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Preface

Historical background of the DeCCo project

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now
QinetiQ) into how to develop a compiler for high integrity applications that
is itself of high integrity. In that study, the source language was Spark, a
subset of Ada designed for safety critical applications, and the target was
Viper, a high integrity processor. Logica’ Formal Methods Team developed
a mathematical technique for specifying a compiler and proving it correct,
and developed a small proof of concept prototype. The study is described in
[Stepney et al. 1991], and the small case study is worked up in full, including
all the proofs, in [Stepney 1993]. Experience of using the PVS tool to prove
the small case study is reported in [Stringer-Calvert et al. 1997]. Futher
developments to the method to allow separate compilation are described in
[Stepney 1998].

Engineers at AWE read about the study and realised the technique could be
used to implement a compiler for their own high integrity processor, called the
ASP (Arming System Processor). They contacted Logica, and between 1992
and 2001 Logica used these techniques to deliver a high integrity compiler,
integrated in a development and test environment, for progressively larger
subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are repro-
duced in these technical reports. These are written in the Z specification
language. The variant of Z used is that supported by the Z Specific For-
maliser tool [Formaliser|, which was used to prepare and type-check all the
DeCCo specifications. This variant is essentially the Z described in the Z
Reference Manual [Spivey 1992] augmented with a few new constructs from
ISO Standard Z [ISO-Z]. Additions to ZRM are noted as they occur in the
text.
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The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports
(this preface is common to all the reports):

I1.

I1I.

IV.

Z Specification of Pasp

The denotational semantics of the high level source language, Pasp.
The definition is split into several static semantics (such as type check-
ing) and a dynamic semantics (the meaningof executing a program).
Later smeantics are not defined for those programs where the result of
earlier semantics is error.

Z Specification of Asp, AspAL and XAspAL

The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is
AspAL extended with some cross-module instructions that are resolved
at link time. The meaning of these extra instructions is given implic-
itly by the specification of the linker and hexer. AspAL is the target of
linking a set of XAspAL modules, and also the target of compilation
of a complete Pasp program. Asp is the non-relocatable assembly lan-
guage of the chip, with AspAL’s labels replaced by absolute program
addresses. The semantics of programs with errors is not defined, be-
cause these defintions will only ever be used to define the meaning of
correct, compiled programs.

Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of
a set of XAspAL target language templates.

Z Specification of Linker and Hexer

The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program
into an Asp program located at a fixed place in memory.

Compiler Correctness Proofs

The compiler’s operational semantics are demonstrated to be equiv-
alent to the source language’s denotational semantics, by calculating
the meaning of each Pasp construct, and the corresponding meaning
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of the AspAL template, and showing them to be equivalent. Thus the
compiler transformation is meaning preserving, and hence the compiler
is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manu-
ally, following the stated guidelines.
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1 Introduction

This document introduces the abstract syntax, concrete syntax, and various
semantics of Pasp, the Pascal-like language used on the DeCCo project.



2 The DeCCo project papers I: Z Specification of Pasp

2 Abstract syntax

Pasp’s abstract syntax is defined in this chapter, and is used as the basis of
the semantics definitions. Its concrete syntax is specified in the next chapter,
as a mapping from abstract syntax to the corresponding strings of characters.

2.1 Identifiers

Abstract identifiers are used to represent names of constants, types, variables,
procedures, functions and modules. They are introduced as a given set,
because their internal structure is important.

[ID]

2.2 Values

A Pasp expression denote a value. Pasp values are unsigneds, bytes, enumer-
ated values, booleans, and abstract locations. (Pasp has array variables, but
an expression cannot denote a whole array, only an element of an array.)

2.2.1 Unsigned

Pasp’s unsigned values are 16-bit numbers.

UNSIGNED ==0 ..(2 T 16 —1)

2.2.2 Byte

The byte type is defined to take advantage of the greater speed offered by
using single register operations in the compiled code. As such, its definition
is guided by the capabilities of the Asp chip.

The byte is an unsigned type, and allows efficient accessing of arrays. Arrays
indexed by byte variables may have at most 256 elements.
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BYTFEs are defined in the appendix.

2.2.3 Enumerated value

The values of enumerated types are modelled by pairs of bytes: the first being
the maximum value an element of this type is allowed!, the second being the
current value?.

2.2.4 Boolean

BOOLFEAN is defined in the appendix.

2.2.5 Streams

Input and output are modelled as streams: sequences of values. They are
used in the dynamic semantics, but have no concrete form, and so are not
available directly to the Pasp programmer.

2.2.6 Location

Pasp abstract values include abstract memory locations. These are used
to model call-by-reference parameters to functions and procedures, memory
mapped i/o, and array offsets. (An abstract location may be mapped to
more than one physical data addresses.)

LOCN ==

'The maximum value allowed is used only in the dynamic check of succ overflow, which
check is not implemented in the compiler. So the compiler implementation of enumerated
values takes only one byte.

2This means that an enumerated type can have at most 256 values, more than any
programmer is likely to need.
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2.2.7 Name

Pasp abstract values include identifiers, used only in initialisation values, as
enumerated values, or constants.

2.2.8 Value

VALUE is the disjoint union of the different primitive values.

VALUE ::= vunsgn({ UNSIGNED)) | vbyte (BYTE))
| venum{{BYTE x BYTE)) | vbool({ BOOLEAN))
| stream((seq VALUE)) | pointer (LOCN))
| name((ID))

2.2.9 Converting Pasp values to numbers

It is convenient to have a function to convert a numerical VALUE into its
natural number equivalent.

number : VALUE - N

number =
vUNSgn”~
U vbyte™
U{ v : ran venum e v — (venum™ v).2 }

2.3 Types

When variables are declared, they are given a type, which restricts the kinds
of values they can hold: unsigned (integer), (unsigned) byte, subrange type,
enumerated value, or boolean.
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2.3.1 Subrange types

A bound is a constant literal number, or an enumerated value, or a named
constant. (Syntactically, the bounds are required only to be values; checking
of their types is carried out in the type checking semantics.)

BOUND == VALUE

A subrange consists of a lower bound and an upper bound.

Subrange = [ Ib, ub : BOUND |

The values of the subrange bounds are determined in the type checking se-
mantics.

2.3.2 Enumerated types

Enumerated types are defined with a type definition (they may not be defined
implicitly in a variable declaration as in Pascal). So an enumerated type
comprises the type name.

2.3.3 Scoped types

The existence of user defined types means that an identifier may represent
a type. Types are scoped: they may be defined at the outermost level of a
module, or within a procedure or function definition. Two types are the same
if and only if they are defined in the same place. Thus, for the purposes of
type checking, the name of the block in which a type is defined is added to the
type name. This cannot be done in the parser: a type name is converted to a
scoped type name in the type checking of type definitions (see section 9.3.2).

ScopedType = [ b,& : ID |
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2.3.4 Other internal types

A dummy type, typeWrong, is needed for the purposes of specification: it is
used only in the static type checking semantics, and so is described there.

Two other types, indirectAddr and returnAddr, are needed for the purposes
of demonstrating the compiler’s correctness.

2.3.5 Type

TYPE is the disjoint union of these types.

TYPE ::= unsigned | pbyte | boolean | subrange({Subrange))
| typeName((ID)) | scoped TypeName {(Scoped Type))
| type Value(ID)) | scoped Type Value((Scoped Type))
| type Wrong | indirectAddr | returnAddr

Note: the Asp specification uses the keyword byte in the Asp value free type
definition, so the name cannot also be used here.

2.4 Operators

Pasp has two kinds of operator: unary (that take one argument and return
a result), and binary (that take two arguments and return a result).

2.4.1 Unary operators

Unsigned, byte and boolean values may be inverted. Unsigned and byte
values may be shifted, left or right. There are various casting operators:
converting between bytes and unsigneds, between bytes and booleans, and
converting an enumerated type to its equivalent byte value. Since enumer-
ated types have ordinal values, there are defined successor and predecessor
operators.

The complete list of unary operators is:
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UNY _OP ::= unot | bnot | not | bleft | bright | uleft | uright
| boolToByte | byteToBool | byteToUnsgn | unsgnToByte
| loByte | hiByte | ord | pred | succ

2.4.2 Binary operators

The binary arithmetic operators comprise the four basic arithmetic opera-
tions together with the modulus operator, in unsigned and byte versions.
The binary comparison operators are the usual tests for equality, inequality,
and relative magnitude, again divided into unsigned and byte; in addition
equality and inequality operators are defined for enumerated types. The
binary logic operators take two unsigned, byte or boolean arguments and
return a value of the same type. There are two casting operators: join joins
two bytes into an unsigned; byte ToEnum converts the given byte to the given
enumerated type.

The complete list of binary operators is:

BIN_OP ::= uplus | uminus | umul | udiv | umod
| bplus | bminus | bmul | bdiv | bmod
| weq | une | ult | ule | ugt | uge
| beq | bne | blt | ble | bgt | bge
| eeq | ene | wand | wor | uzor | band | bor | bror | and | or
| join | byte ToEnum

2.5 Expressions

A Pasp expression denotes a value. The expressions are: a constant value,
a reference to a named constant or a variable array, a unary expression, a
binary expression, or a function call.

[EXPR]
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ValueRefExpr = [ £ : ID; E : seq EXPR |
UnyExzpr = [V : UNY_OP; ¢ : EXPR ]
BinExpr = [ Q: BIN_OP; €l,e2: EXPR |
FunCallEzpr = [ £ : ID; E : seq EXPR |

EXPR ::= constant((VALUE)) | valueRef (( ValueRefExpr))
| unyEzpr{ UnyExpr)) | binExpr{ BinEzpr))
| funCall{{ FunCallExpr))

A value reference is either a named constant, a variable, or an array element
referenced by an expression sequence. These are combined into one term.
A value reference with a zero-length sequence of expressions denotes either
a variable or a named constant. These alternatives are not distinguished at
the level of the abstract syntax, but are separated during the static semantic
checks. (These checks take on some of the roles of the syntactic checks in a
conventional compiler.)

2.6 Statements

A Pasp statement is: a skip, a block (a non-empty sequence of statements),
an assignment, an if statement, a case statement, a while statement, or a
procedure call. These expressions are all self explanatory, with the exception
of the case statement.

2.6.1 Case statements

A case statement consists of an expression on which the switch is made, a
non-empty sequence of branches, and an abstract identifier (which does not
appear in the concrete language).

A branch consists of a non-empty sequence of enumerated values, and the
statement to be executed if the expression is equal to one of the values.

[STMT]
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Branch = [ E :seq, ID; v: STMT |

Case statements are allowed only with enumerated type expressions. To
make the proof simpler, a case statement is transformed to an equivalent set
of nested ‘if then else’ statements; a temporary abstract variable, given by
the IDENTIFIER, is used to store the value of the expression.

2.6.2 Statement

STMT is the disjoint union of the different statement types.

AssignStmt = [ € : ID; E : seq EXPR; ¢ : EXPR |
IfStmt = [ e : EXPR; v1,72: STMT |

CaseStmt = [ € : EXPR; K :seq Branch; & : ID |
WhileStmt = [ € : EXPR; v : STMT |
ProcCallStmt = [ £ : ID; E : seq EXPR |

STMT ::= skip | block((seq, STMT)) | assign((AssignStmt))
| if Stmt((IfStmt)) | caseStmt({ CaseStmt))
| whileStmt ({ WhileStmt)) | procCall{{ ProcCallStmit))

2.7 Simple Declarations

There are five principal kinds of declaration: three simple declarations (named
constants, variables — including arrays, and types — currently enumerated
types only); and two command declarations (procedures and functions), de-
fined in the following section.

2.7.1 Named constant declarations

A named constant declaration consists of its name and its value.

ConstDecl = [ € : ID; k: VALUE |
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2.7.2 Type declarations

User defined types must be introduced in a type declaration (unlike in Pascal,
they cannot be defined implicitly in a variable declaration). Currently the
only variety of user defined type is the enumerated type.

An enumerated type declaration consists of the type name (this is the iden-
tifier used in the typeName branch of TYPE) and a non-empty sequence of
component names. The order of names in the sequence is significant.

EnumDecl = [ £ : ID; = :seq, ID |

We use a Z free type definition for the Pasp type definition, to allow for
possible future user defined types (such as records).

TYPE_DEF ::= enumDecl{{ EnumDecl))

2.7.3 Variable declarations

Variables can have attributes: they can be declared as readOnly inputs or
writeOnly outputs, as nuram variables, and they can be placed at a particular
physical data address.

A Pasp program consists of a sequence of modules, which are compiled, and
it is not until linking that the complete program is placed at a particular
program address. So, at the compilation stage we do not need to know the
program address.

The data address attribute has no semantics in Pasp itself, but it is required
by the compiler, so is included in the abstract syntax.

ADDR ==
ATTR = dataAt((ADDR)) | readOnly | writeOnly | nvram

The type checking semantics checks that no variable is declared to be more
than one of readOnly, writeOnly, and nvram.
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It would also be advisable to check that there is no conflict in the allocation of
variables to data addresses; this could be part of a check during compilation
where addresses are assigned to values, but has not been included in the
scope of this project.

Abstractly, all variables are considered to be arrays (simple variables being
arrays of zero dimension) so the range of allowable indices must also be
defined.

A variable declaration consists of the variable’s name, a sequence of attributes
(which may be empty), a sequence of array dimension subranges (which will
be empty for simple variables), its type, and a sequence of initial values
(which is empty for non-initialised variables, is a singleton for simple variables
and block initialised arrays, and is a sequence with the same number of
elements as the array otherwise):

VarDecl = [ € : ID; A :seq ATTR; SR : seq Subrange; 7 : TYPE;
V :seq VALUE |

2.7.4 Simple declarations

We bundle up the simple declarations, for use in procedure and function
bodies.

SIMPLE_DECL ::= constDecl{{ConstDecl)) | typeDecl{{ TYPE_DEF))
| varDecl{{ VarDecl))

2.8 Command declarations
2.8.1 Formal parameters

Formal parameters have a call type associated with them. They can be call
by value or call by reference.

CALL_TYPE ::= val | ref
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We distinguish parameter declarations from variable declarations because the
call type augments the attributes. A parameter may be specified as read only
or write only.

A parameter declaration consists of the parameter’s name, its call type, its
attributes, a sequence of subranges (empty for zero-dimensional arrays) and
its type:

ParamDecl = [ £ : ID; ¢: CALL_TYPE; A :seq ATTR;
SR : seq Subrange; T : TYPE |

2.8.2 Body

The body of a command consists of local simple declarations of constants,
types and variables (but no command declarations), and a statement that
defines the actions of the command (this is a ‘block’ in Pascal).

Body = [ ASD : seq SIMPLE_DECL; ~: STMT |

2.8.3 Procedure declarations

A procedure header consists of the procedure name and parameters.

ProcHdr = [ £ : ID; 11 : seq ParamDecl |

A procedure declaration consists of the procedure header and the procedure

body.
ProcDecl = [ ProcHdr; Body |

2.8.4 Function declarations

A function header is like a procedure header, with the addition of a return
type.

FunHdr = | ProcHdr; 7 : TYPE']
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A function declaration consists of the function header and the function body.

FunDecl = | FunHdr; Body |

2.8.5 Command declaration

We bundle up the procedure and function declarations, for use in module
bodies.

PROC_FUN_DECL ::= procDecl{{ ProcDecl)) | funDecl{{ FunDecl))

2.9 Module declarations
2.9.1 Import declaration

An import declaration is a constant import, or variable declaration, a proce-
dure header, or a function header. The abstract syntax is

IMPORT_DECL ::= constHdr{(ID x TYPE)) | varHdr{ VarDecl))
| procHdr{{ ProcHdr)) | funcHdr{{ FunHdr))

e The type in the constant import is required to be boolean, byte or
unsigned; this is enforced by the type checking.

e The sequence of attributes in the variable import declaration is required
to be a single ‘read only’ attribute; this is enforced by the concrete
syntax.

2.9.2 Export declaration

An export declaration is a list of the names of the exported constants, vari-
ables, procedures, and functions.

EXPORT_DECL == seq ID
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This sequence could be empty, but this would mean that none of the com-
ponent items could be called from another module. This would make such a
module rather useless, but is allowed. The concrete syntax ensures that the
export keyword still has to be defined.

2.9.3 Module Header

A module header has a name, import declarations, simple declarations, and
command declarations.

ModuleHdr = [ £ : ID; Al : seq IMPORT_DECL;
AS :seq SIMPLE_DECL,
APF :seq PROC_FUN_DECL ]

2.9.4 Module

A module has a module header, and an export declaration.

Module = | ModuleHdr; e : EXPORT_DECL |

2.9.5 Main module

The main module is similar to the other modules in the program, except
that it has the main body of the code, that defines the action of the main
program, rather than an export declaration.

The global declarations are not accessible from the import declarations since
they are declared after the import declarations.

MainModule = [ ModuleHdr; v : STMT |
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2.10 Program
2.10.1 Modularised program

A modularised Pasp program consists of sequence of modules and a main
module.

MPROG == seq Module x MainModule

2.10.2 Flattened program

An unmodularised (flattened) Pasp program consists of its name, an attribute
(the start address of the code), simple declarations, command declarations,
and the body statement.

Prog =[¢:1ID; a: ATTR; AS :seq SIMPLE_DECL;
APF :seq PROC_FUN_DECL; ~: STMT ]

This syntax is provided so that the dynamic semantics of the MPROG can
be related to the Prog semantics.
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3 Concrete syntax

The abstract syntax is not cluttered with the necessary disambiguation mech-
anisms such as brackets needed to make it possible to parse the concrete form.
It is more convenient to define the mapping from abstract to concrete syn-
tax, as the mapping in the other direction involves specifying unnecessary
details about the parser. Although the mapping from concrete to abstract
syntax is a function (the concrete syntax is unambiguous), it is not injective
(different concrete forms may have the same abstract form, for example, rep-
resentation of numbers), so the mapping from abstract to concrete syntax
is one-to-many. This means that relations, rather than functions, between
abstract and concrete syntax are defined.

The concrete syntax is in free format (white space, including newlines, may
be placed between any tokens but not within them). It is assumed that all
comments are stripped from the program at the lexical analysis stage.

3.1 Identifiers
3.1.1 Characters

The case used is not significant, but the expected convention is that keywords
are capitalised, and identifiers are in lower case.

We first introduce names for various sets of characters. The set CHAR
contains all ASCII characters.

[(CHAR)

We (loosely) define three subsets of CHAR as follows:

‘ ALPHA, ALPHANUM ,IDCHAR : P CHAR
‘ ALPHA C ALPHANUM C IDCHAR

ALPHA is the set of alphabetic characters. (Strictly speaking, we need to
define both an abstract set which contains one copy of each letter, and a
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map between this set and the two concrete forms of lower and upper case.
This just adds some unilluminating complications.) The set ALPHANUM
contains the alphabetic characters and the digits. The set IDCHAR contains
the alphanumeric characters and the underscore character ‘_’.

Z has no pre-defined syntax for characters: here we use single quoted char-

)

acters to represent the printable ascii characters. For example, ‘a’.

3.1.2 Strings

A string is a sequence of CHAR:
String == seq CHAR
An IdString (used for identifiers) is a non-empty sequence of IDCHAR with
an initial ALPHA character.
IdString == { s :seq IDCHAR | s 1 € ALPHA }
Note that we do not use conventional Z sequence notation for strings. Strings

are enclosed in double quotes, rather than being expressed as comma sepa-
rated lists of characters in sequence brackets:

“a string”

rather than

P

,'g’)
We use “ 7 to stand for the empty string.

<(a7,¢ 7’(S77(t77(r7,¢i7’4n
3.1.3 Identifiers

The following relation is assumed to be the natural one.

‘ Cip : ID <« IdString

The concrete syntax for the reserved name mazunsigned is the string

“MAXUNSIGNED”.
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3.1.4 Sequences of items

To facilitate the formal definition of repeated parts of the Pasp language, it
is helpful to define a generic relation to form lists of strings from sequences
of abstract syntactical constructs; elements of the list are separated by some
character from CHAR.

[X]
sepList : seq X x String x (X « String) < String

—

W

Vsep : String; r: X < String e ({ ), sep,r) — € sepList
V& X; sep: String; v : X < String; str: String |
Erostrere
((€), sep, r) — str € sepList
V& X, 2,2 tseq X sep : String; r: X < String;
str, str' : String |
{(E, sep, r) — str,(Z', sep, ) > str'} C sepList o

—_
—

(27 sep, 1) str ™ sep ~ str’ € sepList

Many of the concrete syntax of sequences of items can be derived from the
relevant concrete syntax of single items in a generic manner.

A concrete syntax C is a relation between an item £ and a string str. The
concrete syntax of a sequence of such items is often the concatenation of the
strings of the individual items. This concrete syntax is C-, where

function(_)

—[X]
(X > String) — (seq X« String)

Ve: X < Stringe () — “7 €c-
Ve: X < String; €: X; Z:seqX; str,str’ . String |
Erstr EcNE —str' €c«e
(&) TE —ostr Tstr’ €c
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3.2 Values
3.2.1 Number literals

Number literals can be written in different bases, so we define a map from
the natural numbers to these notations.

| Cpasg:2 ..36 x N — seq; ALPHANUM

Cgask is the obvious function from the natural numbers to a representation
given by the base. The fact that this is a function means that leading zeroes
are not allowed. (The value of 36 for the maximum base allowed is because
the symbols used are alphanumerics without case distinction.) Note that
Cpase(10,n) denotes the normal base ten representation of the number n.

