to the relations established in
[11], the data collected also support the conjecture [12] that the Lie algebra sl6(C) has
no orthogonal decomposition.
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A Equivalence classes of MU constellations

Two complete sets of MU bases {B0, . . . ,Bd} and {B′
0, . . . ,B′

d} are said to be equivalent,

{B0, . . . ,Bd} ∼= {B′
0, . . . ,B′

d}, (20)

if we can obtain one from the other by a succession of the following four transforma-
tions:

1. an overall unitary transformation U ,

U{B0, . . . ,Bd} ≡ {UB0, . . . , UBd} ∼= {B0, . . . ,Bd} , (21)

which leaves invariant the value of all scalar products;

2. (d+1) simultaneous unitary transformationsDb which multiply each vector with
a phase factor,

{B0D0, . . . ,BdDd} ∼= {B0, . . . ,Bd} , (22)

exploiting the fact that the physically irrelevant overall phase of a quantum state
drops out of the conditions (1);

3. pairwise exchanges of any two bases,

{. . . ,Bb, . . . ,Bb′ , . . .} ∼= {. . . ,Bb′ , . . . ,Bb, . . .} , (23)

which amounts to relabeling the bases;

4. (d+ 1) simultaneous permutations Pb of the members within each basis,

{B0P0, . . . ,BdPd} ∼= {B0, . . . ,Bd} , (24)

which amounts to relabeling the elements of each basis.

For simplicity, we have written UBb ≡ {U |ψb
1〉, . . . , U |ψb

d〉}, that is, the unitary U acts on
each member of the basis Bb; the expressions BbDb etc. are defined similarly.

These equivalence relations can be used to dephase a given complete set of MU bases
{B0, . . . ,Bd}. Written in dephased form, its first basis is given by the standard basis Bz ,
the components of the first vector of the second basis are equal to 1/

√
d, as are the first

components of the remaining (d − 1)(d + 1) vectors. Let us illustrate the dephasing in
dimension d = 3 where a given complete set of four MU bases can be brought into the
form











1 0 0
0 1 0
0 0 1



 ,
1√
3





1 1 1
1 eiα11 eiα12

1 eiα21 eiα22



 ,

1√
3





1 1 1
eiβ11 eiβ12 eiβ13

eiβ21 eiβ22 eiβ23



 ,
1√
3





1 1 1
eiγ11 eiγ12 eiγ13

eiγ21 eiγ22 eiγ23











. (25)

The three orthonormal states of each basis have been arranged into four unitary matri-
ces. The second unitary matrix obtained here is (proportional to) a dephased complex
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Hadamard matrix [13] motivating our terminology. Note that the vectors of the last
three bases (except for (1, 1, 1)T /

√
3) may be rearranged using (24).

To dephase a given set of (d+ 1) MU bases, we first apply the overall unitary oper-
ator U1 chosen in such a way that B0 turns into the standard basis Bz . This transforma-
tion simply corresponds to a change of basis in C

d. As an immediate consequence of
(1), the components of each vector of the remaining bases need to have modulus 1/

√
d.

Assuming that the first vector of the basis B1 is given by (eiδ1 , . . . , eiδd)T /
√
d, we apply

a second overall unitary operator U2 = diag(e−iδ1 , . . . , e−iδd) so that each component
of the first vector of B1 now equals 1/

√
d. Note that this transformation introduces

additional phase factors on all other states including those of B0. Finally, we use a
transformation of type (22) with operators Db determined in such a way that B0 be-
comes the standard basis again, and that the first component of each state of B1, . . . ,Bd

equals 1/
√
d.

MU constellations {x}d with at least one complete basis as in (7) also come in equiv-
alence classes if one applies suitably restricted variants of the symmetry transforma-
tions (21) to (23). Thus, they can be brought to dephased form as well. If a complete set
of MU bases exists, such as {34}4 in C

d, the dephased form of smaller MU constella-
tions is simply obtained by removing an appropriate number of the vectors. Eq. (8)
shows the dephased form of the MU constellation {23, 1}4 contained in {34}4, given in
(25).
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Figure 1: Contour plots of the function F (~α) in the uv-plane (see text) of the constella-
tion space C6(5, 4

2, 2) in dimension six (top), and of the constellation space C5(4
3, 2) in

dimension five near a zero indicating a MU constellation {43, 2}5 (bottom).
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Figure 2: Distribution of the values obtained by minimising the function F (~α) for 1,000
initial points chosen randomly in the 36-dimensional space C5(4