The concrete syntax for numbers is a relation between the number and any
of the concrete syntaxes it could have, depending on the base. The number
can be written in a ‘based’ form, with the base b written in base ten, then a
hash, then the value written in base b. There is also a special form for base
ten, with the explicit base and hash omitted.

CNUM N « Strmg

Cnum =
{n:N;b:2 ..36e

n— Cpasg(10,0) ™ “#7 7 Cpase(b,n)}
U{n:Nenr— Cpasp(10,n) }

3.2.2 Number values

Byte values are written as numbers. (Note: this definition stops values larger
than a byte being written this way.)

\ Copyte : VALUE « String

CCByte -
{ n:BYTE,; str: String | n — str € Cyyy ®
vbyte n v str }
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Unsigned values are written with an obligatory leading zero followed by a
number. (Note: this definition stops values larger than an unsigned being
written this way.)

\ Ccu : VALUE « String

Cov =
{ n: UNSIGNED; str: String | n v str € Cyyy ®
vunsgn n— “07 7 str }

(Note: the conversions defined above are actually carried out in the lexical
analysis phase, before parsing.)

So byte zero is written 0, and unsigned zero is written 00. The value ‘42’
can be written:

byte unsigned
normal denary | 42 042
based denary | 10442 010#42
hexadecimal 16#2A 016#2A
binary 2#101010 02#101010

3.2.3 Boolean values

Booleans are written in the obvious textual form.
‘ Cep : VALUE < String
‘ Ccop = {vbool ptrue — “TRUE”, vbool pfalse — “FALSE”}

3.2.4 Values

The concrete syntax for values is the disjoint union of each kind.
\ Cc : VALUE « String

Ce =
Cov UCer U Copyte
U{ &: ID; str: String | € — str € Cip ® name & — str }
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Note that there is no concrete syntax for the other kinds of VALUFE.

The Cjp term supplies concrete syntax for constants and enumerated values
occurring in initialisation statements. A constants or enumerated value in
an expression is parsed as a valueRef.

3.3 Types
3.3.1 Bound

The concrete form of a subrange bound is a value string:
Cp ==C¢
3.3.2 Subrange

The concrete form of a subrange has the two bounds separated by a pair of
dots:

Csgr : Subrange < String
Csp =
{ Subrange; bound, bound’ : String |
{lb — bound, ub — bound'} C Cp
0 Subrange — bound ™ “..” 7 bound’ }
3.3.3 Types

The typeWrong has no corresponding concrete form as it is used only in the
type checking semantics. Defined types are parsed as a typeName and then
converted to an abstract scoped TypeName (which has no concrete syntax) in
the type checking semantics.

The identifiers for built in types are reserved words and are not translated
to a defined type.
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Csr : TYPE < String

Csr =
{unsigned — “UNSIGNED”, pbyte — “BYTE”,
boolean — “BOOLEAN "}
U { Subrange; ids : 1dString | O Subrange — ids € Csp ®
subrange 6Subrange — ids }
U{ &: ID; ids : IdString | £ — ids € Cip @
typeName & — ids }

3.4 Operators

3.4.1 Unary operators

The concrete syntax for unary operators is

Cyo : UNY_OP « String

Cvo =
{unot — “UNOT”, bnot — “BNOT"”, not — “NOT”,
bleft — “<<7, bleft — “BLEFT”,
bright — “>>7 bright — “BRIGHT ",
uleft — “ULEFT”, uright — “URIGHT”,
byteToBool — “B2BOOL”,
boolToByte — “BOOL2B”,
byteToUnsgn — “B2U7”, unsgnToByte — “U2B”,
loByte — “LO7”, hiByte — “HI”,
ord — “E2B”, pred — “PRED?” succ — “SUCC”}

3Earlier notation of USGNB for U2B, of BYT for B2U, and of ORD for E2B, is
retained in the implementation for backwards compatibility, but is deprecated. It will be
removed in some future version.

Non-symbolic forms of the byte shift operators are provided, intended for use with the
B tool.
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3.4.2 Binary operators

Binary operators are grouped into infix and prefix operators. Some operators
can take sequences of expression arguments. Byte binary expressions can be
written in infix notation.

CIN7CINSEQ . BIN,OP — Stm’ng

Cinseg =
{bplus — “+7, bminus — “—",
bmul — “x7, bdiv — “DIV”, bmod — “MOD?”,
band — “&”7, bor — “|” bror — “" 7}

U{and — “AND”, or — “OR"}

Civ =
{beq = 4= bl “<7 ble s <=7,
bgt —s ((>77’bge —> L(>:777bne — ((\ :77}
U CinsEQ

All other binary expressions are written in prefix notation (also, a prefix form
for byte binary expressions is supported, intended for use by the B tool).

CPRE7CPRESEQ : BIN_OP «~ Strmg

CprESEQ =
{uplus — “UADD” uminus — “USUB”,
umul — “UMUL”  udiv — “UDIV”,
umod — “UMOD”,
uand — “UAND” wor — “UOR”, uzor — “UXOR”}
U {bplus — “BADD”, bminus — “BSUB?”,
bmul — “BMUL?”, bdiv — “BDIV”,
bmod — “BMOD”,
band — “BAND?” bor — “BOR”, bxor — “BXOR”}
Crre =
{ueq — “UEQ”, ult — “ULT”, ule — “ULE”,
ugt — “UGT”, uge — “UGE”, une — “UNE"}
U{eeq — “EEQ”, ene — “ENE”}
U {join — “JOIN” byteToEnum — “B2E”}
U CprESEQ
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3.5 Expressions

‘ Cg : EXPR < String

3.5.1 Array index list

The concrete form of an empty array index list is empty. The concrete form
of a non-empty array index list is a comma separated list of the expressions,
enclosed in square brackets.

Car+ : seq EXPR < String

Car- =

{< > —s [ 77}
U{ E :seq, EXPR; exprlist : String |
(E,“,”,Cg) > exprlist € sepList e

E v “[7” 7 exprlist ™ “]” }

3.5.2 Actual parameter list

The concrete form of an empty actual parameter list is empty. The concrete
form of a non-empty list is a comma separated list of the expressions, enclosed
in parentheses.

Cap : seq EXPR < String

Capr =

{< > —s « 77}
U{ E :seq, EXPR; exprlist : String |
(E,“,”,Cg) > exprlist € sepList o

E v “(7 7™ exprlist ™ “)” }

3.5.3 Expression
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CE:

EXPR « String

Cr

{ k: VALUE; str: String | k — str € C¢ ® constant k +— str }

U { ValueRefExpr; ids : 1dString; indexlist : String |
& ids € Cip N E v+ indexlist € Cqy+ ®
valueRef 0 ValueRefExpr — ids ™ indexlist }
U { UnyEzxpr; op, expr : String |
Ui op €Cyo N e expr € Cp ®
unyExpr 0 UnyEzpr — op — “ (7 " expr — ¢)” }
U { BinExpr; op, exprl, expr2 : String |
Q- op € Civ
A {el — exprl,e2 — expr2} CCp @
binFExpr 0 BinExpr —
“(? 7" exprl T op T expr2 T “)7 }
U { BinExpr; E :seq EXPR; op, exprlist, expr : String |
Q' op € Cinseq
A (E,op,Cg) — exprlist € sepList
A€l “(7 7 exprlist ™ “)” € Cg
N €2 expr € Cp ®
binEzxpr 0 BinExpr —

L((?? ~™

exprlist ™ op " expr ™ “)"}
U { BinExpr; op, exprl, expr2 : String |
O+ op € CprE
A {el — exprl,e2 — expr2} CCp @
binExpr 0 BinFExpr
—op T (7 Texprl T T Texpr2 T 4) 7}
U{ BinExpr; E :seq EXPR; op, exprlist, expr : String |
Q0+ op € CprEseq
A (E,“,”,Cg) > exprlist € sepList
A€l op ™ “(7 " exprlist ™ “)” € Cg
N €2 expr € Cp o
binExpr BinExpr
—op " “ (7 7 exprlist ™ <7 T expr T )7 }
U { FunCallExpr; ids : IdString; exprlist : String |
E#()NE—ids € Cip N E v exprlist € Cap- ®
funCall 0 FunCallExpr — ids ~ exprlist }
U{ e: EXPR; expr : String | € — expr € Cp o

€ — 43 nf\expr/\“)n }
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A constant is the relevant value string.

An value reference is the name, then the list of index expressions. For
example:

a [(num_cells + 3), 12]

A unary expressions is the unary operator followed by the parenthesised
expression.

A binary expression involving an infix operator is the first argument
expression, then the infix operator, then the second argument expres-
sion, with the whole binary expression parenthesised, (so no precedence
for operators need be defined).

A nested binary expression involving an infix operator that can take a
sequence of arguments, is the parenthesised, operator separated, flat-
tened list of the nested argument expressions.

A binary expression involving prefix operators is the operator, then the
parenthesised, comma separated list of the two argument expressions.

A nested binary expression involving prefix operators that can take a
sequence of arguments, is the operator, then the parenthesised, comma
separated flattened list of the nested argument expressions.

A function call, which must have at least one parameter, is the func-
tion name then the parenthesised, comma separated list of argument
expression. (The concrete restriction to non-empty parameter lists en-
ables the parser to distinguish between a variable and a function with
no arguments while building up the symbol table, and check whether
the identifier was declared as a variable or a function.)

Any expression may be supplied with an arbitrary number of additional
brackets.

3.6 Statements

‘ Cs : STMT < String
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3.6.1

Branch

First we define the concrete syntax of a Branch.

3.6.2

Cor : Branch «— String

Cor =
{ Branch; idlist, stmt : String |
v +— stmt € Cg
A (2, 4,7, Cip) v+ idlist € sepList e
0 Branch — idlist ~ “:” 7 stmt }

Statement
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Cs: STMT <« String

Cs =

{skip > « 7}

U{ T :seq, STMT; stmtlist : String |
(T, “37,Cg) + stmtlist € sepList o

block T — “BEGIN” ™ stmtlist ™ “END "}

U { AssignStmt; ids : IdString; indezlist, expr : String |
& ids € Cip N E — indexlist € Cp-
A€ expr € Cp @

7

assign 0 AssignStmt — ids ~ indexlist © “:=" " expr }
U { IfStmt; expr, stmt : String |
e— expr € Cg Nyl +— stmt € Cg ®
ifStmt 0IfStmt — “IF” ™ expr ~ “THEN” ™ stmt }
U { IfStmt; expr, stmtl, stmt2 : String |
€ — expr € Cg
A A1 — stmtl, 42 +— stmt2} CCg ®
ifStmt 61fStmt —
“IF” 7 expr ™ “THEN” 7 stmtl — “ELSE” ™ stmt2 }
U { CaseStmt; expr, caselist : String |
€ — expr € Cg
A (K, “;7 Ceor) — caselist € sepList o
caseStmt 0 CaseStmt —
“CASE” "™ expr ~ “OF” ™ caselist ™ “END” }
U { WhileStmt; expr, stmt : String |
e— expr € Cg Ny +— stmt € Cg ®
whileStmt 0 WhileStmt —
“WHILE” ™ expr — “DO” ™ stmt }
U { ProcCallStmt; ids : IdString; paramlist : String |
E—ids € Cip N E +— paramlist € Cop+ ®

procCall 0 ProcCallStmt — ids ™ paramlist }

e The skip statement becomes an empty string, written as “”. This
allows a semicolon to be used to terminate the last statement in a
block if so desired. Although the concrete syntax for this statement
is just a null string, there is no ambiguity over the number of skips
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in a block, since a block consists of a semicolon separated sequence of
statements.

e A block is surrounded by begin-end keywords, and its list of statements
are separated by semicolons.

13

e Assignment uses the “:="symbol.

e There are two forms for the if statement: the else clause may be omitted
if the else statement is a ‘skip’.

e A procedure call consists of the procedure name followed by the actual
arguments enclosed in parentheses.

3.7 Simple declarations
3.7.1 Named constant declarations

A named constant declaration consists of the name, an equals sign, the value
that is denoted by the name, and a terminating semicolon:

Cnc : ConstDecl <« String

Cne =
{ ConstDecl; ids : 1dString; value : String |
& ids € Cip N K — value € Cp @
0 ConstDecl +—

“CONST” " ids ™ “=" " value ™ “;” }

For example, the following fragment is a well-formed definition of a named
constant declaration (with byte type):

CONST num_cells = 10;
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3.7.2 Type declarations
User defined types are introduced in a type declaration. Currently the only
user defined types are enumerated types.

An enumerated type declaration consists of the type name, an equals sign, a
bracketed comma separated list of names for the enumerated values, and a
terminating semicolon.

Crp: TYPE_DEF <« String

Crp =
{ EnumDecl; ids : IdString; idlist : String |
¢ ids € Crp
A (2, 4,7, Cip) + idlist € sepList e

enumDecl § EnumDecl —
“TYPE” - 1ds me=r " “(7’ m idlist ~ 44)77 ~ “;,7 }

For example

TYPE colour = ( red, green, blue );

3.7.3 Variable declarations

3.7.3.1 Attributes

The readOnly, writeOnly, and nvram attributes are written as simple strings.
The dataAt attribute has the same concrete form: the keyword “AT” fol-
lowed by a parenthesized concrete form of the location value.

Ca: ATTR < String

Ca=
{readOnly — “READONLY”,
writeOnly — “WRITEONLY ",
nvram +— “NVRAM?”}
U{ n:ADDR; num : String | n +— num € Cyyy ®

dataAt n +— “AT (7 T num — )"}
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For example,
AT (16#100)

The concrete form of an empty attribute list is the empty string. The concrete
form of a non-empty attribute list is a comma separated list of the attributes,
enclosed in special attribute brackets.

Ca+ :seq ATTR < String

Car =
{{()— 7}

U{ A :seq, ATTR; attrlist : String |
(A, “,”,Cy) — attrlist € sepList o
A — > Tattrlist T <} }

For example,

{> READONLY, AT (16#100) <}

3.7.3.2 Array subrange list

The concrete form of an empty subrange list is the empty string. The concrete
form of a non-empty subrange list is a comma separated list of the subranges,
enclosed in square brackets, plus two keywords.

Csr+ : seq Subrange < String

Copv =
()
U { SR : seq, Subrange; srlist : String |
(SR, “,”,Csg) v srlist € sepList e
SR +— “ARRAY [* " srlist ~“] OF” }

For example,

ARRAY [0.. num cells, 0.. num books| OF
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3.7.3.3 Initialisation value

The concrete form of an empty initialisation is the empty string. The concrete
form of a simple initialisation is an equals sign followed by the value. The
concrete form of an array initialisation is an equals sign followed by a square
bracketed, comma separated list of the values.

C; :seq VALUE « String

Cr=
{()—="7}

U{ k: VALUE; value : String | k + value € C¢o ®

w__n

(k) — value }
U{ V :seq, VALUE; vlist : String |
(V,“,7,Cc) — vlist € sepList o
V — (cc:w ) 44[77 m vlist m 44]77) }

For example,

= 00
=[1,2,4]

3.7.3.4 Variable declaration

A variable declaration starts with the VAR keyword; followed by the name
or the variable; a colon; a bracketed comma separated attribute list (or empty
unbracketed list); keyword “ ARRAY 7, a bracketed comma separated list of
subranges, and keyword “OF” (or no keywords and an empty list); the type;
the initialisation, and a terminating semicolon. (Only certain combinations
of attributes and initialisations are allowed: these are checked in the type-
checking semantics, not constrained by the syntax.)
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Cy : VarDecl < String

Cy =
{ VarDecl; ids : IdString; attrlist, srlist, type, vlist : String |

& ids € Cip N A — attrlist € Cys

A SR +— srlist € Cgp-

AT type € Csr NV +— vlist € C; @

0 VarDecl —
(“VAR” T ids ™ “27
™ attrlist 7 srlist ™ type " vlist 7 “37) }

For example:

VAR x1 : BOOLEAN = TRUE ;

VAR x2 : {> AT (42) <} UNSIGNED = 02 ;

VAR x3 : ARRAY [0.. 3] OF BYTE =[0,1, 2,4 |;

VAR x4 : {> AT (16#100) <} ARRAY [0.. 3] OF UNSIGNED
= [ 00, 01, 02, 04 |;

VAR x5 : ARRAY [0.. 3] OF BOOLEAN = FALSE ;

VAR x6 : {> AT (16#100) <} ARRAY [0.. 3] OF UNSIGNED
= 04 ;

VAR inl : {> READONLY , AT (42) <} BYTE ;

VAR in2 : {> READONLY , AT (42) <}
ARRAY [0.. 3] OF BYTE ;

VAR outl : {> WRITEONLY , AT (42) <} BOOLEAN;

VAR out2 : {> WRITEONLY , AT (42) <}
ARRAY [0.. 3] OF UNSIGNED;

VAR nl: {> NVRAM , AT (42) <} BYTE ;

VAR n2: {> NVRAM , AT (42) <} ARRAY [0.. 3] OF BYTE ;

3.7.4 Simple declaration
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Csp : SIMPLE_DECL « String

Csp =
{ 0 : ConstDecl; decl : String | 6 + decl € Cyc ®
constDecl 6 +— decl }
U{ d: TYPE_DEF; decl : String | § + decl € Crp ®
typeDecl 6 +— decl }
U{ ¢ : VarDecl; decl : String | § + decl € Cy o
varDecl § +— decl }

3.8 Command declarations
3.8.1 Formal parameters

A formal parameter declaration has a similar concrete syntax to a variable
declaration. The most significant difference is the use of a call type to modify
the variable.

\ Cor : CALL_TYPE « String
‘ Cor ={ref — “VAR” val +— “7}

This definition means that, as in standard Pascal, the string
VAR

means that a parameter is treated as call by reference, while the absence of
any modifier means that the parameter is call by value. (Since a null string
can always be found, the parser must check for the call by reference case
first.)
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Cpup : ParamDecl < String

Crup =
{ ParamDecl; ids : 1dString; call, attrlist, srlist, type : String |
& ids € Cip N\ ¢ call € Cor
N A attrlist € Cq« N SR — srlist € Cgrp«
AT +— type € Cgr ®
0 ParamDecl —

call ™ ids ™ “:7 7 attrlist ™ srlist ™ type }

The concrete syntax for sequences of parameter declarations is a semi-colon
separated list. An empty list of parameters is an empty string, otherwise
parameters are parenthesised.

Cpuyp+ : seq ParamDecl < String

Cpup+ =

{(O)—=""}

U { II : seq, ParamDecl; paramlist : String |
(IT, “3”, Cpyp) +— paramlist € sepList o
IT— “(” 7 paramlist ™ “)” }

3.8.2 Body

A command body syntax is the list of simple declarations and the body,
concatenated together.

Cpopy : Body < String

Cpopy =
{ Body; decllist, stmt : String |
ASD — decllist € Csp+ Ny +— stmt € Cs ®

0 Body +— decllist ~ stmt }

3.8.3 Procedure declarations

The concrete syntax of a procedure header is the keyword “PROCEDURE ",
followed by the procedure name, the parameter list, and a terminating semi-
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colon.

Cpy : ProcHdr < String

Cry =
{ ProcHdr; ids : 1dString; paramlist : String |
& ids € Cip N 11 — paramlist € Cpyp+ ®

0 ProcHdr — “PROCEDURE” ™ ids ™ paramlist ~ “;” }

The concrete syntax of a procedure declaration is the procedure header, fol-
lowed by the body statement, and a terminating semicolon.

Cpp : ProcDecl « String

Cpp =
{ ProcDecl; hdr,body : String |
0 ProcHdr — hdr € Cpy
A @ Body — body € Cgopy ®

6 ProcDecl — hdr ™ body ™ “37 }

3.8.4 Function declarations

The concrete syntax of a function header is the keyword “FUNCTION ",
followed by the procedure name, a non-empty parameter list, a colon, the
return type, and a terminating semicolon.

Cry : FunHdr < String

Crg =
{ FunHdr; ids : 1dString; paramlist, type : String |
& ids € Cip N 11 — paramlist € Cpyp+
AT type € Cgr ®
0 FunHdr —

“FUNCTION” ™ ids ™ paramlist ™ “:7 7 type ™ “37 }

The concrete syntax of a function declaration is the function header, followed
by the body statement, and a terminating semicolon.
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Crp : FunDecl < String

CFD =

{ FunDecl; hdr,body : String |
O FunHdr — hdr € Crg A 0Body — body € Cgopy ®

0 FunDecl — hdr ~ body ™ “;7 }

Note that the concrete syntax enforces the restriction that functions must
take at least one parameter. This is to avoid confusion with named constants
and variables. This restriction is necessary because of the simple nature of
the parser; if it built up a symbol table during parsing, then the problem
would not arise.

3.8.5 Command declarations

CPFD : PROC_FUN_DECL Stmng

Cprp =
{ 0 : ProcDecl; decl : String | § — decl € Cpp ®
procDecl § — decl }
U{ & : FunDecl; decl : String | 6 — decl € Cpp ®
funDecl 6 — decl }

3.9 Module declarations
3.9.1 Import declarations

An import declaration is syntactically like a named constant declaration
(with a type instead of a value), or a variable declaration (with a read-
only attribute, and hence no initialisation), a procedure header or a function
header, preceded by the “IMPORT ” keyword. For example
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IMPORT CONST c = BYTE;

IMPORT VAR b : {> READONLY <} BYTE;

IMPORT VAR arr : {> READONLY <} ARRAY [0..b]
OF UNSIGNED;

IMPORT PROCEDURE some_proc (VAR first:UNSIGNED,
second:BOOLEAN);

IMPORT FUNCTION a_function (VAR first:BYTE,
second:BYTE):UNSIGNED;

The import declarations are included at the beginning of the module. This
allows correct semantic checking before use within the module.

Civ : IMPORT_DECL « String

Crm =
{&:ID; 7: TYPE; ids, type : String |
Erids € Cip AT+ type € Cgr ®
constHdr(&, 1) —
(“IMPORT” ™ “CONST” " ids ™ “=" " type) }
U { VarDecl; var : String |
A = (readOnly) NV = ()
N 0VarDecl — var €Cy o
varHdr 0 VarDecl — “IMPORT” " var }
U{ ProcHdr; hdr : String | 0 ProcHdr — hdr € Cpy ®
procHdr 0 ProcHdr +— “IMPORT” ™ hdr }
U{ FunHdr; hdr : String | 0 FunHdr — hdr € Cpy ®

funcHdr 0 FunHdr — “IMPORT” ™ hdr }

Note that the attribute list in a variable import must be precisely readOnly,
and that no initialisation is allowed.

3.9.2 Export declarations

An export declaration for a module is a list of all the constant, variable,
procedure, and function names to be exported from the module. Each module
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has exactly one export declaration (whereas it can have zero or multiple
import declarations). For example:

EXPORT some_proc, varl, a func, const2, ano_func, var3

The export declaration is included at the end of the module. This allows cor-
rect semantic checking to ensure declaration before export within the module.
The syntax for an export declaration is the keyword, followed by a comma
separated list of identifiers.

Cgx : EXPORT_DECL < String

Cpx =
{ E:seq ID; namelist : String |
(2, “,”,Cip) — namelist € sepList o
E+— “EXPORT” ™ namelist }

3.9.3 Module Header

A Module Header is a name, a list of import statements, simple declarations,
and command declarations.

Cur : ModuleHdr < String

Cun =
{ ModuleHdr; ids : IdString; importlist, sdlist, pflist : String |
& ids € Cpp
A Al — importlist € Cpyy -
AN AS — sdlist € Csp =
N APF — pflist € Cppp « ®
0 ModuleHdr

“MODULE" " ids ™ 3
™ importlist 7 sdlist ™ pflist }

3.9.4 Module

A Module is a header, an export declaration, and a terminating full stop.
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Cuy : Module < String
Cu =
{ Module; e : EXPORT_DECL; hdr, exportlist : String |
O ModuleHdr — hdr € Cyy
A e — exportlist € Cpx ®
0 Module — hdr ™ exportlist ~ “.” }

3.9.5 Main module

The main module text starts with the “IMAIN” keyword, followed by the
header, the body statement, and a terminating full stop.

Pasp follows Pascal in insisting that the program statement be a block. As
there is no other reason to restrict Pasp in this way (though a program
consisting of a single statement that is not a block is not very interesting),
the restriction is enforced in the concrete syntax.

Cua : MainModule < String

Cyma =
{ MainModule; hdr, stmt : String |
~ € ran block N @ ModuleHdr — hdr € Cyg
Ay — stmt € Cg ®

0 MainModule — hdr ~ stmt ™ “.” }

3.10 Program

There is no concrete syntax for programs in this version Pasp: all component
files of the program are individual modules, and which modules comprise a
program is determined by the linker.

(If there are no import declarations then the main module behaves as a
flattened “PROGRAM” would.)
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4 Overview of Pasp semantics

4.1 Introduction

There are four different semantics defined for a Pasp program. Three of
these are static semantics and correspond to checks that can be performed
at compile time. These are ‘symbol declaration’, ‘type checking’, and ‘use
after declaration’. The dynamic semantics defines the meaning of executing
a program. FEach semantics is defined only if all the previous ones (with the
exception of the use after declaration semantics) have checked successfully.
If a program fails to check successfully for the use after declaration seman-
tics, a warning is generated, but the dynamic semantics are still defined. In
addition, the syntax must be correct for any semantics to be defined.

Note that some of the semantics are undefined when certain conditions are
not met. For example, the dynamic semantics of an assignment to a variable
element is undefined if the element is out of range. This means that the
behaviour in such circumstances can be defined to be whatever is appropriate
to the use being made of the semantics. For the sake of proving equivalence of
semantics it is more efficient to leave the behaviour undefined. However, an
interpreter based on the dynamic semantics could check for such behaviour
and signal it as an error. If such a check was included in the semantics,
it would have to appear in the compiled code, which would have a severe
impact on the execution speed.

The semantics allow the compiler to give the user a limited amount of in-
formation about the nature of errors in a program. Typically, the identifiers
that are incorrectly declared, or variables whose type is incorrectly used, to-
gether with the program block in which the error occurred, are available.
However, the precise position in the program at which the errors occurred is
not available.

4.2 Syntax

If a program is not syntactically correct in its concrete form, then none of its
semantics are defined. Any program that is successfully parsed to produce
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an (abstract) PROG must be syntactically correct.

4.3 Symbol declaration semantics

The first check made on a syntactically correct program is a declaration
check, to make sure that named constants, variables, arrays, procedures, and
functions are declared before they are used. The semantics ensure that the
identifier declaration is in the correct scope. The check also ensures that
each identifier is declared at most once in any given scope. For example, the
meaning function for an assignment statement is (informally):

Dg(assignment) =
if (target identifier is declared and in scope)
A (source expression has no undeclared identifiers)
then check function unchanged
else map undeclared identifiers to checkWrong

Only if the whole program passes this check are the other semantics defined.
Because this is the first semantic check all meaning functions are total on
the domain of syntactically correct Pasp programs.

The output of this semantics is a check value for every (symbol identifier,
program block) pair used in the program.

Note that the usage of identifiers is only checked in statements. Identifiers
that are used in defining subrange types and array bounds are not checked
in this semantics. If undeclared variables are used, then this is trapped in
the type checking semantics.

4.4 Type checking semantics

The type checking semantics checks that types of symbols are compatible
with their use in the program: for example, named constants and readOnly
variables cannot be assigned to; procedures and functions must have the
correct number and type of actual parameters. The meaning function 7p is
defined only on programs that have been declaration checked.
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The output of the semantics is a type for each symbol per block. If any
symbol is typeWrong then an error is flagged, and none of the subsequent
semantics is defined.

Named constants are treated in the same manner as readOnly variables for
the purposes of this semantics. This is because both can be referenced, but
neither can be assigned to. Variable declarations are checked to ensure that
only named constants are used to define subrange types and array bounds.
This traps both the use of variables and undeclared identifiers in such defi-
nitions.

Generally the meaning function for sequences is extended inductively from
the meaning function for a sequence element. The type checking of sequences
of expressions is a counterexample to this. This is because expression se-
quences are always used to reference array elements, and thus the type check-
ing required is more complex.

4.5 Use after declaration semantics

This semantics checks each declared identifier to ensure that it is actually
used in a program statement.

Variable names, procedure names, function names, type neames, and named
constants are also checked. (Note that in the current definition of the seman-
tics, the use of named constants in the declaration of variables and formal
parameters is not noted.)

The checks are carried out optimistically in the sense that provided a variable
is used somewhere in a program, then it checks alright, even if the branch
might not be executed.

4.6 Dynamic semantics

The dynamic semantics defines the execution meaning of the program and
thus yields an interpreter for the Pasp language. To make the interpreter
usable in practice, some additional functionality is required for input and
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output, an initial NVRAM values. A suitable mechanism would be to query
the user for input and read the value whenever a readOnly variable is refer-
enced. Similarly, a value would be output whenever a writeOnly variable is
assigned to. This functionality is not included in the semantics, as then it
would have to be reproduced in the compiled code.
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5 States and Environments

5.1 Introduction

In this chapter we introduce some auxiliary definitions that are needed in
order to define the semantics of Pasp in the following chapters.

5.2 Semantics — general
5.2.1 Environment and state

Rather than map variable names to their values directly, we introduce in-
termediate locations, and use an environment to map names to locations,
and a store to map locations to associated values. A declaration alters the
environment by adding a new location (or set of locations, in the case of
arrays) to the environment, and the initial value to the store. (The initial
value is given either on declaration, or by the initial state of NVRAM, or by
the initial value of the input stream.) The changing state of a computation
consists of this store together with the input and output. Input and output
are modelled as streams at specific locations.

In the case of the first two static semantics — symbol declaration and type
checking — the denotation of a variable is constant throughout the program
statement: once declared it remains so, and once assigned a type it retains
that type. So for these semantics, an environment, but no store, is required.
With the other semantics — use after declaration, and dynamic a variable’s
state can change (when it is first used, and when it is assigned to, respec-
tively). So each of these is modelled using an environment and a store.

5.2.2 Environment and block structuring

Pasp is a block structured language: it has local declarations in procedures
and functions. It is relatively easy to dynamically alter the dynamic environ-
ment when entering and leaving blocks; however the static semantics need
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to leave a record of the status of variables even after they have gone out
of scope, in order to give sensible error reports. For example, if an unde-
clared variable is used in a procedure, then the program should not pass the
symbol declaration check. This makes the definition of environments rather
complex.?

Each scope has an associated environment. A generic environment is a rela-
tion between identifiers and generic values. (Environments are conventionally
single valued, or functional. Here we allow some environments to be multi-
valued. For example, in the use after declaration semantics, a variable could
be both unread and unwritten.) We instantiate a different generic environ-
ment for each different semantics.

Env[X] == ID < X

The full ‘trace’ environment® is a mapping from a block to the environment
belonging to that block. Each block is labelled with the name of the sur-
rounding procedure or function; the outermost (global) block is labelled with
the module name.

EnvTr|X] == ID - Env[X]

So blocks in a trace environment do not go out of scope. For example, in the

body statement of a main module, a trace environment might look something
like:

p= {main — {Ul = Ty, Uy b= X, f = X3, fo — 354}7
fi = A{v = 25, 03— 26},
f2 = {Us = T7, V4 — 1’8}}

To model scope, we use a separate stack of block names, to keep track of
those declarations that are currently in scope.

4Although Pasp allows only one level of nesting, the definitions of environments and
static semantics have been made more general, so that if deeper nesting is added later,
there will be as little impact on the compiler as possible. The most serious impact would
probably be on the operational semantics (the code templates) and proof. In addition,
the convention for labelling blocks would also have to change. At present, each block
is labelled with the name of the procedure/function that contains it. With full block
structuring, procedure identifiers need no longer be unique, but a sequence of names could
be used instead.

®so called because it allows the tracing of errors in all blocks
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STACK == seq, ID

In Pasp, this sequence has length 1 in the body statement of the main module,
where it is (mainModuleName), and length 2 everywhere else, in a function
or procedure, where it is (moduleName, cmdName). However, the utility
definitions below are applicable to arbitrary length block stacks.

Applying a trace environment pt : ID - EnvX to a block stack B yields
a sequence of environments pt o B : seqFEnvX, where the later the entry
in the sequence, the deeper the nesting (and the higher the priority of the
definition). To extract the correct environment from the sequence, we use
distributed function overriding, to makes later environments override earlier
ones. Thus to extract the current environment, we use

®/ (pt o B)

findBlock returns the innermost block in which an identifier is declared, by
searching for the identifier from the end of the block stack.

= [X]

—

findBlock : ID x STACK x EnvTr[X] - ID

V¢ ID; B: STACK; pt: EnvTr[X] | & € dom(®/ (pto B)) e
db==last B e
findBlock (&, B, pt)
= if £ € dom(pt b)
then b else findBlock (&, front B, pt)

For example, in the environment p given above,

findBlock(vy, (main, fi), p) = fi
findBlock(vy, (main, f3), p) = main

lookup returns the value of an identifier in the current environment.
= [X]
lookup : ID x STACK x EnvTr|X| + X
V¢ ID; B: STACK; pt: EnvTr[X] | & € dom(®/ (pto B)) e
lookup(&, B, pt) = pt(findBlock(€, B, pt))§

J
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For example, in the environment p given above,

lOOkup(”la <ma/énaf1>7 /0)
lookup(un, {main, £), p)

5
I

update updates a single value of the environment corresponding to the last
block of a block stack.

= [X]
update : EnvTr[X| x STACK x Env[X] - EnvTr[X]
Vpt: EnvTr[X]; B: STACK; p: Env[X] e

db==last B e
update(pt, B, p) = pt & {b— (pt b® p)}

For example, in the environment p given above,

update(p, (main, f), {vi — g, U5 — T10})
= {main — {v; — 21,0 = By, fi = 33, fo = 1,
h— {Ul = Ty, U3 — T, Us F— xlO}a
L {’03 = 7, Uy — 378}}

5.2.3 Static semantics — check status

The purpose of a static semantics is to say that a construct either conforms to
the check or does not. One check value, checkOK , is defined for all semantics.
Other values are defined as needed. For example, it may be useful to define
a warning value to indicate that there may be an error, but not to stop the
subsequent semantics from being defined.

CHECK ==7
checkOK == 0

Check results need to be combined, for example when the check status of a
binary expression is calculated. We define X to be a function that combines
check arguments ‘pessimistically’; the result satisfies the check only if both
arguments do.
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function 30 leftassoc(_¥_)

‘ _X_: CHECK x CHECK — CHECK
‘ Ve, d: CHECK o ¢ X d = mazx {c,d}

Environments are combined when two execution branches are possible, and
different environments are generated by each branch. We define O to be a
function that combines maps to CHECK pessimistically.

function 30 leftassoc(_ 0O _)

= [X]
_O_:(X - CHECK) x (X + CHECK) — (X + CHECK)

Vf,g: X - CHECK e
f 8 g=(fUg) e {checkOK})
®{z:domfNdomgex— (fz X guz)}

i

O is the union of the two environments everywhere except where they are
checkOK , overridden with the pessimistic value of their commonly defined
elements. So if one environment defines no check value for an element, then
the combined environment has no check value for that element if the sec-
ond environment has the value checkOK, but has the value of the second
environment if this is not checkOK. For example

p ={m — checkOK, x5 — 2,13 — 1}
p' = {m — checkOK, x3 +— 3,14 — checkOK}
pOp = {1z — checkOK x5 +— 2, 13 — 3}

Note that z; is in the combined environment, but z; is not.

(As O is used only for the use semantics, the ImportOK value required for
the symbol declaration semantics does not affect this definition.)

O is associative.

(X] f,9,h: X - CHECK - (f O g)0 h=f 0O (g0 h)
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For the cases where identifiers map to a set of check values, simple union
(pessimistic) combination of the environments suffices.

function 30 leftassoc(_< )

—[X]
_O s EnvTr[ X x EnvTr[X] - EnvTr[X]
Vo, p: EnvTr(X] e
dpp==pUp' e
p O p={b:domppeb—U(pp({b}])}

5.3 Symbol declaration semantics
5.3.1 Symbol declaration environment

The declaration environment maps identifiers to their declaration check sta-
tus.

EnvD == Env[CHECK]

The declaration trace environment is a map from block names to declaration
environments.

EnvDTrace == EnvTr|[CHECK]

5.3.2 Symbol declaration check values

The declaration check values (in addition to checkOK) are:

ImportOK == 1
Undecl ==
MultiDecl ==
ImportExport ==
ImportUndecl ==
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e ImportOK: used to tag identifiers declared by import, so that they can
be differentiated from those declared within the module (only those
declared within a module may be exported)

e Undecl: an identifier is referenced, but had not been declared
e MultiDecl: an identifier is declared more than once
e ImportExport: an imported identifier occurs in a export declaration

o ImportUndecl: an imported identifier has not been declared in another
module (which is checked on linking, or on flattening modules to a
program)

When combining declaration environments from different sources pessimisti-
cally, it would be possible to use O defined above. However, this is un-
necessarily complicated for this semantics. Declaration environments are
combined only in the body of the program. In the body, the only change to
the environment is to mark previously unmarked identifiers as Undecl (a bad
value). Thus taking the union of the two environments is sufficient (and is
equivalent to O in this case).

5.3.3 Imitial symbol declaration environment

The initial declaration environment contains the reserved word MAXUN-
SIGNED.

‘ mazunsigned : 1D

‘ po0 : EnvD

‘ p00 = {mazunsigned +— checkOK}

(Aside: An alternative language semantics could allow multiple declarations
with the same type, but disallow those with different types. There would
be no check for multiple declarations in such a semantics, but an extra one
would be needed in the corresponding type checking.)
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5.3.4 Auxiliary functions

addSymbol adds a symbol to a declaration trace environment. This is used
whenever a non-imported identifier is declared.

‘ addSymbol : ID — ID — EnvDTrace — EnvDTrace

V&b ID; pot : EnvDTrace o
de==if & € dom(pdt b) then MultiDecl else checkOK o
addSymbol £ b pdt = update(pdt, (b),{& — c})

If the identifier is not already present in the block b, it is added to the trace
environment as checkOK. If it is already present, it is marked as multiply
declared.

An import declaration has a different check OK state, because an export
declaration should not include any identifiers that have been imported to the
module. Therefore adding an imported identifier is slightly different.

‘ addImportSymbol : ID — ID — EnvDTrace — EnvDTrace

V& b:ID; pot : EnvDTrace o
dec==if { € dom(pdt b) then MultiDecl else ImportOK e
addImportSymbol £ b pét = update(pdt, (b),{& — c})

If the identifier is not already present in the block b, it is added to the trace
environment as ImportOK. If it is already present, it is marked as multiply
declared.

checkSymbol checks that a symbol being referenced has been declared.

checkSymbol : ID — STACK — EnvDTrace — EnvDTrace

V¢ ID; B : STACK; pot : EnvDTrace o
checkSymbol & B pit =
if ¢ € dom(®/ (pdt o B))
then pot else update(pdt, B,{& — Undecl})

If the identifier is in scope, checkSymbol has no effect. Otherwise it updates
the environment to mark the identifier as undeclared.
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5.4 Type checking semantics
5.4.1 Type checking environment

IDTYPE is used to store type and associated information for identifiers in
a program. It includes more than just type information because it is also
used by later semantics. For example, the interpreter needs to determine
whether a variable is readOnly or writeOnly in order to carry out input
and output; the dynamic semantics needs to know upper and lower bounds
of array ranges in order to allocation the correct number of locations; the
operational semantics needs to know the call type of formal parameters in
order to reference the correct data address.

Three types use subranges for their values: variables, formal parameters, and
function calls. A Subrange Type comprises a pair of values (the values of the
lower and upper bounds of the subrange) and the type of the subrange (either
byte or unsigned).

SubrangeN = [ 1b,ub : N|Ib < ub ]
Subrange Type = [ SubrangeN; 7 : TYPE |

Two types use array bounds: variables and formal parameters. An ArrayType
comprises a sequence of pairs of values (the values of the lower and upper
bounds of each dimension of the array) and the type of the array indexes
(either byte or unsigned).

ArrayType = [ SR : seq SubrangeN; Ta : TYPE |
[IDTYPE]

VarType = [ A : P ATTR; ArrayType; SubrangeType ]

ValueType = [ v : VALUE; 7 : TYPE' |

FormalType = [ & : ID; ¢: CALL_TYPE; A:PATTR; ArrayType;
Subrange Type |

EnumType = [ 7: TYPE; = :seq, ID ]

ProcType = | B : STACK; I : seq IDTYPE |

FunType = | B : STACK; I : seq IDTYPE; SubrangeType ]
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IDTYPE ::= variable{{ VarType)) | const{ ValueType))
| formalParam{(FormalType)) | temp Var{{ TYPE))
| enum Type (( EnumType)) | enum Value ( Value Type))
| procedure (( Proc Type)) | function({ Fun Type))

variable: a variable’s attributes, array bounds and their type, and the
variable’s bounds and type.

const: a named constant’s value and type.

formalParam: a formal parameter’s name, call type, attributes, array
bounds and their type, and the parameter’s bounds and type.

tempVar: a temporary variable used in the construction of case state-
ments. They are generated automatically, and so are used correctly,
and need not be checked in static semantics. They are always of an
enumerated type.

enumType: an enumerated type’s type (its typeName or scoped Type-
Name, or typeWrong) and the list of enumerated value names (needed
in type checking case statements).

enumValue: an enumerated value’s value (a byte) and its type (the
name of the enumerated type in scoped Type Value).

procedure: (modName, procName) (a procedure’s block stack at decla-
ration time), and the IDTYPFESs of the formal parameters.

function: (modName, funName) (a function’s block stack at declara-
tion time), the IDTYPESs of the formal parameters, and the bounds
and type of its return value.