3, 2) (top) and in the
45-dimensional constellation space C6(5, 4

2, 2) (bottom).
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Figure 3: Distribution of the values obtained by minimising the function F (~α) for
16,000 points combining the results of the 16 overdetermined constellations {x}7 in
Table 3 (top), and for 110,000 points combining the results of the 11 overdetermined
constellations {x}6 in Table 4 (bottom).
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Tables

success rate

Dimension 2 3 4 5 6 7 8

pd 1 6 15 28 45 66 91

{(d− 1)3}d 100.0 81.9 96.6 49.3 67.9 24.0 48.5

Table 1: Success rates for searches of three MU bases in dimensions d = 2, 3, . . . , 8,
based on 1,000 initial points randomly chosen in the pd-dimensional space Cd((d− 1)3).

d = 5 parameters p5 success rate

x, y z z
1 2 3 4 1 2 3 4

1,1 8 - - - 100.0 - - -

2,1 12 - - - 100.0 - - -
2,2 16 20 - - 100.0 96.4 - -

3,1 16 - - - 100.0 - - -
3,2 20 24 - - 92.0 35.7 - -
3,3 24 28 32 - 68.3 38.0 29.0 -

4,1 20 - - - 99.0 - - -
4,2 24 28 - - 56.2 37.0 - -
4,3 28 32 36 - 55.8 31.8 21.8 -
4,4 32 36 40 44 37.4 20.1 14.9 9.7

Table 2: Success rates for searches of MU constellations {4, x, y, z}5 in dimension five,
based on 1,000 initial points randomly chosen in the p5-dimensional space C5(4, x, y, z);
bold entries signal critical constellations {x}5, while underlined entries correspond to
overdetermined constellations {x}5.
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d = 7 parameters p7 success rate

x, y z z
1 2 3 4 5 6 1 2 3 4 5 6

1,1 12 - - - - - 100.0 - - - - -

2,1 18 - - - - - 100.0 - - - - -
2,2 24 30 - - - - 100.0 100.0 - - - -

3,1 24 - - - - - 100.0 - - - - -
3,2 30 36 - - - - 100.0 100.0 - - - -
3,3 36 42 48 - - - 100.0 100.0 99.3 - - -

4,1 30 - - - - - 100.0 - - - - -
4,2 36 42 - - - - 100.0 100.0 - - - -
4,3 42 48 54 - - - 99.9 95.6 0.0 - - -
4,4 48 54 60 66 - - 52.3 0.0 0.0 0.0 - -

5,1 36 - - - - - 100.0 - - - - -
5,2 42 48 - - - - 100.0 37.9 - - - -
5,3 48 54 60 - - - 2.6 0.0 0.1 - - -
5,4 54 60 66 72 - - 0.0 0.0 0.0 0.1 - -
5,5 60 66 72 78 84 - 0.2 0.2 0.2 0.1 0.2 -

6,1 42 - - - - - 57.5 - - - - -
6,2 48 54 - - - - 1.1 0.0 - - - -
6,3 54 60 66 - - - 0.0 0.1 0.0 - - -
6,4 60 66 72 78 - - 0.2 0.0 0.1 0.3 - -
6,5 66 72 78 84 90 - 0.3 0.4 0.1 0.1 0.1 -
6,6 72 78 84 90 96 102 0.5 0.2 0.2 0.0 0.4 0.3

Table 3: Success rates for searches of MU constellations {6, x, y, z}7 in dimension seven,
based on 1,000 initial points randomly chosen in the p7-dimensional space C7(6, x, y, z);
bold entries signal critical constellations {x}7, while underlined entries correspond to
overdetermined constellations {x}7.
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d = 6 parameters p6 success rate

x, y z z
1 2 3 4 5 1 2 3 4 5

1,1 10 - - - - 100.00 - - - -

2,1 15 - - - - 100.00 - - - -
2,2 20 25 - - - 100.00 100.00 - - -

3,1 20 - - - - 100.00 - - - -
3,2 25 30 - - - 99.95 100.00 - - -
3,3 30 35 40 - - 99.42 39.03 0.00 - -

4,1 25 - - - - 100.00 - - - -
4,2 30 35 - - - 92.92 44.84 - - -
4,3 35 40 45 - - 12.97 0.00 0.00 - -
4,4 40 45 50 55 - 0.74 0.00 0.00 0.00 -

5,1 30 - - - - 95.40 - - - -
5,2 35 40 - - - 76.71 10.96 - - -
5,3 40 45 50 - - 1.47 0.00 0.00 - -
5,4 45 50 55 60 - 0.00 0.00 0.00 0.00 -
5,5 50 55 60 65 70 0.00 0.00 0.00 0.00 0.00

Table 4: Success rates for searches of MU constellations {5, x, y, z}6 in dimension
six, based on 10,000 initial points randomly chosen in the p6-dimensional space
C6(5, x, y, z); bold entries signal critical constellations {x}6, while underlined entries
correspond to overdetermined constellations {x}6.
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