The numerical values of the upper and lower bounds in subranges need to be
calculated at some point. It might seem more appropriate to do this in the
dynamic semantics; however these values are also required in the compiler,
which may be run independently of the interpreter (which is based on the
dynamic semantics). Hence it is better to calculate them in the type checking
semantics. The type could still remain seq Subrange, but it is clearer to use
the seq SubrangeN type.
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Defined types have a scope. Two variables with user defined types (enumer-
ated types) have the same type if the two type definitions are the same. This
is the case if and only if the types have the same name and are defined in
the same block. This information is stored as a scoped type name.

The environment for the type checking semantics is a map from identifiers
to their IDTYPFESs.

EnvT == Env[IDTYPE]
The type trace environment is
EnvTTrace == EnvTr[IDTYPE]

The type environment associates types with identifiers. The type checking
semantics also determines whether expressions and statements are well-typed.
There is no unique label for these syntactic constructs, so we associate a check
status with each block, using an Env[CHECK].

5.4.2 Type check values

The type check values (in addition to checkOK) are:

attribute Wrong ==
checkType Wrong ==

e attribute Wrong: an erroneous set of attributes.
o checkTypeWrong: type error.
5.4.3 Auxiliary functions

constType returns the type of a constant value.

constType : VALUE -+ TYPE

V k : ran vunsgn e constType k = unsigned
V k : ran vbyte ® constType k = pbyte

V k : ran vbool e constType k = boolean
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There is no need for the definition to cover stream or locn, since these are
not concrete Pasp values.

We define various ‘extractor’ functions for accessing information from the
IDTYPE. (It is not necessary to define arrayOf and typeOf as total func-
tions; the information is sometimes extracted in a different way.)
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attributeOf : IDTYPE — P ATTR
arrayOf : IDTYPE -+ seq SubrangeN
typeOf : IDTYPE - TYPE

valueOf : IDTYPE -+ VALUFE
arrayIndexType : IDTYPE -+ TYPE

YV VarType o
attributeOf (variable 0 VarType) = A
A arrayOf (variable 6 VarType) = SR
A typeOf (variable 0 VarType) = T
A arrayIndexType(variable 0 VarType) = Ta

V ValueType o
attribute Of (const 0 Value Type) = {readOnly}
A arrayOf (const 0 Value Type) = ()
A typeOf (const 0 ValueType) = 1
A valueOf (const 0 Value Type) = v

YV FormalType o
attribute Of (formalParam 0 FormalType) = A

V7:TYPE e
attributeOf (temp Var 1) = &
A arrayOf (tempVar 1) = ()
Y EnumType o
attributeOf (enum Type 0 EnumType) = &
A arrayOf (enum Type 0 EnumType) = ()
A typeOf (enum Type 0 EnumType) = T
YV Value Type o
attributeOf (enum Value 0 Value Type) = {readOnly}
A arrayOf (enum Value 0 Value Type) = ()
A typeOf (enumValue 0 Value Type) = T
A valueOf (enum Value 6 Value Type) = v
Y Proc Type o attributeOf (procedure 0 Proc Type) = &

Y FunType o attributeOf (function 0 FunType) = &

A arrayIndexType(formalParam 0 FormalType) = Ta

In order to check the type of expression lists, we define an auxiliary function
that merges two types, by setting the result to their common value if they
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are equal, and giving type Wrong if they are not.

‘ mergeTypes : TYPE X TYPE — TYPE

V7,7 : TYPE e
merge Types(t,7') = if 7 = 7/ then 7 else type Wrong

5.4.4 Initial and final type environments

The type checking semantics is a convenient place to hold a ‘constant table’,
which links named constants with their values and types. A special initial
type environment is defined to contain the value and type of the reserved
constant name.

‘ p10 : EnvT

p70 = {mazunsigned
— const( v == vunsgn(2 T 16), 7 == unsigned )}

The type environment defined for a Pasp program starts from this initial
environment at the program level.

The final type trace environment is made global, for use in later semantics.
Its value is defined by the type checking semantics of a module.

‘ p1t0 : EnvTTrace

5.5 Use semantics
5.5.1 Use checking environment

The environment for the use semantics is a map from identifiers to their
USECHECK status.

USECHECK ::= unread | unwritten | unused | uncalled

e unread: readable variables (RAM, NVRAM and input), and constants,
that are never referenced.
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o unwritten: writable variables (RAM, NVRAM and output) that are
never assigned to.

e unused: user defined types that are never used in variable declarations.

e uncalled: procedures and functions that are never called.

It is impossible to check statically whether a given enumerated value is used
in a program, because of the pred and succ operators. Hence the use of such
identifiers cannot be checked even in principle.

The use environment maps identifiers to their use check status. (Note that
an identifier may have two use check statuses, unread and wunwritten, if it
has not been used at all, or may have no use check status, if it has been used

properly.)
EnvU == Env|USECHECK]|

The use trace environment is a map from block names to use environments.
EnvUTrace == EnvTr{USECHECK |

The definition of the use semantics is essentially straightforward. Essentially,
only two constructs affect the status of the use environment: value reference,
and assignment. All the other constructs just pass the checking down the
syntax tree. The presence of function and procedure parameters complicates
the use after declaration semantics slightly. If a formal parameter is call by
reference, the parameter’s use inside the procedure can affect the use of the
referenced variable.

5.6 Dynamic semantics

In this section we define the environment and state for the dynamic seman-
tics. We also define the mapping from array indices to memory locations.
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5.6.1 Dynamic state and store

The store maps abstract locations to the values stored there (which dynam-
ically change as a program executes):

Store == LOCN -+ VALUFE

The input and output from a program are modelled as streams attached
to particular unchanging locations. Because a stream type is included in
VALUE, the store as defined can model this. It is important to ensure that
the locations that have streams attached correspond to readOnly (input)
and writeOnly (output) variables, and that the values in the streams have
the correct type (see the semantics of Program).

Input ==P LOCN
Output == P LOCN

The state of computation is given by the store together with the input and
output locations.

State = [ 3 : Store; i : Input; o : Output |

There is no semantics for constant declarations, as the constant part of the
type environment is used. The Input and Qutput sets are determined once
locations have been assigned by the variable declaration semantics. These
locations are not altered during the program run, and thus the store is the
only component of the state that changes during execution. This means that
updates to the state could be carried out by a function on the state that
altered the store only. Instead, the state components are explicitly written
out to clarify the relationship with the interpreter.

Referencing an input value changes the store by altering the content of the
input stream, and assigning to an output value changes the store by altering
the content of the output stream, so expressions have side effects. Thus it
is necessary to define an order of expression evaluation. It is strictly left to
right (as in Pascal), with precedence established by bracketing. Thus the ar-
guments for binary expressions are evaluated left to right; sequences of array
index expressions are evaluated left to right; in an assignment statement, the
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array index expressions on the left hand side are evaluated before the expres-
sion on the right hand side; actual parameters to functions and procedures
are evaluated left to right.

It is necessary to extract the output streams from a store, because the mean-
ing of a program is just the value of its output streams.

‘ outOf : State — Store
‘ V State ® outOf OState = 0o <X

5.6.2 Dynamic environment

Denotable values (values that an identifier can stand for) are:

EzprValue = | State; v: VALUE |

DENVALUE ::= loc{(seqN = LOCN)) | cval
| pval{(State -+ State))
| fual{{State - ExprValue))

e [oc: variables and formal parameters. A function from array index
values to their locations. The injective nature of the function ensures
that every distinct sequence of array indices maps to a distinct location.
(That these locations do not overlap locations of other variables is
ensured by the meaning of variable declaration.) The length of the
sequence of values corresponds to the dimension of the array. A zero
dimensional array corresponds to an ordinary scalar variable.

e cval: constants. A single value, its sole function is to ensure that dy-
namic environments are total functions on all the identifiers in scope.
This ensures that the dynamic environment accurately reflects the ac-
tual variables in scope, although the semantics are correctly defined
without this, because the type trace environment is used first to de-
termine whether an identifier is a named constant, and to store its
value.
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e pual: procedures. The state transformation denoted by the procedure
body.

e fval: functions. The state transformation denoted by the function
body, and the return value.

The dynamic environment is a mapping from identifiers to the values they
denote.

EnvM == Env[DENVALUEFE]

The strategy used for array allocation is discussed in the following subsection
‘Calculation of location offsets’.

The dynamic trace environment associates an environment with each block
in a program.

EnvMTrace == EnvTr|[DENVALUE]

5.6.3 Calculation of location offsets

To simplify the correctness proofs, the dynamic semantics have been defined
so that the location of a call by reference parameter is stored at a specific
location, and references to the formal parameter inside the procedure indirect
to this location. This implies that the location of every array element (should
the variable be an array) must be computable from the start address and
array index. Hence the dynamic environment allocates locations for arrays
in the same fixed way as the operational environment. All the array elements
are in contiguous locations, and they are indexed so that the last index varies
the fastest.

For example, in the array a[l..4,2..4,0..1] the elements «a[1,2,0], a[l,2,1],
and a[l,3,0] are stored at location offsets from the location of the first ele-
ment of the array (that is a[l,2,0]) of 0, 1, and 2, respectively.

numkKElts returns the number of elements in an array given a sequence defining
the values of the upper and lower bounds on each dimension. (There is no
assumption that array bounds start at zero.)
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num#Elts : seq SubrangeN — N

numBlts{ ) =1
Vs : seq SubrangeN; SubrangeN e
numElts((8Subrange) ™ s) = (ub — b+ 1) * numkElts s

For example, the size of the array a[l..4,2..4,0..1] is
A—1+D)x@d—2+1)%(1—0+1) =4%3%2=24.

locationOffset gives the offsets of array elements.

locationOffset : seqN x seq SubrangeN - N

Vi seqN; ssr: seq SubrangeN |
#s1 = #ssr
AN(Vn:l.. #sie(ssrn)lb<sin<(ssrn)ub)e
Jss :seqN; normi : seqN |
#ss = #s1 = #normi
AN(Vn:l..#sie
ss n = numkElts(((n + 1) .. #ssr) | ssr) )
AN(Vn:1..#sienormin=sin—(ssrn)lb)e
locationOffset(si, ssr) = dotProduct(ss, norms)

Here si is the sequence of array indices for this element and ssr is the same-
length sequence of subranges (upper and lower bounds) for the array.

Partial specification: Pasp’s array indexing is checked dynamically, and the
consequence of an index outside a subrange is undefined.

The effect of the 1 function is to produce a new sequence of upper and lower
bounds by including only the specified elements of the old sequence, so ss
is a sequence of sub-array sizes. mormi is a sequence of normalised array
indices, the indices the array element would have if the array lower bounds
were zero.



64 The DeCCo project papers I: Z Specification of Pasp

For example, the offset of element a[3,4, 1] in the array a[l..4,2..4,0..1] is

locnOffset(3,4,1)((1,4),(2,4),(0,1))
= dotProduct({numkFElts{(2,4), (0,1)), numElts{(0,1)), numFElts( )),
(3-1,4—2,1-0))
= dotProduct((6,2,1),(2,2,1))
=17



The DeCCo project papers I: Z Specification of Pasp 65

6 Operators

6.1 Binary Operators
6.1.1 Binary Operators — Symbol declaration semantics

Binary operators are built into the language, so are all implicitly declared.
No checking is necessary.

6.1.2 Binary Operators — Type checking semantics

The meaning function 7go maps binary operators to functions from the types
of the arguments to the type of the result.

Arithmetic operators take numbers and return numbers.

Tpo : BIN.OP — TYPE x TYPE — TYPE

YV, 7 TYPE; Q: {uplus, uminus, umul, udiv, umod} e
TBO Q(T, T/) =
if 7 = 7' = unsigned then unsigned else type Wrong
YV, 7" TYPE; Q: {bplus, bminus, bmul, bdiv, bmod} e
TBO Q(T, T/) =
if 7 = 7/ = pbyte then pbyte else typeWrong

Comparison operators take numbers and return booleans.
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Vr, 7 TYPE; Q: {ueq, une, ult, ule, ugt, uge} o
TBO Q(T, T/) =
if 7 = 7/ = unsigned then boolean else type Wrong
YV, 7" TYPE; ) : {beq, bne, blt, ble, bgt, bge} o
TBO Q(T, T/) =
if 7 = 7/ = pbyte then boolean else type Wrong
V7,7 TYPE; Q:{eeq, ene} o
TBO Q(T, T/) =
if {7, 7'} C ran scoped TypeValue N 7 =7’
then boolean else type Wrong

Logical operators take unsigneds, bytes and booleans and return values of the
same type.

V7,7 TYPE; Q: {uand, vor, uzor} e
Tpo Qr, 7)) =
if 7 = 7' = unsigned then unsigned else type Wrong
V7,7 TYPE; Q: {band, bor, bzor} e
Tpo Qr, 7)) =
if 7 = 7/ = pbyte then unsigned else type Wrong
V7,7 TYPE; Q:{and,or} e
Tpo Qr, 7)) =
if 7 = 7/ = boolean then boolean else type Wrong

Casting operators change types.

V7,7 : TYPE e
Tgo join(t,7') =
if 7 = 7/ = pbyte then unsigned else type Wrong
V7,7 : TYPE e
Tpo byteToEnum(r,7') =
if 7 € ran scoped TypeName N 7' = pbyte
then 7 else type Wrong
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6.1.3 Binary Operators — Use semantics

Binary operators are built into the language, so are all implicitly declared,
but do not have to be used. No checking is necessary.

6.1.4 Binary Operators — Dynamic semantics

The dynamic meaning of a binary operator is the corresponding mathemat-
ical operator, as given below.

The unsigned arithmetic operators map to the same Z mathematical opera-
tors, preserving the unsigned type of the final result.

Mpo : BIN_.OP — VALUE x VALUE - VALUFE
Vn,m: UNSIGNED | n+m € UNSIGNED e

Mpo uplus(vunsgn n, vunsgn m) = vunsgn(n + m)
Vn,m: UNSIGNED | n — m € UNSIGNED e

Mpo uminus(vunsgn n, vunsgn m) = vunsgn(n — m)
Vn,m: UNSIGNED | nxm € UNSIGNED e

Mo umul(vunsgn n, vunsgn m) = vunsgn(n x m)
Vn,m: UNSIGNED | m #0 e

Mo udiv(vunsgn n, vunsgn m) = vunsgn(n div m)

A Mpo umod(vunsgn n, vunsgn m) = vunsgn(n mod m)

Partial specification: Pasp’s unsigneds have constrained ranges, and the con-
sequence of overflow or underflow is undefined. For example, if n + m >
#WORD, the definition of uplus is undefined at this point. Also undefined
is the effect of division by zero. Where the semantics is undefined in this
manner, an implementation is allowed to do anything. The implemented
interpreter raises an error. The compiled code just silently does something
wrong (because checking is too expensive to implement there).

The byte arithmetic operators map to the same Z mathematical operators.
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Vb,c: BYTE |b+c€ BYTE o

Mo bplus(vbyte b, vbyte ¢) = vbyte(b + ¢)
Vb,c: BYTE |b—c€ BYTE o

Mo bminus(vbyte b, vbyte ¢) = vbyte(b — c)
Vb,c: BYTE |bxce€ BYTE e

Mpo bmul(vbyte b, vbyte ¢) = vbyte(b * c)
Vb,c:BYTE |c#0e

Mpo bdiv(vbyte b, vbyte c) = vbyte(b div c)

A Mpo bmod(vbyte b, vbyte ¢) = vbyte(b mod c)

Partial specification: Pasp’s bytes have constrained ranges, and the conse-
quence of overflow or underflow is undefined. Also undefined is the effect of
division by zero.

Pasp’s unsigned comparison operators map to the corresponding 7 opera-
tions, returning a boolean result.

Vn,m: UNSIGNED e

Mo ueq(vunsgn n, vunsgn m) =
vbool(if n = m then ptrue else pfalse)

A Mpo une(vunsgn n, vunsgn m) =
vbool(if n # m then ptrue else pfalse)

N Mpo ult(vunsgn n, vunsgn m) =
vbool(if n < m then ptrue else pfalse)

A Mpo ule(vunsgn n, vunsgn m) =
vbool(if n < m then ptrue else pfalse)

A Mpo ugt(vunsgn n, vunsgn m) =
vbool(if n > m then ptrue else pfalse)

N Mpo uge(vunsgn n, vunsgn m) =
vbool(if n > m then ptrue else pfalse)

Similarly for byte comparison operators:
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Vb, c: BYTE o

Mo beq(vbyte b, vbyte ¢) =

vbool(if b = ¢ then ptrue else pfalse)
A Mpo bne(vbyte b, vbyte c) =

vbool(if b # c then ptrue else pfalse)
A Mpo blt(vbyte b, vbyte ¢) =

vbool(if b < ¢ then ptrue else pfalse)
N Mg ble(vbyte b, vbyte ¢) =

vbool(if b < ¢ then ptrue else pfalse)
A Mpo bgt(vbyte b, vbyte ¢) =

vbool(if b > ¢ then ptrue else pfalse)
A Mpo bge(vbyte b, vbyte ¢) =

vbool(if b > ¢ then ptrue else pfalse)

Enumerated values are represented by their (byte) position in the sequence
of values for a type. (We know from type checking that bmaz = cmaz.)

VY bmaz, b, cmazx,c: BYTE e
Mo eeq(venum(bmaz, b), venum(cmaz, c)) =
vbool(if b = ¢ then ptrue else pfalse)
A Mpo ene(venum(bmaz, b), venum(cmaz, c¢)) =
vbool(if b # ¢ then ptrue else pfalse)

Pasp’s unsigned logical operators perform ‘bitwise’ operations. The form of

the formal definitions is designed to be compatible with that required for the
Asp specification.

Vn,m: UNSIGNED e
Mpo uwand(vunsgn n, vunsgn m) =
vunsgn(BitsToNat(NatToBits n AND NatToBits m))
A Mpo uor(vunsgn n, vunsgn m) =
vunsgn(BitsToNat(NatToBits n OR NatToBits m))
N Mpo uzor(vunsgn n, vunsgn m) =
vunsgn(BitsToNat(NatToBits n XOR NatToBits m))

Similarly for byte logical operators:
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Vb, c: BYTE o
Mo band(vbyte b, vbyte c) =
vbyte(BitsToNat(NatToBits b AND NatToBits c))
A Mpo bor(vbyte b, vbyte c¢) =
vbyte(BitsToNat(NatToBits b OR NatToBits c))
A Mpo bror(vbyte b, vbyte ¢) =
vbyte(BitsToNat(NatToBits b XOR NatToBits c))

Pasp’s boolean logical operators map to the corresponding 7 operations,
returning a boolean result.

Vb,c: BOOLEAN e
Mgo and(vbool b, vbool ¢) =
vbool(if b = ptrue A ¢ = ptrue then ptrue else pfalse)
A Mpo or(vbool b, vbool c) =
vbool(if b = ptrue V ¢ = ptrue then ptrue else pfalse)

Pasp’s cast operators:

V/ bhi, blo - BYTE e
Mo join(vbyte bhi, vbyte blo) = vunsgn(bhi x 256 + blo)

Vbomaz,b: BYTE | b < bmaz e
Mo byteToEnum(vbyte bmax, vbyte b) = venum(bmaz, b)

Partial specification: Pasp’s enumerated types have constrained ranges, and
the consequence of casting too large a byte is undefined.

6.2 Unary Operators
6.2.1 Unary Operators — Symbol declaration semantics

Unary operators are built into the language, so are all implicitly declared.
No checking is necessary.
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6.2.2 Unary Operators — Type checking semantics

The meaning function 7o maps unary operators to functions from the type
of the arguments to the type of the result.

The casting operators map between the types.

Tvo : UNY_OP — TYPE — TYPE

V7

VT

V71:

: TYPE; VU : {unot, uleft, uright} e

Tyo V T = if 7 = unsigned then unsigned else type Wrong
TYPE; VU : {bnot, bleft, bright} e
Tvo ¥V T = if 7 = pbyte then pbyte else type Wrong

: TYPE e

Tuo not T = if 7 = boolean then boolean else type Wrong

: TYPE; ¥ : {unsgnToByte, loByte, hiByte} o

Tvo ¥V T = if 7 = unsigned then pbyte else type Wrong

: TYPE o

Tuo byteToBool T =
if 7 = pbyte then boolean else type Wrong
A Tyo boolToByte T =
if 7 = boolean then pbyte else type Wrong
A Tyo byteToUnsgn T =
if 7 = pbyte then unsigned else type Wrong
A Tyo ord T =
if 7 € ran scopedType Value then pbyte else type Wrong

: TYPE; ¥ : {succ, pred} o

Tvo ¥V T =if 7 € ran scoped Type Value then T else type Wrong

6.2.3 Unary Operators — Use semantics

Binary operators are built into the language, so are all implicitly declared,
but do not have to be used. No checking is necessary.
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6.2.4 Unary Operators — Dynamic semantics

Pasp’s unary operators similarly map to the corresponding Z operators. Note
that shift left provides a (fast) non-overflowing multiplication by 2.

Myo : UNY_OP — VALUE - VALUFE

Vn: UNSIGNED e
Muyo unot(vunsgn n) = vunsgn(# UNSIGNED — n)
A Myo uleft(vunsgn n) = vunsgn((n x 2) mod # UNSIGNED)
A Muyo uright(vunsgn n) = vunsgn(n div 2)
Vb:BYTE e
Muyo bnot(vbyte b) = vbyte(#BYTE — b)
A Myo bleft(vbyte b) = vbyte((b * 2) mod #BYTE)
A Muyo bright(vbyte b) = vbyte(b div 2)
Vb : BOOLEAN e
Mo not(vbool b) = vbool(if b = ptrue then pfalse else ptrue)

The only tricky definition is unsigned logical not, unot. We use the result
that n 4+ not n = #UNSIGNED.

Vn: UNSIGNED | n € BYTE e
Myo unsgnToByte(vunsgn n) = vbyte n
Vn : UNSIGNED e
Myo loByte(vunsgn n) = vbyte(n mod 256)
A Myo hiByte(vunsgn n) = vbyte(n div 256)
Vb : BOOLEAN e
Mo boolToByte(vbool b) = vbyte(if b = pfalse then 0 else 1)
Vb:BYTE e
Muyo byteToBool(vbyte b) = vbool(if b = 0 then pfalse else ptrue)
A Myo byteToUnsgn(vbyte b) = vunsgn b
Vbmax,b: BYTE e
Muyo ord(venum(bmaz, b)) = vbyte b

Partial specification: Pasp’s bytes have constrained ranges, and the conse-
quence of casting too large an unsigned is undefined.
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Vbamz,b: BYTE |0 <be
Myo pred(venum(bmaz, b)) = venum(bmaz, b — 1)

Vbmaz,b: BYTE | b < bmaz e
Myo succ(venum(bmaz, b)) = venum(bmaz, b + 1)

Partial specification: Pasp’s enumerated types have constrained ranges, and
the consequence of overflow or underflow is undefined.
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7 Expressions

7.1 Meaning function declarations
7.1.1 Symbol declaration semantics

The declaration trace environment is updated to reflect the status of identi-
fiers used in the expression.

‘ Dg : EXPR — STACK — EnvDTrace — EnvDTrace

7.1.2 Type checking semantics

The meaning function 7z maps an expression to its TYPFE and its ATTRs,
in the context of the type environment.

EzprType = [ 7: TYPE; A:PATTR |

‘ Tz : EXPR -+ EnvT -+ ExprType

The function is partial because it is defined only for expressions containing
(singly) declared identifiers.

The attribute set is also needed because the read/write status of the expres-
sion is checked in statements (and expression lists), as well as its TYPE.

7.1.3 Use semantics

The use trace environment is updated to reflect the status of any variables
with relevant attributes that are used in the expression.

‘ Up : EXPR +~ STACK —+ EnvUTrace + EnvUTrace
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7.1.4 Dynamic semantics

Given a dynamic environment and state, the meaning of an expression is a
value together with an updated state. The state may be altered by referenc-
ing a readOnly variable.

‘ Mg EXPR + STACK - EnvMTrace + State — ExprValue

7.2 Multiple expressions, as array index lists

An array index list occurs as afel, ..., en]. The semantics of each individ-
ual index is evaluated as an expression, and the array index list semantics
combines these individual semantics suitably.

7.2.1 Array index list — Symbol declaration semantics

The symbol declaration semantics for an array index list is derived from the
one for a single expression using Dpg..

7.2.2 Array index list — Type checking semantics

The type semantics merges the types and union the attributes of the com-
ponent index expressions.

Tg- : seq; EXPR -+ EnvT - ExprType

Ve : EXPR; pr: EnvT o T {e)pT = T € pT
VE,E :seq, EXPR; pt : EnvT e
3 ExprType; EzprType'; EzprType” |
O EzprType = T« E p1
N OExprType’ = Tg« E' pr
A 7" = merge Types(t,7")
NA"=AUA o
T (E ™ E"pr = 0 ExprType”
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The type and attribute of the index list is checked where the array reference
occurs.

7.2.3 Array indexes — Use semantics

The symbol declaration semantics for an array index list is derived from the
one for a single expression using Ug..

7.2.4 Array index list — Dynamic semantics

The dynamic meaning of an array index list is the corresponding sequence
of values, evaluated left to right, together with a possibly altered state.

ExzprSeqValue = [ State; V :seq VALUE ]

Mg« :seq EXPR + STACK + EnvMTrace + State — ExprSeqValue

VB :STACK; pt: EnvMTrace; o : State e
Mp{()Bpto={o==0,V==1{())
Ve: EXPR; E :seq EXPR; B: STACK; pt: EnvMTrace; o : State e
3 ExprValue'; ExprSeqValue”; ExprSeqValue |
0 ExprValue’ = Mg € B pt o
A 0 EzprSeqValue” = Mg« E B pt 0State’
A OState” = 0 State”
/\ V/// — <,U/> m v// °
Meg-({e) ™ E)B pt o = 0 ExprSeqValue"

7.3 Multiple expressions, as actual parameter lists

Some semantics of expressions used as actual parameters differ from those
of other uses of expressions. An actual parameter list occurs as fp(el, ...,
en). The semantics of each parameter expression is found, and the actual
parameter list semantics combines these individual semantics suitably.
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7.3.1 Actual parameter list — Symbol declaration semantics

The symbol declaration semantics of actual parameter lists are the same as
those for array index lists.

Dap ==Dg

7.3.2 Actual parameter list — Type checking semantics

An actual parameter type check takes the actual parameter expression an
IdType (that of the corresponding formal parameter declaration) and a type
environment (that of the call where the actual parameter occurs). It returns

a CHECK value.

| Tap : EXPR + IDTYPE + EmvT + CHECK

Type checking a call-by-value actual parameter (which is known to have no
attributes, from declaration type checking):

Ve : EXPR; FormalType; pr: EnvT | c=val NA =2 e
3 ExprType' | 0 ExprType’ = T € pT o
Tap €(formalParam 0Formal Type)pr =
if 7/ =7 A writeOnly ¢ A’
then checkOK else checkType Wrong

e OExprType’: the type and attributes of a call-by-value actual parameter
expression are calculated using the expression type semantics.

e 7/ = 7 : the actual parameter must have the same type as the corre-
sponding formal parameter (found from the IdType). (That the value of
the actual parameter is consistent with any formal parameter subrange
is checked dynamically.)

o writeOnly ¢ A’ : the actual parameter must not be a writeOnly vari-
able.
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Type checking a call-by-reference actual parameter:

Ve : EXPR; FormalType; pt: EnvT |
c = ref
A = (e € ran valueRef N (valueRef™ €).E = ()) ®
Tap €(formalParam 0 FormalType)pt = checkType Wrong

Ve : EXPR; FormalType; pt: EnvT |
c = ref
A € € ran valueRef A (valueRef™ €).E = () e
3¢ . ID; FormalType'; x : CHECK |
¢ = (valueRef™ €).£

A x = if A" N {readOnly, writeOnly} € {&, A}
N O Array Type' = 0 Array Type
A O SubrangeType’ = 0 SubrangeType
then checkOK else checkType Wrong e
Tap €(formalParam 0Formal Type)pr = X

In addition to the call-by-value requirements, a call-by-reference parameter
has further constraints.

e ¢ € ranvalueRef .. .: the actual parameter cannot be a general expres-
sion, but must be a scalar variable reference (a valueRef with an empty
expression list).

e ¢ = ...: the name of the variable reference

e p7 & € .... the name must be either a variable name or a formal
parameter name (so not a function, procedure, constant or enumerated
name)

e (Aa,asra,sra): hence the type and attributes of a call-by-reference
actual parameter can be looked up in the type environment.

e AN...: the actual parameter must have either no read/write attributes,
or the same one as the formal parameter.

A pt & € {wariable 0 VarType', formalParam 0 FormalType'}
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e asra = asr: the array bounds of the actual and formal parameters must
match, and the type of the array indexing must be the same for both
actual and formal parameters.

e sra = sr: the subrange values of the actual and formal parameters
must match, and the type of the subrange must be the same for both
actual and formal parameters.

To check lists of actual parameters the individual check values are combined
pessimistically.

Tap« : seq EXPR + seq IDTYPE + EnvT - CHECK

Vo1 : EnvT e Typ«( )( ) pr = checkOK
V E :seq EXPR; € : EXPR; I :seq IDTYPE; i : IDTYPE; pt: EnvT |
H#HE =H#1 e
de, " CHECK |
c="Typ- E I pr
N =Typeipr
Ncd"=c X e

Tap-({e) " E)((i) ™ Dpr = ¢

7.3.3 Actual parameter list — Use semantics

The use semantics of an actual parameter depends on the current status of
the expression and on the call type of the formal parameter.

An actual parameter use check takes the actual parameter expression, the
IDTYPE of the corresponding formal parameter declaration, the call-time
blockstack, the block that is the called procedure or function name, and the
call-time use environment. It returns an updated use environment.

A call-by-value parameter is checked like an expression. A call-by-reference
parameter takes the use status of the formal parameter into account. Recall
that the arguments include

e ¢: the name of the formal parameter
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e b: the block where the formal parameter is declared (that is, the name
of the function or procedure)

Usp : EXPR + IDTYPE +
STACK -+ ID + EnvUTrace — EnvUTrace

Ve : EXPR; FormalType; B : STACK; b: ID; put : EnvUTrace |
c=wal e
dpvt’ : EnvUTrace | put’ = UE € B put e
Upp e(formalParam 0 FormalType)B b puvt = put’

Ve : EXPR; FormalType; B : STACK; b: ID; put : EnvUTrace |
c=ref ®
3¢,V ID; x,x' : P USECHECK; pv : EnvU |

¢ = (valueRef™ €).£
A b = findBlock(¢', B, put)
A = (oot Y €Y ) A x = (put B L€} )
Apv={} xxNx e

Upp e(formalParam 0 FormalType)B b put =
update(pvt, (b'), pv)

&a: the name of the variable that is the actual parameter.

ba: the block where the actual parameter is declared (a call-by-reference
parameter can only be a variable name: this is checked in the type
checking semantics).

xa: the initial use check status of the actual reference parameter.

x: the use check status of the formal reference parameter.

X': the final use check status of the actual reference parameter, opti-
mistically combining (intersecting) the use statuses of the two cases.

update: the use environment is updated so that the use check of the
actual parameter is y.

To move from single actual parameters to lists of actual parameters we use
Uap«. Note that, as with sequences of expressions, the order is important,
and parameter lists are evaluated left to right.



The DeCCo project papers I: Z Specification of Pasp 81

7.3.4 Actual parameter — Dynamic semantics

The dynamic semantics of an actual parameter consist of binding the cor-
rect value to the formal parameter. This is performed by storing the actual
parameter’s value at the correct location in the store.

The actual parameter dynamic semantics takes the actual parameter expres-
sion, the IDTYPE of the corresponding formal parameter declaration, the
call-time blockstack, the block that is the called procedure or function name,
and the call-time environment and state. It returns an updated state.

Dynamic meaning of a call-by-value actual parameter:

Map : EXPR +~ IDTYPE +
STACK - ID - EnvMTrace + State + State

Ve: EXPR; FormalType; b:ID; B: STACK,

pt . EnuMTrace; o : State |

c=wal ®

31: LOCN; ExprValue'; State” |

L= loc~(pt b €)( )
A O ExprValue’ = Mg € B pt o
ANY' =Y @{l— v}
/\Z'//:Z'//\O//:O/.

Ib < number v < ub =
M ap e(formalParam 0 FormalType)B b pt o = 0State”

For call by value, the stored value is the value of the actual parameter.

e b: the block where the formal parameter is declared (that is, the name
of the function or procedure).

e ¢: the name of the formal parameter.

e pt b & the meaning of the formal parameter: a mapping from indexes
to locations. The parameter is call-by-value, so is a simple value not
an array; the mapping is {( ) — [}.

e (0',v): the after state and value corresponding to the expression mean-
ing of the actual parameter.
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e Y @ {l — v}: the after store, potentially changed to ¥’ by evaluating
the parameter expression, and overridden with the relevant location
now containing the value of that expression.

e nlo < number v < nhi : if the actual value lies in the subrange, the
dynamic semantics is as defined.

Dynamic meaning of a call-by-reference actual parameter:

Ve: EXPR; FormalType; B : STACK; b: ID;
pt : EnuMTrace; o : State |
c=ref ®
31: LOCN; & : ID; idt : IDTYPE; f :seqN = LOCN
v: VALUE; State; State’ |
L= loc™(pt b €)()
A & = (valueRef™ €).£
A idt = lookup (£, B, pTt0)
A f = loc™ (lookup (&', B, pt))
A OState = o
A v = if idt € ran formalParam
then %(f())
else pointer(f{ n : dom SR e n +— (SR n).lb })
AY =S@ {1 v}
ANi'=iNo =o0e
Map e(formalParam 0 FormalType)B b pt o = 0State’

For call by reference, the stored value is the start address of the variable.
e b: the block where the formal parameter is declared (that is, the name
of the function or procedure).
e ¢: the name of the formal parameter.

e pt b & the meaning of the formal parameter: a mapping from indexes
to locations. The parameter is call-by-value, so is a simple value not
an array; the mapping is {( ) — [}.

e ¢a: the name of the variable that is the actual parameter.
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7.4

7.4.1

pt Ea: the IdType of the actual parameter: either itself a call-by-
reference formal parameter, or a variable.

If the actual parameter is itself a formal parameter, the value to be
stored is the location of the formal parameter, X(f ()).

If the actual parameter is not itself a formal parameter, the value to be

stored is a ‘pointer’ value containing the location of the first element
of the referenced array, f(first o NN).

Y. @ {l — wv}: the store, overridden with the relevant location now
containing the location of the reference expression.

Constant

Constant — Symbol declaration semantics

Vk: VALUE; B: STACK e Dg(constant k)B = id EnvDTrace

A constant expression has no effect on the declaration environment.

7.4.2

Constant — Type checking semantics

Vi: VALUE; pt: EnvT e
T (constant k)pT = (| T == constType kK, A == & )

The type of a constant expression is given by the type of the value. Note

that t

7.4.3

his does not depend on the environment.

Constant — Use semantics

Vk: VALUE; B: STACK e Ug(constant k) B = id EnvUTrace

A constant expression has no effect on the use environment.
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7.4.4 Constant — Dynamic semantics

Vk: VALUE; B : STACK; pt : EnuMTrace; o : State o
3 EzprValue | §State =oc Av =k e
Mg(constant k) B pt o = 0 ExprValue

The value of a constant expression is the value of the constant. The state is
unchanged.

7.5 Value reference

7.5.1 Value reference — Symbol declaration semantics

YV ValueRefExpr; B : STACK; pot : EnvDTrace o
3pdt’ . EnvDTrace | pét' = Dy « E B pit e
Dg(valueRef 0 ValueRefExpr)B pdt =
checkSymbol & B pot’

The sequence of expressions comprising the array index list is checked, re-
sulting in a possibly updated environment. If the identifier has been declared
in the current environment, then the updated environment is left unchanged,
otherwise the identifier is added to the environment as Undecl.

7.5.2 Value reference — Type checking semantics
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V ValueRefExpr; pt : EnvT e
idt : IDTYPE; EzprType |
wdt = p1 &
A O ExprType =
if idt € ran variable U ran const
U ran formalParam
U ran enum Value U ran enum Type
N #E = #(arrayOf idt)
NH#HE >1=
( 3 EzprType | 0 ExprType = T« E pT @
writeOnly & A
A T = arraylndexType idt
A T # typeWrong) )
then ( 7 == typeOf idt,
A == attributeOf idts
N {writeOnly, readOnly} |)
else (| 7 == typeWrong, A== |) e
Tr(valueRef 0 ValueRefExpr)pr = 0 ExprType

The sequence of expressions comprising the array index list is checked. The
value reference is mapped to the type and attribute of the identifier.

e ¢: the name of the value reference.
e ;= p7 & the IDTYPE of the value reference.

e ; cran...: the identifier is allowed to be a value reference: a variable,
named constant, formal parameter, enumerated value, or enumerated
type (in cast expressions only).

o #FE = #(arrayOf I): the array dimension matches its declaration.

e #FE > 1: a non-zero dimensional array reference: the array index
expressions are checked. None of them can refer to a write only variable;
they are all of the same type as the subranges that define the array;
they are all type correct.
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e [f all the checks are passed, the type of the value reference is its declared
type, and the attributes are the declared attributes after discarding
location attributes (which are of no use in type checking).

e If any checks is failed, the type of the value reference is type Wrong,
with no attributes needed.

7.5.3 Value reference — Use semantics

V ValueRefExpr; B : STACK; put : EnvUTrace o
dpvt’ : EnvUTrace; b: ID; x : P USECHECK; pv : EnvU |
pvt' =UE « E B put
A b = findBlock (&, B, put)
A x = (pvt’ )| {€} D\ {unread}
Apv={ x xeo
U (valueRef 0 ValueRefExpr)B put = update(put’, (b), pv)

e put’: the use check environment, after any array indexes have been
checked.
e b: the block where the identifier is declared (that is, the name of the

function or procedure, or module if it is global).

x: the use check status of the identifier after being read.

update: the use environment is updated to say that £ has been read.

7.5.4 Value reference — Dynamic semantics
The meaning of valueRef depends on whether it is a constant, an enumerated
value, a variable, or a formal parameter.

If the name corresponds to a named constant or enumerated value its value
is found from the type environment.
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If the name corresponds to an enumerated type its value is the maximum
allowed value of an element of the type, that is, one less than the number of
elements in the enumeration.

V ValueRefFExpr; B : STACK; pt : EnuMTrace; o : State o
Vidt : IDTYPE | idt = lookup(§, B, pTt0) A idt € ran const e
3 ExprValue | State = o A v = (const™ idt).v e
Mg (valueRef 0 ValueRefExpr)B pt o = 0 ExprVal

V ValueRefExpr; B : STACK; pt : EnuMTrace; o : State o
Vidt : IDTYPE |
idt = lookup (&, B, pTt0) A idt € ran enum Value o
3 ExprValue | 0State = o A v = (enum Value™ idt).v e
Mg (valueRef 0 ValueRefExpr)B pt o = 0 ExprVal

V ValueRefExpr; B : STACK; pt : EnuMTrace; o : State o
Vidt : IDTYPE |
idt = lookup (&, B, pTt0) A idt € ran enumType o
3 ExprValue |
0State = o
A v = vbyte(#(enumType™ idt).= — 1) e
Mg (valueRef 0 ValueRefExpr)B pt o = 0 EzprVal

If the name corresponds to a variable its location is retrieved from the envi-
ronment; if it is a call-by-reference formal parameter its location is retrieved
by indirection from the environment and the store.

refLocation : IDTYPE x (seqN »~ LOCN) x Store x seq VALUE +
LOCN

Vidt : IDTYPE; f :seqN - LOCN; ¥ : Store; V :seq VALUE e
refLocation(idt, f, %, V) =
if idt € ran formalParam A (formalParam™ idt).c = ref
then pointer™(X(f( )))
+ locationOffset(number o V| arrayOf idt)
else f(number o V)

e f: the locations of the array £’s elements
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e V: the values V of the array indexes

e [: if £ is a call-by-reference formal parameter, the location [ is found
by the array index offset from the location of the formal parameter.
Otherwise [ is looked up directly in the environment.

If the location is not an input stream, then the value is found from the
relevant memory location in the current state; if it is an input stream, then
the value is read from the head of the input stream.

V ValueRefExpr; B : STACK; pt : EnuMTrace; o : State o
Vidt : IDTYPE |
idt = lookup (&, B, pTt0)
A idt € ran variable U ran formalParam e
3 ExprSeqValue'; f : seqN = LOCN; | : LOCN; ExprValue" |
0 ExprSeqValue’ = Mg« E B pt o
A f = loc™ (lookup(&, B, pt))
A 1 = refLocation(idt, f, o' .3, V')
AN(leoi=
( 31 :seq, VALUE | stream [ =X’ | o
=¥ @ {l— stream(tail 1)}
/\Z‘//:Z’//\Olle/
A v" = head 1))
A (I & o.i = OState” = 0State’ Nv" =% 1) e
Mg (valueRef 0 ValueRefExpr)B pt o = 0 ExprValue”

f: the locations of the array &’s elements

0 ExprSeqValue': the values V of the array indexes, and the possibly
changed state ¢’ from evaluating them

[: the location of the referenced variable.

[ € o.i: if [ is an input location, then location [ contains a stream of
values (the input stream). The value is the head of the stream, and
the state is updated to have this read value removed.

| € o.i: if [ is not an input location, the value is that stored in location
[, and the final state is o”.
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7.6 Unary expression

7.6.1 Unary expression — Symbol declaration semantics

Y UnyFExpr; B : STACK; pot : EnvDTrace o
dpot’ . EnvDTrace | pdt' = Dy € B pdt e
Dg(unyExpr 0 UnyExpr)B pdt = pot’

Unary operator names are considered to be declared implicitly, so the whole
unary expression has the same declaration semantics as its sub-expression.

7.6.2 Unary expression — Type checking semantics

YV UnyExpr; pt: EnvT e
3 ExprType; ' : TYPE |
0 ExprType = Tg € pT
AT = TUO Ure
Te(unyExpr 0 UnyEzpr)pr = (17==17,A==A))

The type of a unary expression depends on the type of the operator and the
type of the sub-expression. The attribute set is that of the sub-expression.

7.6.3 Unary expression — Use semantics

Y UnyEzpr; B : STACK; put : EnvUTrace
Jpvt’ . EnvUTrace | put’ =Ugp € B put
Ug(unyExpr 0 UnyExpr)B put = put’

Unary operator names are considered to be declared implicitly, so the whole
unary expression has the same use semantics as its sub-expression.
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7.6.4 Unary expression — Dynamic semantics

YV UnyEzpr; B : STACK; pt : EnvMTrace; o : State e
3 ExprValue'; ExprValue |
0 ExprValue’ = Mg € B pt o
A OState” = 0State’
ANV"'=Mpyo VU e
Mg (unyExpr 0 UnyExpr)B pt o = 0 ExprValue”

The value of a unary expression is found by applying the unary operator
meaning function to the value of the sub-expression. The state may be
altered by evaluating the sub-expression.

7.7 Binary expression

7.7.1 Binary expression — Symbol declaration semantics

VY BinExpr; B : STACK; pot : EnvDTrace o
Apdt’; pot” . EnvDTrace |
pot' = Dg el B pit
A pét" =Dy €2 B pit’ e
Dg(binExpr 0 BinEzpr)B pdt = pdt’ U pdt”

Binary operator names are considered to be declared implicitly, so the whole
binary expression has a declaration semantics found by combining the sepa-
rate semantics of its sub-expression.

The union function U is used instead of the more complicated function O.
This is because the only bad event that can occur when checking the sub-
expressions is that an identifier may be added to the domain of the meaning
function when a previously undeclared symbol is referenced.

7.7.2 Binary expression — Type checking semantics
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YV BinExpr; pr : EnvT e
3 ExprType; EzprType'; A" : P ATTR; ExprType” |

0 ExprType = Tg €l pt A OExprType’ = Tg €2 pr

NA"=AUA o

A O ExprType’” =
if #A4” <1
then (| 7 == Tpo Q(7,7'),A==A")
else (| 7 == typeWrong, A== |) e

Te(binEzpr 0 BinEzpr)pt = 0 ExprType”

The types of the sub-expressions are combined using the rules defined by the
type checking semantics of the binary operator.

The attributes are combined by taking their union. The two sub-expressions
are checked to ensure that their attributes are compatible: any use of an
expression is legal for at most one of readOnly and writeOnly. (Recall that
type checking of value references does not return any at attributes.)

7.7.3 Binary expression — Use semantics

VY BinExpr; B : STACK; put : EnvUTrace o
Jpvt’; pvt” . EnvUTrace |
put' =Ug €l Bput
A put" =Ug €2 Bput' e
Ui (binExpr 0 BinEzpr)B put = put”

Binary operator names are considered to be declared implicitly, so the whole
binary expression has a use semantics found by combining the separate se-
mantics of its sub-expression.

The order of evaluation of expressions is important, because variables may
be initialised (by being passed by reference to a function) in the first sub-
expression.
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7.7.4 Binary expression — Dynamic semantics

VY BinFExpr; B : STACK; pt : EnuMTrace; o : State o
3 ExprValue'; ExprValue”; ExprValue™ |
0 ExprValue’ = Mg €l B pt o
A O ExprValue” = Mg €2 B pt 0State’
A OState” = 0State”
A" = Mpo Q(Ul, U”) °
Mg (binEzpr 0 BinEzpr)B pt o = 0 ExprValue”

The binary operator meaning function is applied to the values of the sub-
expressions. The left expression is evaluated first, and the resulting state is
used in evaluating the right expression.

7.8 Function call

7.8.1 Function call — Symbol declaration semantics

Y FunCallEzpr; B : STACK; pét : EnvDTrace o
dpdt’ . EnvDTrace | p6t' = Dap « E B pdt e
Dg(funCall 0 FunCallExpr)B pdt = checkSymbol & B pdt’

The list of actual parameters is checked, and the result of this is combined
with the result of checking the function identifier.

7.8.2 Function call — Type checking semantics
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Tr : EXPR + EnvT -+ ExprType

Y FunCallEzpr; pt : EnvT | p & € ran function e
3 FunType; 7" : TYPE |
function 6 FunType = pt &
ANT =if#FE =#I NTyrp E I pr = checkOK
then 7 else type Wrong e
Te(funCall 0 FunCallExpr)pr = (T ==17,A==2 )
Y FunCallEzpr; pt : EnvT | pr £ & ran function e
T (funCall 0 FunCallEzpr)pr = (| T == typeWrong, A == @& )

A function call type checks correctly only if

e The name £ is a function name
e The number of actual and formal parameters match.

e The actual parameters are type correct

Then the type of the function call is retrieved from the environment. Other-
wise, it is type Wrong.

There is no attribute associated with a function call.

7.8.3 Function call — Use semantics

Y FunCallEzpr; B : STACK; put: EnvUTrace o
31 :seq IDTYPE; b : ID; pvt' : EnvUTrace;
X : PUSECHECK; pv : EnvU |
I = (function™ (lookup(§, B, pTt0))).1
A b = findBlock(&, B, put)
Aput' =Usp « E 1 B & put
A = (oot b)( {€} )\ {uncatied}
Apv={ x xo
Ug(funCall 0 FunCallEzpr)B puvt = update(put’, (b), pv)

The parameters to the function are checked. Then the function itself is known
to be called.
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I: the formal parameter IDTYPFEs.

b: the block where the function is declared. With no nested functions
and procedures, this must be the module name.

put’: the call-by-value actual parameters are checked, with the calling

blockstack.
x: the use check status of the identifier after being called.

update: then this use of £ is updated.

7.8.4 Function call — Dynamic semantics

YV FunCallEzpr; B : STACK; pt : EnuMTrace; o : State o

3 FunType'; o' : State; f : State + ExprValue; EzprValue” |
0 FunType' = function™ (lookup (&, B, pTt0))
No'=Mup . ET' BEpto
A f = fval™(lookup(&, B, pt))
A OExprValue” = f o' o

b < number v" < ub' =

Mg(funCall 0 FunCallExpr)B pt o = 0 ExprValue”

o’: The dynamic meanings of the actual parameters are evaluated,
resulting in a state o’ that has their values bound to the appropriate
formal parameters.

the function is applied to this state, resulting in a possibly modified
state and a return value.

b < number v"” < ub’ : if the return value lies in the subrange of the
function’s return type, the dynamic semantics is as defined.

Partial specification: Pasp’s subranges are checked dynamically, and the
consequence of overflow or underflow is undefined.
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8 Statements

8.1 Meaning function declarations
8.1.1 Symbol declaration semantics
The declaration environment is updated to reflect the status of any identifiers

used in the statement.

‘ Dg : STMT — STACK — EnvDTrace — EnvDTrace

8.1.2 Type checking semantics

The statement is mapped to an updated type environment and a check status
for that statement.

StmtType = [ prt : EnvTTrace; ¢ : CHECK |
‘ Ts : STMT -+ STACK -+ EnvTTrace + StmtType

In the symbol declaration semantics it is possible to associate an error with
an identifier, and so it makes sense to update the environment in order to
supply the user with that information. However, when type checking, two
possible errors can occur: a variable or named constant may be improperly
declared, or may be improperly used. In the latter case, it is the statement
that needs to be flagged, rather than the variable.

The trace environment is updated when checking case statements to add a
temporary variable for translating that statement.

8.1.3 Use semantics

The use environment is updated to reflect the status of any variables used in
the statement.

‘ Us : STMT - STACK - EnvUTrace +~ EnvUTrace
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8.1.4 Dynamic semantics

The meaning of a statement, given the context of a block stack, a dynamic
environment, and a current state, is a new state.

‘ Mg : STMT + STACK + EnvMTrace + State -+ State

8.2 Multiple statements
8.2.1 Multiple statements — Symbol declaration semantics

The meaning function for a single statement is extended to a list of statements
as Dg..

8.2.2 Multiple statements — Type checking semantics

The meaning function for a single statement is extended to a list of statements
inductively.

T« :seq STMT + STACK - EnvTTrace - StmtType

VB :STACK; ptt: EnvTTrace o
Ts+( ) B ptt = (| prt == p7t, c == checkOK |
Vo : STMT; T :seq STMT; B: STACK; prt: EnvTTrace o
3 StmtType'; StmtType”; " . CHECK |
0StmtType’ = Ts v B prt
A 0StmtType"” = Tg« T' B prt’
/\ C/// — C/ M C// °
Ts+((y) " T)B prt = prt == p1t", c == ")

8.2.3 Multiple statements — Use semantics

The meaning function for a single statement is extended to a list of statements
as Ugy.
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8.2.4 Multiple statements — Dynamic semantics

The meaning function for a single statement is extended to a list of statements
inductively.

Mg« :8eq STMT + STACK - EnvMTrace + State + State

VB :STACK; pt : EnuMTrace @« Mg-{ ) B pt = id State
Vv :STMT; T :seq STMT; B : STACK; pt: EnvMTrace; o : State o
do’,0" : State |
o'=Mgvy Bpto
No"=Mg T Bpto'e
Ms-((y) " T)B pt o ="

8.3 Block

8.3.1 Block — Symbol declaration semantics

VT :seq, STMT e Dg(block T') = Dg , T

A block’s status is the result of checking the sequence of body statements in
the context of a trace environment and block stack.

8.3.2 Block — Type checking semantics

VI :seq, STMT e Tg(block I') = Tg- T

A block’s status is the result of checking the sequence of body statements in
the context of an environment.

8.3.3 Block — Use semantics

VI :seq, STMT o Ug(block I') =Ug ,, T



98 The DeCCo project papers I: Z Specification of Pasp

A block’s status is the result of checking the sequence of body statements in
the context of a trace environment.

8.3.4 Block — Dynamic semantics

VI :seq, STMT o Mg(block I') = Mg~ T

A block’s meaning is the meaning of the sequence of body statements.

8.4 Skip

8.4.1 Skip — Symbol declaration semantics

VB :STACK e Dg skip B = id EnvDTrace

The declaration environment is left unchanged by a skip statement.

8.4.2 Skip — Type checking semantics

VB :STACK; prt: EnvTTrace o
Ts skip B ptt = (| prt == p1t, c == checkOK )

A skip statement type checks OK.

8.4.3 Skip — Use semantics

VB:STACK e Ug skip B =id EnvUTrace

The use environment is left unchanged by a skip statement.
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8.4.4 Skip — Dynamic semantics

VB :STACK; pt: EnuMTrace @ Mg skip B pt = id State

The state is left unchanged by a skip statement.

8.5 Assignment

8.5.1 Assignment — Symbol declaration semantics

V AssignStmt; B : STACK; pdt : EnvDTrace o
Jpot’, pdt”, pot" . EnvD Trace |
pot' =Dy . E B pit
A pot" = checkSymbol & B pdt’
A pot" =Dg e B pit" e
Ds(assign 0 AssignStmt)B pdt = pot"”

The source variable’s array index expressions are checked, then the source
variable’s name is checked, then the target expression is checked.

8.5.2 Assignment — Type checking semantics
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V AssignStmt; B : STACK:; prt: EnvTTrace o
dp7 : EnvT; ExprType; idt : IDTYPE; ¢ : CHECK |
pr =&/ (prto B)
N OEzprType = Tg € pT
Adt = pt &
A ¢ = if idt € ran variable U ran formalParam
A readOnly & attributeOf idt
A writeOnly ¢ A
A typeOf idt = 7 # type Wrong
AN#E>1=
( 3, EzprType’ | 0 ExprType’ = T« E pr ®
7' = arrayIndexType idt
A 1" 2 type Wrong
A writeOnly ¢ A"))
then ¢ == checkOK else ¢ == checkType Wrong e
Ts(assign 0 AssignStmt)B prt = (| prt == p1t,c == ¢ )

An assignment statement must pass the following type checks:

e The target & must be a variable name, or formal parameter name (so
not a constant, function of procedure name).

e The target must not be a readOnly variable.
e The source must not contain any writeOnly variables.
e The types of source and target must be equal, and not wrong.

e The type of the target’s array indexes must be match those used in
the original declaration, and not be wrong. (That the source value lies
within the target subrange is checked dynamically.)

e The target’s array indexes must not contain any writeOnly variables.

If the statement passes all these checks, it is mapped to checkOK , and other-
wise it is mapped to checkType Wrong. The type environment is unchanged.
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8.5.3 Assignment — Use semantics

V AssignStmt; B : STACK; puvt : EnvUTrace o
dpvt’, put” . EnvUTrace; b : ID; x : P USECHECK; pv : EnvU |
pvt' =Ug « E B put
A put" =Ug € B put’
A b = findBlock(&, B, put)
A x = (pvt” b)( {&} )\ {unwritten}
Apv={EF x xo
Us(assign 0 AssignStmt) B put = update(pvt”, (b), pv)

put’: the use environment formed by checking the array reference ex-
pression list.

put”: the use environment formed by checking the source expression.

b: the block where the identifier is declared.

e \: the use check status of the target identifier, no longer unwritten

update: the use after declaration semantics is updated

8.5.4 Assignment — Dynamic semantics
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V AssignStmt; B : STACK; pt: EnvMTrace; o : State o
3 State; ExprSeqValue'; ExprValue”; idt : IDTYPE;
VarType; [ :seqN - LOCN; [ : LOCN
" VALUE; X" : Store |
0State = o
N OEzprSeqValue’ = Mg« E B pt o
A OExprValue” = Mg € B pt 0State’
A idt = lookup (&, B, pTt0)
A 0 VarType = variable™ idt
A f = loc™ (lookup (&, B, pt))
A 1 = refLocation(idt, f, %', V')
A" =ifl & o
then v” else stream(stream™ (X" 1) ™ (v"))
/\ 2/// — 2// EB {l —s ,U///} °
T € ran subrange A b < number v" < ub
V T & ran subrange =
M (assign 6 AssignStmt)B pt o =
(X==Y"i==1,0==0)

Assignment updates the store with the value of the assigned expression and
updates the state with the new status of any relevant streams.

e OFExrpSeqValue': the state and values that result from evaluating the
target’s array index expressions.

e OExrpSeqValue”: the state and value that then results from evaluating
the source expression.

e [: the location of the target variable.

e [ ¢ o.0: if [ is not an output location, the value is that stored in location
[. Otherwise location [ contains a stream of values (the output stream),
and the value is concatenated to the end of the stream, and the state
is updated to have this written value.

e 7 € ran subrange ... = ...: if the target has a subrange type and the
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source value lies within the type, or if the target is an ordinary type,
then the dynamic semantics is as given.

Partial specification: Pasp’s subranges are checked dynamically, and the
consequence of overflow or underflow is undefined.

8.6 If statement

8.6.1 If — Symbol declaration semantics

V IfStmt; B : STACK; pdt: EnvDTrace o
Apot’, pdt”, pot" . EnvDTrace |
pot' =Dg e B pdt
A pot" =Dg v1 B pdt
A pdt" = Dg v2 B pit e
Ds(ifStmt 0IfStmt) B pdt = pdt’ U pdt” U pot"

The statement alters the declaration environment to have the worst proper-
ties of the environments of the expression and the two substatements.

The reason why U can be used in place of O is explained in section 8.5.1.

8.6.2 If — Type checking semantics

vV IfStmt; B : STACK; prt: EnvTTrace o
dp7 . EnvT'; EzprType; StmtType’; StmtType”; ¢ : CHECK |

pT =@/ (prt o B) A 0 ExprType = T € pt

A OStmtType’ = Ts v1 B prt

A OStmtType” = T v2 B prt’

A " =if 7 = boolean N writeOnly ¢ A
then ¢’ X " else checkTypeWrong e

Ts(ifStmt 01fStmt)B prt = (| prt == p7t", c == ")

The if statement checks checkOK only if the expression has type boolean and
is not writeOnly, and the two substatements both check checkOK .
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8.6.3 If — Use semantics

V IfStmt; B : STACK; pvut: EnvUTrace o
Jpvt’, pvt” pot"” . EnvUTrace |
pvt' =UE € B put
A put" =Ug v1 B put’
A put" =Us v2 B put’ e
Us (ifStmt 01fStmt) B put = put” & put”

The statement alters the use environment to have the worst properties of the
environments of the expression and the two substatements.

8.6.4 If — Dynamic semantics

V IfStmt; B : STACK; pt : EnuMTrace; o : State o
3 ExprValue'; State” |

0 ExprValue’ = Mg € B pt o

A OState” =
if v = vbool ptrue
then Mg v1 B pt 0State’
else Mg v2 B pt OState’ o

M (ifStmt 01fStmt)B pt o6 State”

The choice between the meaning of the two branch statements is made on
the basis of the value of the test expression in the current state.

8.7 Case statement
8.7.1 Case statement — Symbol declaration semantics

We first define the symbol declaration semantics of the branches.
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Decr : Branch — STACK — EnvDTrace — EnvDTrace

Y Branch; B : STACK; pdt : EnvDTrace
Ipdt’; pot” . EnvDTrace
pot’ = checkSymbol , = B pit
A pot" =Dg v B pit e
Der OBranch B pdt = rhodt’ U pdt”

A branch checks okay if all the case names have been declared, and if the
branch statement checks okay:.

The case statement is checked by combining the results of checking the switch
expression and all branches.

V CaseStmt; B : STACK; pdt : EnvDTrace o
Ipdt’; pot” . EnvD Trace
pot' = Dg e B pot
N pét" =Dep « K B pit e
Ds(caseStmt 0 CaseStmt) B pdt = rhodt’ U pdt”

8.7.2 Case statement — Type checking semantics

First we define the type checking semantics of a single branch.

Tcr, - Branch + STACK -+ EnvTTrace + seq ID x StmtType

Y Branch; B : STACK; prt: EnvTTrace o
3 StmtType’ | 0StmtType’ = Ts v B prt
Tcor OBranch B ptt = (E,0Stmt Type’)

This returns the sequence of labels attached to the branch, and the decla-
ration environment and check status that result from checking the branch
statement.

This definition is extended inductively to a sequence of branches.
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Tor - seq Branch +— STACK -+ EnvTTrace + seq ID x StmtType

VB :STACK; prt: EnvTTrace o
Ter( ) B ptt = (( ), prt == prt, c == checkOK ))
Vk : Branch; K :seq Branch; B : STACK; ptt: EnvTTrace o
3= 2" s seq ID; StmtType’; StmtType” |
(2, 0StmtType’) = T K B prt
A (Z7,0StmtType”) = Top k B prt’ @
Tor- (k) ~ K)B prt =
(2 TE | prt==prt",c==c W "))

The type checking semantics for case statements can now be completed.
Recall that the dummy identifier in the abstract syntax of a case statement
had no concrete syntax. This identifier is added to the type trace environment
as a temporary variable.

V CaseStmt; B : STACK; ptt : EnvTTrace o
dpr @ EnvT; ExprType'; prt': EnvTTrace; = : seq, ID; StmtType” |
pT7 =@/ (prt o B) N OExprType’ = T € pr
A (Vb:domprt e & & dom(prt b))
A ptt' = update(prt, B,{£ — tempVar 7'})
A (Z,0StmtType"”) = Terr K B prt’ @
(7" € ran scoped Type Value =
( 3 ScopedType’; = : seq, ID; " : CHECK |
7' = scoped Type Value 6ScopedType’
A" =if prt b & = enumType 0 Enum Type’
A " = checkOK
A writeOnly & A’
A= €iseqlD
Aran= =ranZ’
then checkOK else checkType Wrong ) e
Ts(caseStmt 0 CaseStmt)B prt =
(| prt == prt", c == "))
A (7" & ran scoped Type Value =
Ts(caseStmt 0 CaseStmt)B prt =
(| prt == prt", ¢ == checkTypeWrong )
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The case statement type checks okay only if

e the temporary identifier £ has not been used already (in practice this
can be achieved by including the line number of the statement in the
identifier)

e the switch expression’s type is an enumerated type
e the branches type check okay, and have no write only attributes
e there are no repeated branch labels

e every enumerated value of the switch type appears as a label in a
branch, and no other label occurs

8.7.3 Case statement — Use semantics

Each branch is checked and the results are combined pessimistically.

Ucr+ : seq Branch - STACK - EnvUTrace +—~ EnvUTrace

VB : STACK; pvut : EnvUTrace e Ucr+( ) B put = put
YV Branch; K :seq Branch; B : STACK; put : EnvUTrace o
dput’; put” . EnvUTrace |
put' =Us v B put
A put" =Uc- K B put e
Ucr- ({0 Branch) — K)B put = put’ & pot”

The use semantics of a case statement applies that of the branches to the use
environment formed by checking the switch expression.

YV CaseStmt; B : STACK; put : EnvUTrace o
dpvt’; pvt” . EnvUTrace |
pvt' =UE € B put
N p’Ut// = uCL* K B ,O’Ut/ [
Us(caseStmt 0 CaseStmt)B put = put”
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8.7.4 Case statement — Dynamic semantics

The dynamic semantics of case statements are defined by calculating the dy-
namic semantics of an equivalent fragment of Pasp that contains the case
statement transformed to nested if-then-elses®. In order to evaluate the ex-
pression at the head of the case statement only once, a temporary variable
is used to store the expression value. So the case statement

CASE ¢ OF
5117 s 751711 M

€m17 s 7€mnm “Ym

is (abstractly) transformed to

E:= €
IF §=&u V... V&=
ELSE IF £ =& V... V& =&y,
THEN 7,
ELSE IF ...

ELSE 7,

We define some functions that convert parts of the case statement into their
Pasp equivalents. The first of these defines the test expression required at
the head of each branch. (No ‘empty expression’ exists, so the function is de-
fined only for non-empty sequences of labels, making its inductive definition
somewhat different in form from usual.)

6The operational semantics are defined as the operational meaning of the same frag-
ment, thus making the proof of the correctness immediate by structural induction.
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limbEzpression : seq, ID -+ ID + EXPR

VEE D ID e
limbEzpression(§) £ =
binExpr( == eeq, €l == valueRef (£ ==&, E == () ),

€2 == wvalueRef ({ ==& E==()) )
VE:seq, ID; £, 1D e
Jdel, €2 : EXPR |
el = limbExpression(£)£’
A €2 = limbEzpression = &' o
limbExpression((§) T Z)¢' =
binExpr| QQ == or,el ==€l,e2 ==¢2 )

We define the nested if statement that switches between different branches.

limbSwitch : seq, Branch - ID + STMT

Y Branch; & : ID e limbSwitch{6Branch) £ =~
Y Branch; & : ID; K :seq Branch e
de: EXPR; 42 : STMT |
€ = limbExpression = &
A 2 = limbSwitch K & o
limbSwitch ({0 Branch) — K){ =
ifStmt( e == e,71 == v,72 ==~2)

The dynamic semantics of case statements is defined as follows. The location
assigned to the temporary variable is not needed outside the block defined
in this semantics. However, it is easier to define distinct locations for all the
temporary variables in the trace environment, as this reduces the impact on
the proof conditions to a minimum (although it is slightly less efficient on
space).

vV CaseStmt e
Al 1 seq STMT |
D = (assign{ € == &, F == (), == ¢ ],
limbSwitch K &) o
M (caseStmt 0 CaseStmt) = Mg(block T')
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8.8 Loop

8.8.1 Loop — Symbol declaration semantics

YV WhileStmt; B : STACK; pdt : EnvDTrace o
Jpot’; pot” . EnvDTrace |
pot' =Dg e B pdt
A pdt" =Dg v B pit e
Ds(whileStmt 0 WhileStmt)B pot = pdt’ U pot”

The loop statement alters the declaration environment to be the worse of the
environments of the expression and the body statement.

8.8.2 Loop — Type checking semantics

V WhileStmt; B : STACK; prt: EnvTTrace o
dp1 2 EnvT; ExprType; StmtType'; ¢ : CHECK |
pT =&/ (prto B)
A OEzprType = Ty € pt
A OStmtType' = Tg v B prt
A ¢ = if 7 = boolean N writeOnly ¢ A
then ¢’ else checkType Wrong e
Ts(whileStmt 0 WhileStmt)B prt = (| prt == prt’,c == ¢ )

The loop statement type checks checkTypeWrong if the expression is not
boolean or is writeOnly. Otherwise, it type checks to the check status of the
body statement.

8.8.3 Loop — Use semantics

YV WhileStmt; B : STACK; put : EnvUTrace o
dput’; pvt” . EnvUTrace |
pvt' =Ug € B put
A put" =Us v B put’ e
Us(whileStmt 0 WhileStmt)B pvt = pvt” <& put!
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The loop statement alters the use environment by composing the checking
of the expression and the body statement in turn (the expression could use
variables if it includes a function call).

8.8.4 Loop — Dynamic semantics

If the meaning of the test expression is true in the current state, the meaning
of the loop is that of the body, followed by the loop again. If the test is false,
the state is unchanged.

VY WhileStmt; B : STACK; pt: EnvMTrace; o : State e
3 ExprValue'; State” |
0 ExprValue’ = Mg € B pt o
A (v = vbool ptrue =
( 3 State” | State = Mg v B pt 0State’ o
0 State” =
M (whileStmt @ WhileStmt)B pt 6State™ ))
A (v" # vbool ptrue = OState” = 0State’) o
M (whileStmt 6 WhileStmt)B pt o = 0State”

8.9 Procedure call

8.9.1 Procedure call — Symbol declaration semantics

Y ProcCallStmt; B : STACK; pot : EnvDTrace o
Ipdt’; pot” . EnvDTrace |
pot’ = checkSymbol & B pdt
A pSt" =Dap « E B pit e
Ds(procCall 0 ProcCallStmt)B pdt = pot’ U pdt”

The procedure call statement alters the declaration environment to be the
worse of the environments of the procedure identifier and the actual param-
eters.
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8.9.2 Procedure call — Type checking semantics

Y ProcCallStmt; B : STACK; ptt : EnvTTrace o
dp7 . EnvT; idt : IDTYPE |
pr =@/ (prto B)
ANidt =pr € e
(idt € ran procedure =
( 3 ProcType'; ¢ : CHECK |
0 ProcType' = procedure™ idt
Nc=if#E =#1' NTyps E I' pr = checkOK
then checkOK else checkType Wrong e
Ts(procCall 0 ProcCallStmt)B prt =
{ prt==prt,c==c]))
A (idt ¢ ran procedure =
Ts(procCall 6 ProcCallStmt)B prt =
(| prt == ptt, c == checkTypeWrong |))

The check status of a procedure call is checkOK only if there are the correct
number of actual parameters, and they all have the correct type.

8.9.3 Procedure call — Use semantics

Y ProcCallStmt; B : STACK; puvt : EnvUTrace o
31 :seq IDTYPE; b: ID; put' : EnvUTrace;
X : PUSECHECK; pv : EnvU |
I = (procedure™ (lookup (&, B, ptt0))).1
A b = findBlock(&, B, put)
Aput' =Usp « E 1 B & put
Ax = (pot” b)( {€} )\ {uncalled}
Apv={} x xeo
Us(procCall 6 ProcCallStmt) B put = update(put’, (b), pv)

The list of actual parameters is checked, then the fact that the procedure
has been called is recorded.
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8.9.4 Procedure call - Dynamic semantics

Y ProcCallStmt; B : STACK; pt : EnuMTrace; o : State o
31 :seq IDTYPE; f : State - State; State’; State” |
I = (procedure™ (lookup(&, B, p7t0))).1
A f = pval™(lookup(&, B, pt))
N OState’ = Mup « E 1 BEpto
A OState” = f OState’ o
M (procCall 6 ProcCallStmt)B pt o = §State”

The correct bindings relating actual to formal parameters are carried out, and
then the procedure body under the environment is applied to the resulting
state.
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9 Declarations — Semantics

9.1 Introduction

In this section we specify the semantics attached to declarations.

9.2 Named constant
9.2.1 Named constant — Symbol declaration semantics

The meaning function takes a declaration, the current block, and a declara-
tion trace environment, and produces a new environment.

‘ Dyc : ConstDecl — ID — EnvDTrace — EnvDTrace
‘ V ConstDecl @ Dyc 0 ConstDecl = addSymbol &

If a new named constant is being declared, then it is added to the environment
as checkOK . If an identifier with the same name has already been declared
in this block then the name is flagged as MultiDecl. This is achieved with
the use of the function addSymbol.

9.2.2 Named constant — Type checking semantics

The type environment is updated with the value and type of the constant.
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Tnc . ConstDecl + ID + EnvTTrace — EnvTTrace

Y ConstDecl; b: ID; ptt: EnvTTrace |
k € ranname A (name™ K, (b), prt) € dom lookup e
3idt, idt’ . IDTYPE |
idt = lookup(name™ k, (b), pTt)
A idt" = if idt € ran const U ran enum Value
then idt else const( v == k,7 == typeWrong |) e
Tne 0ConstDecl b prt = update(prt, (b),{£ — idt'})

Y ConstDecl; b : ID; prt: EnvTTrace |
k € ran name A (name™ K, (b), prt) & dom lookup e
didt : IDTYPE | idt = const( v == Kk, 7 == typeWrong |) e
Tne 0ConstDecl b prt = update(prt, (b),{£ — idt})
Y ConstDecl; b: ID; prt: EnvTTrace | K~ ¢ ran name o
3idt : IDTYPE | idt = const( v ==k, 7 == constType k |) ®
Tne 0ConstDecl b prt = update(prt, (b),{£ — idt})

Note that we know that £ has not been declared previously, from the symbol
declaration semantics.

e If the constant value is a name in scope, and if that name is itself a
constant or an enumerated value, the constant is given the value and
type of the name.

e If the constant value is a name in scope, but that name is not a constant
or an enumerated value, there is a type error.

e If the constant value is a name not in scope, there is a type error.

e If the constant value is a literal, the constant is given the value and
type of the literal.

9.2.3 Named constant — Use semantics

The environment is updated with the constant name marked as unread.
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‘ Unc : ConstDecl - STACK -+ EnvUTrace +— EnvUTrace

Y ConstDecl; B : STACK; put : EnvUTrace o
Une 0ConstDecl B put = update(put, B, {{ — unread})

9.2.4 Named constant — Dynamic semantics

Every named constant identifier is mapped to the cval denotable value.

‘ Mpyc : ConstDecl +— STACK -+ EnvMTrace + EnvM Trace

YV ConstDecl; B : STACK; pt : EnuMTrace o
Mye 0ConstDecl B pt = update(pt, B, {£ — cval})

9.3 Type definition

9.3.1 Type definition — Symbol declaration semantics

‘ Drp: TYPE_DEF — ID — EnvDTrace — EnvDTrace

YV EnumDecl; b: ID e
Drp(enumDecl § EnumDecl)b = addSymbol .((§) T Z)b

The enumerated type name and all its component names are added to the
declaration environment.

9.3.2 Type definition — Type checking semantics

The type environment is augmented with the definition of the user defined
enumerated type. (The entire block stack is passed as an argument: this is
not necessary for enumerated types, but would be required for records, say.)

Checking a type definition adds the scoped type name and the enumerated
values to the type environment. For example, checking the enumerated type

TYPE colour = ( red, green, blue );



The DeCCo project papers I: Z Specification of Pasp 117

updates the environment as

prt @ {b—
pTt b
@ {colour — enumType(scoped TypeName(b, colour), (red, blue, green)),
red — enum Value((2,0), scoped Type Value (b, colour)),
green — enumValue((2, 1), scoped Type Value(b, colour)),
blue — enumValue((2,2), scoped Type Value(b, colour))}}

(with the addition of some casting functions to get the correct branches of
free types).

Trp : TYPE_DEF + STACK + EnvTTrace +~ EnvTTrace

YV EnumDecl; B : STACK; ptt: EnvTTrace o
3b:ID; 7',7: TYPE; u: ID < IDTYPE |
b= last B
A 17" = scoped Type Value 6ScopedType
ANT=if #=Z < #BYTE
then scopedTypeName 0ScopedType else type Wrong
A u = {& — enumType 0 EnumType}
U{n:domZe
n —
enumValue(| v == venum(#= — 1,n — 1),
r==7)}e
Trp(enumDecl  EnumDecl) B ptt = update(ptt, B, u)

n
—_
=
=

For an enumerated type, the number of value labels is checked; it must not
be greater than 256.

As with variables, if a defined type is incorrectly defined but not used, then
this appears in the trace environment, not in the check status.

9.3.3 Type definition — Use semantics

The environment is updated with the type name marked as unused.
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Urp : TYPE_DEF + STACK + EnvUTrace - EnvUTrace

Y EnumDecl; B : STACK; put : EnvUTrace o
Urp(enumDecl 0 EnumDecl) B put =
update(pvt, B, {§ — unused})

9.3.4 Type definition — Dynamic semantics

All information required is extracted from the type trace environment.

9.4 Variable declaration
9.4.1 Variable declaration — Symbol declaration semantics

The variable declaration meaning function takes a variable declaration, the
current block stack, and a declaration trace environment, and gives an up-
dated environment with the declaration added.

Dy : VarDecl — STACK — EnvDTrace — EnvDTrace

YV VarDecl; B : STACK; pdt : EnvDTrace
dpdt’ : EnvDTrace |
pot’ = if 7 € ran typeName
then checkSymbol(typeName™ 7)B pdt else pit e
Dy 0VarDecl B pét = addSymbol &(last B)pdt’

If the type is a user defined enumerated type, it is checked. The identifier is
added to the environment.

If any identifiers used in the type (for defining an array bound) are not
declared, this fact is not detected here; it is trapped by the type checking
semantics.
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9.4.2 Variable declaration — Type checking semantics

The type checking semantics for variable declarations adds the variable to the
type trace environment. The type semantics is complex due to the presence
of attributes and array ranges. For the sake of clarity, it is broken down into
checks on each component. If each part checks successfully, the variable type
is set; the type Wrong value is used if any of the checks fail.

9.4.2.1 Attribute checking

Ty« :5eq ATTR x TYPE — CHECK

VA:seqATTR; 7: TYPE o
Ta-(A, 1) =

if A €iseq ATTR

AranA € J{ n: LOCN e
{@,{dataAt n}, {writeOnly, dataAt n},
{readOnly, dataAt n}, {nvram, dataAt n}} }

A ({readOnly, nvram} Nran A # & = 7 = pbyte)

then checkOK else attribute Wrong

The attribute check ensures that

e the attributes are all different

e the attribute list is either empty, or contains a single dataAt attribute,
or contains a writeOnly attribute with a dataAt attribute, or contains
a readOnly attribute with a dataAt attribute, or contains an nvram
attribute with a dataAt attribute. This ensures that read only, write
only, and nvram variables are always at specific locations.

e [f the variable is read only or nvram, it has byte type

9.4.2.2 Bound checking
This checks that the bound has a value that can be calculated statically, that
is, involves only literals or named constants. Only unsigned and byte bounds



120 The DeCCo project papers I: Z Specification of Pasp

are allowed. The type trace environment is used to determine the type of
any named constants. This function also returns the numerical value of the
bound, so that it can be checked when the whole subrange is checked.

Tgni : BOUND — STACK — EnvTTrace —+ N x TYPE

Vk: VALUE; B: STACK; prt: EnvTTrace |
Kk € ran vunsgn U ran vbyte o
TBna £ B ptt = (number k, constType k)

V¢ ID; B: STACK; prt: EnvTTrace |
(&, B, prt) € dom lookup e
didt : IDTYPE; n:N; 7: TYPE |
idt = lookup (&, B, prt)
A (idt € ran const =
( 3 ValueType' | 6 Value Type' = const™idt e
(n,7) = if 7 € {unsigned, pbyte}
then (number v',7') else (0, type Wrong) ))
A (idt € ran enum Value =
( 3 ValueType' | 0 Value Type’ = enum Value™idt o
(n,7) = (number v',7")))
A (idt & ran const U ran enum Value =
(n,7) = (0, type Wrong)) e
Tpni(nameBound £)B prt = (n,T)
V¢ ID; B: STACK; prt: EnvTTrace |
(&, B, prt) & dom lookup e
Tpna(nameBound &)B prt = (0, type Wrong)

Vk: VALUE; B: STACK; prt: EnvTTrace |
k & ran vunsgn U ran vbyte U ran name o
Tpna k B prt = (0, type Wrong)

1. If the bound value is an unsigned or byte number literal, the bound’s
value and type are given by the literal

2. If the bound value is a name, and that name has been declared, then

(a) if the name is a named constant, the bound’s value and type are
given by the constant
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(b) if the name is an enumerated value, the bound’s value and type
are given by the enumeration

(c) otherwise, there is a type error

3. If the bound value is a name, but that name has not been declared,
then that is a type error. (So undeclared identifiers used in subranges
are trapped here by the type checking semantics.)

4. If the bound value is not a literal or a name, then that is a type error.

If the type is type Wrong then the value assigned does not matter; 0 has been
chosen arbitrarily.

9.4.2.3 Subrange checking
The subrange type check also substitutes the values of any named constants.
This check returns type Wrong if the two bounds have different types, and the
type of the first bound if they are the same. So if either has type type Wrong,
then type Wrong is returned. The return value is also type Wrong if the second
bound is smaller than the first.

Tsr : Subrange — STACK - EnvTTrace - SubrangeType

YV Subrange; B : STACK; ptt: EnvTTrace o
dn,n' :N; 7,7 : TYPE; SubrangeType" |

(n,T) = TBnd b B th

A (n',7") = Tpng ub B ptt

A OSubrange Type” =
if 7 = 7' € {unsigned, pbyte} AN n < n'
then (b ==n,ub==n/,7==7)
else | Ib ==0,ub == 0,7 == typeWrong | e

Tsr 0Subrange B prt = 0Subrange Type”

9.4.2.4 Array range checking

The empty range (that is, simple variable rather than array) is arbitrarily
given a type of unsigned. In a non-empty sequence, the subranges must all
have the same type (checked by typeMerge).
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Tsp+ : seq Subrange + STACK -+ EnvTTrace + ArrayType

VB :STACK; prt: EnvTTrace o
Tsp+( ) B ptt = ( SR == (), 7a == unsigned |
Vs : Subrange; B : STACK; prt: EnvTTrace o
3 Subrange Type | 0 SubrangeType = Tsp s B prt o
Tsp+(s) B prt = (| SR == (SubrangeN),7a == 7 |
Vs @ Subrange; sr:seq, Subrange; B : STACK; prt: EnvTTrace o
3 Subrange Type; ArrayType; ArrayType’ |
OSubrangeType = Tsr s B p1t
A OArrayType = Tggp+ sr B ptt
A SR = (SubrangeN) — SR
A Ta' = mergeTypes(T,Ta) ®
Tsr-((s) ™ sr)B prt = 0 ArrayType’

9.4.2.5 Simple type checking
This returns the numerical value of the bounds.
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Tr: TYPE - STACK -+ EnvTTrace + CHECK x SubrangeType

VB :STACK; prt: EnvTTrace o
Tr unsigned B ptt =
(checkOK, (| Ib == 0, ub == #UNSIGNED — 1,
T == unsigned |))
A Tr pbyte B prt =
(checkOK, (| Ib == 0, ub == 255, 7 == pbyte |))
A Tr boolean B prt =
(checkOK, (| Ib == 0, ub == 1,7 == boolean |))
A T typeWrong B prt =
(checkType Wrong, ( b == 0,ub == 0,7 == typeWrong ))
YV sr: Subrange; B : STACK; prt: EnvTTrace o
3 Subrange Type; ¢ : CHECK |
O Subrange Type = Tgr sr B prt
A ¢ = if T = type Wrong
then checkType Wrong else checkOK e
Tr(subrange sr)B ptt = (¢, 0Subrange Type)
V& ID; B: STACK; prt: EnvTTrace o
didt : IDTYPE; EnumType; n:N; ¢: CHECK |
idt = lookup(§, B, prt)
A O EnumType = enumType™ idt
An=#H=-1
A ¢ = if T = type Wrong
then checkType Wrong else checkOK e
Tr(typeName &)B prt = (¢, | b ==0,ub == n,7 ==17))

9.4.2.6 Initialisation value type checking
init Type returns the type of an initialisation value (which may be a literal
value, the name of a constant, or the name of an enumerated value).
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initType : VALUE - STACK - EnvTTrace — TYPE

Vv: VALUE; B: STACK; prt: EnvTTrace @
(v € ran name =
( 3 ID | € =name~v e
mitType v B pTt =
if (&, B, prt) € dom lookup
A lookup(€, B, prt) € ran const U ran enum Value

then typeOf (lookup(&, B, pTt))
else typeWrong ))

A (v & ran name = initType v B prt = constType v)

e If the value is a name, it is an error if has not been declared, or declared
as something other than a constant or an enumerated value

e [f the value is not a name, its type is that given by the literal constant

it TypeSeq returns the sequence of types of a sequence of initialisation val-
ues.

initTypeSeq : seq VALUE - STACK -+ EnvTTrace - seq TYPE
VB :STACK; prt: EnvTTrace o
initTypeSeq( )B ptt = ()
VYv: VALUE; V :seq VALUE; B : STACK; ptt : EnvTTrace o
initTypeSeq((v) ™ V)B prt =
(initType v B prt) ~ initTypeSeq V' B ptt

The initialisation value type checking function takes the variable declaration,
the low and high bounds of the variable’s allowed value, and the number of
elements in the array being declared, and returns a check value.
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T; : VarDecl x SubrangeN x N - STACK - EnvTTrace + CHECK

V VarDecl; SubrangeN; n:N; B: STACK; prt : EnvTTrace o
AT :PTYPE; A :PATTR; ¢: CHECK |
T = ran(initTypeSeq V' B ptt)
N A" = ran A N {readOnly, writeOnly, nuram}
Ne=if(A#SN#T =0
VA=0ANT={r} N#V €{1,n})
A (Vi:dom V el < number(V i) < ub)
then checkOK else checkType Wrong e
7:(0 VarDecl, 0 SubrangeN , n) B ptt = ¢

e T : a set containing the types of the variable’s initialisation values

e A’ : a set containing the variable’s non-at attributes (at most one of
readOnly, writeOnly or nvram)

o A'# & N#T =0 : if the variable has non-at attributes, then it must
not be initialised.

o A\ =2 NT = {1} N#V € {1,n} : if the variable has no non-
at attributes, then it must be initialised. All the initialisation values
must be the same type as the variable, and there must be either one of
them (simple initialisation) or one per array element.

e Vi :domV e ...: all the initialisation values must lie within the
bounds of the variable’s allowed value.

9.4.2.7 Variable declaration type checking
Array ranges are either unsigned values or bytes.
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Ty : VarDecl - STACK + EnvTTrace — EnvTTrace

YV VarDecl; B : STACK; prt: EnvTTrace o
3 VarType'; ¢, ¢’ : CHECK; idt : IDTYPE |
(', 0SubrangeType') = Tr T B ptt
N O ArrayType’ = Tsp- SR B ptt
A ¢ = T;(0VarDecl,0SubrangeN', numElts SR')B ptt
N A =ran A
A idt = if Ty« (A, 7) X cX ¢! = checkOK
then variable 0 VarType'
else variable( A == &, SR == (), 7a == 14/,
Ib==0,ub == 0,7 == typeWrong |) e
Ty 0VarDecl B prt = update(prt, B,{{ — idt})

We know that £ is not already declared, because the symbol declaration
semantics have checked correctly.

The last block in the stack is the current block, and so the type environment
for this block is updated.

9.4.3 Variable declaration — Use semantics

First we type check the use of enumerated types in the type of the variable
declaration.

Ur : TYPE +~ STACK - EnvUTrace +~ EnvUTrace

V71 : TYPE; B: STACK; pvut : EnvUTrace | T € ran typeName o
3 ScopedType; = : seq, ID; x : P USECHECK; pv : EnvU |
T = typeName & N b = last B
A lookup(&, B, pTt0) =
enumType( T == scoped TypeName 0Scoped Type,

—_ —_
— —— -

Ax = (put B {&} D\ {unused}
Apv={} xxe
Ur T B put = update(put, B, pv)
V71 :TYPE; B:STACK; put: EnvUTrace | T & ran typeName
Ur T B put = put
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The definition of the use semantics for variable declarations is:

Uy : VarDecl + STACK -+ EnvUTrace + EnvUTrace

YV VarDecl; B : STACK; pvut: EnvUTrace o
dpvt’ : EnvUTrace; A’ : PATTR; x : P USECHECK; pv : EnvU |
pot' =Ur 7 B put N A’ =ran A
A x = if readOnly € A’
then {unread}
else if writeOnly € A’
then {unwritten} else {unread, unwritten}
Apv={ x xeo
Uy OVarDecl B pvt = updatepvt’, B, pv)

The type of the declaration is checked for use of user defined types. If the
variable is read only, it is set to unread; if it is write only, it is set to unwritten;
otherwise it is set to both unread and unwritten.

9.4.4 Variable declaration — Dynamic semantics

We define an auxiliary function that returns the locations used by a dynamic
environment.

usedLocations : EnvMTrace — P LOCN

V pt : EnvMTrace o
usedLocations pt =
U{ b:domp; £:ID; f:seqN -~ LOCN |
¢ edom(pt b) Apt b & =1loc [ e
ranf }

The locations allocated on declaration are
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allocate : IDTYPE x P LOCN -+ seqN »~ LOCN

Vi:IDTYPE; used : P LOCN e
I NN : seq SubrangeN; | : LOCN; f :seqN = LOCN |
NN = arrayOf i
A dom f =
{ N :seqN |
4N = #NN
A(Vn:l .. 4N e
N n € (NN n).lb ..(NN n).ub) }
A( VN :domfef N =1+ locationOffset(N, NN) )
A disjoint(ran f, used) o
allocate(i, used) = f

This (loosely) specifies the function f, mapping array indices to locations
with the following properties:

e disjoint(ran f, used)
The locations in f are distinct from any already allocated.

o domf ={N :seqN | #N = #NN ...}
All the sequences of values in f are the same length as the sequence
of subranges (NN is the sequence of numerical value pairs defining the
array bounds derived from the original subranges).

e domf={N:seqN|...}
Precisely those sequences of values between all lower and upper bounds
are in f.

o (VN :domf e f N =1+ locationOffset(N,NN) )
Each array element is situated at locationOffset from the first element’s
location /.

Note that if ¢ is a zero-dimensional variable, then #NN = 0. So the empty
sequence is the sole member of the domain of f, and a single new location is
added to the environment, as required.

The dynamic semantics of variable declaration is split into two parts: the
change to the environment due to locations being allocated, and the change in
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the state due to initialisation. These are separated because the environment
change occurs once (on declaration), whereas the initialisation may occur
several times (on each call of a procedure or function).

The allocation change to the environment is

My VarDecl + STACK —+ EnvMTrace + EnvMTrace

YV VarDecl; B : STACK; pt : EnuMTrace
3i: IDTYPE; used : P LOCN; f :seqN = LOCN |
i = lookup(&, B, pt0)
A used = usedLocations pt
A f = allocate(i, used) o
My 0VarDecl B pt = update(pt, B,{£ — loc f})

initValue returns the numerical value of an initialisation value (which may
be a literal value, the name of a constant, or the name of an enumerated
value).

witValue : VALUE + STACK - TYPE
Vv: VALUE; B : STACK e

(v € ran name =
(3 ID | & =name~v e
initValue v B = valueOf (lookup (€, B, pTt0)) ))
A (v & ran name = nitValue v B = v)

The initialisation change to the state is
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Myt VarDecl + STACK + EnvMTrace - State - State

YV VarDecl; B : STACK; pt: EnvMTrace; o : State o
3L :PLOCN; Ls:seq LOCN; State; X' : Store |
L = ran(loc™ (lookup (&, B, pt)))
AranLs = L
A OState = o
AN(Vi:2..#Lse Ls(i—1) < Ls 1)
A#V =0= 3 =)
ANH#V =1ANH#L=1=
Y=Y@&{l:L v:ranV e |+ initValue v B })
AN#V =1N1<#L=
Y=Y@{i:1l..#Ls; v:ranV e
Ls i — initValue v B })
ANI<#V =
Y=Y@®{i:1..#Lse Ls i initValue(V i)B }) e

My 0VarDecl B pt o = (X ==Y i==1i,0==10)

o Ls : seq LOCATION a sequence of the locations allocated to &, in

ascending order

e #V =0 : no initialisation values, so no change to the store

e #V =1A+#L =1 : one initialisation value, one location, so a simple

variable initialisation

e #V =1 A1 < #L : one initialisation value, several locations, so a

block array initialisation

e 1 < #V : several initialisation values, so an array initialisation

9.5 Simple declarations

The meaning of a simple declaration is the meaning of the relevant free type
branch.
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Where the branch definition uses a block ID, this refers to the last block in
the stack. Where the branch definition is absent, the identity mapping of
the environment is applied.

Dsp : SIMPLE_DECL — STACK — EnvDTrace — EnvDTrace

V& : ConstDecl; B : STACK e Dgp(constDecl §) B = Dy¢ 6(last B)
Vd: TYPE_DEF; B: STACK e Dgp(typeDecl §)B = Drp 6(last B)
Y § : VarDecl ® Dgp(varDecl 6) = Dy 0

DeclType = | prt : EnvTTrace; tc: Env[CHECK] |

Tsp : SIMPLE_DECL - STACK -+ DeclType + DeclType

Vo : ConstDecl; B : STACK; DeclType o
Tsp(constDecl 0) B 0 DeclType =
( prt == Tnc d(last B)ptt,tc == tc )
Vo : TYPE_DEF; B : STACK; DeclType
Tsp(typeDecl ) B 0 DeclType =
( prt ==Trp 6 B prt, tc == tc
YV : VarDecl; B : STACK; DeclType o
Tsp(varDecl §)B 0DeclType =
( prt ==Ty § B prt,tc == tc )

Usp : SIMPLE_DECL +— STACK -+ EnvUTrace +— EnvUTrace

Vo : ConstDecl; B : STACK o Usp(constDecl §)B = id EnvUTrace
Vé: TYPE_DEF; B : STACK e t1Ugp(typeDecl §)B = id EnvUTrace
V& : VarDecl @ Usp(varDecl §) =Uy 6

The dynamic semantics for simple declarations is split into two parts: loca-
tion allocation and initialisation.

The allocation change to the environment is
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Mgsp : SIMPLE_DECL + STACK -+ EnvMTrace + EnvMTrace

V§ : ConstDecl @ Mgp(constDecl §) = Mpy¢ §

Vé: TYPE_DEF; B: STACK e Mgp(typeDecl 0)B = id EnvM Trace
V' : VarDecl @ Mgp(varDecl §) = My

The initialisation change to the state is
Mgspr : SIMPLE_DECL + STACK -+ EnvMTrace - State + State
V¢ : ConstDecl; B : STACK; pt: EnvMTrace o

Mpr(constDecl §)B pt = id State

Vo : TYPE_DEF; B: STACK; pt : EnuMTrace
Mp(typeDecl §)B pt = id State

V6 : VarDecl; B : STACK; pt: EnuMTrace; o : State o
Mgpr(varDecl §)B pt 0 = My; § B pt o

Multiple declaration initialisation is the state change resulting from the com-
position of the individual state changes.

Mpr - seq SIMPLE_DECL -+
STACK -+ EnvMTrace + State + State

VB : STACK; pt: EnvMTrace « Mgp;+( ) B pt = id State
V8 : SIMPLE_DECL: A : seq SIMPLE_DECL; B : STACK:
pt : EnuMTrace; o : State o
do’, 0" : State |
o' =Mgspr § B pto
No" = Mgpr A B pto'e
MSDI*(<5> - A)B pt o = 0'”

9.6 Procedure declaration
9.6.1 Procedure declaration — Declaration before use semantics

Because of the complexity of procedure declarations, the checking is broken
down into checks on the individual components.
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First we define how to check the declaration of the formal parameters. The
name of the parameter is added to the environment, and if the type is user
defined, it is checked.

Dpup : ParamDecl — STACK — EnvDTrace — EnvDTrace

YV ParamDecl; B : STACK; pot : EnvDTrace o
dpot’ : EnvDTrace |
pot’ = if 7 € ran typeName
then checkSymbol(typeName™ 7)B pdt
else pit e
Dpyp 0ParamDecl B pdt = addSymbol &(last B)pdt’

To check the procedure body, we check the local declarations, and then check
the body statement, all in the given block.

Dp : Body — STACK — EnvDTrace — EnvDTrace

YV Body; B : STACK; pdt : EnvDTrace e
dpot’, pdt” : EnvDTrace |
pot' = Dgp « ASD B pét
A pot" =Dg v B pit' e
Dp 0Body B pit = pdt”

Putting these definitions together, we obtain the following semantics, where
the parameters and body are checked in the nested block (whose name is the
same as that of the procedure), and then the procedure name is added to the
surrounding block.

Dpp : ProcDecl — STACK — EnvDTrace — EnvDTrace

Y ProcDecl; B : STACK; pdt : EnvDTrace
AB': STACK; pdt’, pdt” : EnvDTrace |
B'=B " ()
A pdt" = Dpyp « 11 B'(pdt & { — 2})
A pét" = Dpg OBody B’ pét’ e
Dpp 0ProcDecl B pdt = addSymbol &(last B)pdt”
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9.6.2 Procedure declaration — Type checking semantics

Each formal parameter is added to the type trace environment.
Tpup : ParamDecl +— STACK -+ EnvTTrace - EnvTTrace

Y ParamDecl; B : STACK; prt: EnvTTrace o
3 FormalType'; idt : IDTYPE; x : CHECK |
=N =cNA =rand
A (x, 0SubrangeType') = Tr T B prt
N O ArrayType’ = Tsp« SR B ptt
A idt = if Ty« (A, 7) X x = checkOK
N A" C {readOnly, writeOnly }
N(c=ref V#SR=0NA = @)
then formalParam 6 FormalType’
else formalParam( { ==&, ¢ == ¢, A == A,
SR=={(),Tra==7d,lb==0,ub==0,
T == typeWrong |) e
Tpyup OParamDecl B prt = update(prt, B, {& — idt})

No attribute other than read only or write only is allowed for a formal pa-
rameter. Also, the parameter must be called by reference unless it is a simple
variable (that is, is not an array and has no attributes).

Type checking the procedure body carries out two functions. The environ-
ment is updated with the types of the local variables and constants, and the
type usage of the body statement is checked. The block is labelled with this
check status in the mapping Block TypeCheck.

Tp : Body +~ STACK - DeclType + DeclType

Y Body; B : STACK; DeclType
3 DeclType'; StmtType”; tc” . Env[CHECK] |
O DeclType’ = Tsp « ASD B 0DeclType
A OStmtType” = Tg v B prt’
A tc" =t @ {last B+ "} o
Tp 0Body B 0DeclType = {| prt == prt" tc == tc" )

We define a function that extracts the parameter names from a sequence of
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parameter declarations.

extractParamlds : seq ParamDecl — seq ID

extractParamlds{ ) = ()
V ParamDecl; 11 : seq ParamDecl o
extractParamlds((6 ParamDecl) ™ 11) = (£) 7 extractParamlds 11

We now define the type checking semantics of procedure declarations.

Tpp : ProcDecl +~ STACK -+ DeclType + DeclType

YV ProcDecl; B : STACK; DeclType o
3 ProcType’; prt’, prt"” . EnvTTrace; DeclType”,
= :seqID; pr: EnvT |
B'=B ()
A prt' =Tpyp « 11 B'(prt & {{ — 2})
A ODeclType” = Tg OBody B'( prt == p1t’, tc == tc )
A = = extractParamlds 11
ANI'=prt" £o =
A pT = {& — procedure 0 ProcType'}
A ptt" = update(prt”, B, pT) ®
Tpp 0ProcDecl B ODeclType = (| prt == prt"” tc == tc" )

The procedure identifier itself is entered into the type environment with the
block stack relevant to the procedure body and the types of the parameters.
The parameters are declared inside the block labelled by the procedure name.

9.6.3 Procedure declaration — Use semantics

Most of the information required from the declarations of the formal pa-
rameters, local constants, types, and variables is extracted from the type
trace environment. The usage of defined types in parameter and variable
declarations is checked.
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Upup : ParamDecl - STACK -+ EnvUTrace +— EnvUTrace

Y ParamDecl; B : STACK; pvt : EnvUTrace o
dpvt’ . EnvUTrace; pv : EnvU |
pvt' =Ur T B put
pv = {&} x {unread, unwritten} e
Upyp OParamDecl B put = update(pvt’, B, pv)

The use semantics of the body is just the use semantics of the local variable
declarations. In addition a use value is returned that contains the body
statement and the procedure name marked as Unused.

Up : Body +~ STACK —+ EnvUTrace + EnvUTrace

YV Body; B : STACK; put: EnvUTrace o
Jpvt’, put” : EnvUTrace |
pvt' =Usp « ASD B put
A put" =Us v B put’ e
Up 0Body B put = put”

All that is then required is to apply the semantics of the parameter declara-
tions and the body.

Upp : ProcDecl + STACK -+ EnvUTrace +— EnvUTrace

Y ProcDecl; B : STACK; put : EnvUTrace o
AB': STACK; pvt’, pvt” : EnvUTrace |
B'=B " (§)
N ,OUt/ = z/{PMD * II B/(pUt D {5 — @})
A put” =Ug OBody B’ put’ e
Upp OProcDecl B put = update(pvt”, B, {& — uncalled})

9.6.4 Procedure declaration — Dynamic semantics

The dynamic semantics of parameter declarations allocates a single location
for the formal parameter. This is used to store the value of a call-by-value
actual parameter (which would be a simple variable only, not an array) and
to store the start location of a call-by-reference actual parameter.
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Mopuyp : ParamDecl - STACK -+ EnvMTrace - EnvMTrace

V& : ParamDecl; B : STACK; pt: EnuMTrace o
3¢ :ID; | : LOCN; f :seq VALUE » LOCN |
(€) = extractParamlds (m)
A I & usedLocations pt e
Mpyp ™ B pt = update(pt, B,{& — loc{() — [}})

The procedure body is mapped to the meaning of the declaration initialisa-
tions followed by the body statement. This is calculated with an environment
updated by the declarations of the local variables. This meaning is a state
transition.

Mp : Body + STACK -+
EnvMTrace + EnvMTrace x (State - State)

YV Body; B : STACK; pt: EnvMTrace e
dpt’ . EnuMTrace; fd, fb : State -+ State |
ptl = MSD * ASD B pt
A fd = Mgpr« ASD B pt’
/\fb:./\/lg")/Bpt/O
Mp 0Body B pt = (pt', fd 5 fb)

The meaning of a procedure declaration is the environment obtained from
the dynamic semantics of the body applied to the meaning of the parameters.
The procedure name is added to the environment, and is mapped to the state
transformation given by the body statement.

Mpp : ProcDecl - STACK - EnvMTrace +— EnvMTrace

Y ProcDecl; B : STACK; pt: EnvMTrace o
3B : STACK; pt',pt" : EnuMTrace; fs : State + State |
B'=B"(¢)
A pt' = Mpuyp « 11 B/(pt ) {f — @})
A (pt”, fs) = Mp 0Body B’ pt' e
Mpp 0ProcDecl B pt = update(pt”, B, {& — pval fs})
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9.7 Function declaration
9.7.1 Function declaration — Symbol declaration semantics

The declaration semantics of functions is very similar to that for procedures,
except that a function declaration also effectively declares a local variable
with the same name as the function. This is used to store the return value.
So none of the formal parameters can have the same name as the function.

Drp : FunDecl — STACK — EnvDTrace — EnvDTrace

YV FunDecl; B : STACK; pdt : EnvDTrace o
AB': STACK; pdt', pdt”, pot"”, pét"" . EnvDTrace |
B =B ")
A pot' =if 7 € ran typeName
then checkSymbol & B pdt else pdt
A pdt" = addSymbol & E(pdt’ & {€ — T})
N ,O(Stm = DPMD * I1 B’ p(St”
A pét"" = Dpg OBody B’ pit"” e
Drp 0 FunDecl B pdt = addSymbol &(last B)pdt"”

Note that the function identifier is added to the trace environment of both
the outer and the inner block. In the outer block it represent the function,
while in the inner block it represents a local variable for the return value.

9.7.2 Function declaration — Type checking semantics

The type checking semantics for function declarations is similar to that for
procedures.
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Trp : FunDecl + STACK - DeclType - DeclType

YV FunDecl; B : STACK; DeclType o
3 FunType’; prt’, prt”, prt"" . EnvTTrace; DeclType™;
= :seqID; pt: EnvT |
B=B ()
A 0SubrangeType' = (Tr T B p1t).2
A prt’ =Tpyp « 1L B’ (prt & {§ — 2})
A prt" = update(ptt’, B,
{& — variable( A == &, SR == (),
Ta == unsigned, b == [b', ub == ub’,
r==r' )}
A ODeclType" =
Tp OBody B' (| prt == prt" tc == lc
= = extractParamlds 11
ANI'=prt" o =
A p1 = {& — function 0 FunType'}
A prt"" = update(prt”, B, pT) ®
Trp OFunDecl B 0DeclType = (| prt == prt"”" tc ==t )

A local variable with the same name and type as the function is added to the
type trace environment for the inner block. This variable is for the return
value of the function.

9.7.3 Function declaration — Use semantics

The use semantics of a function declaration is defined a similar way to that
of a procedure declaration, with the addition of a check on the return type.
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9.74

Urp : FunDecl — STACK —+ EnvUTrace +— EnvUTrace

Y FunDecl; B : STACK; put : EnvUTrace o
3B : STACK; put’, put”, put” : EnvUTrace |
B'=B" ()
A put' =Upyp « 1T B'(put @ { — @})
A put” =Up OBody B’ put’
A put" =Ur T B' put” e
Upp OFunDecl B put = update(pvt”, B, {{ — uncalled})

Function declaration — Dynamic semantics

The dynamic semantics of function declarations are similar to those of pro-
cedure declarations. The return value location [ is also added to the envi-
ronment.

Mrpp : FunDecl — STACK —+ EnvMTrace +~ EnvMTrace

YV FunDecl; B : STACK; pt : EnvMTrace
AB': STACK; pt',pt”, pt" . EnvMTrace; fc: State - State;
I': LOCN; o' : State; ExprValue' |
B =B~ (g
A pt' = Mpup « 11 B'(pt & {§ — @})
A ( 31:LOCN | I & usedLocations pt' e 1 =1")
A pt" = update(pt’, B, {& — loc{( ) — U'}})
A (pt"”, fc) = Mp 8Body B’ pt”
A OState’ = fc o
ANv' =31 e
Mpp 0 FunDecl B pt =
update(pt”, B,{& — fval{o +— OExprValue'}})

9.8 Procedure or function declarations

The meaning of a procedure or function declaration is the meaning of the
relevant free type branch.



The DeCCo project papers I: Z Specification of Pasp 141

Dprp : PROC_FUN_DECL — STACK — EnvDTrace — EnvDTrace

V9 : ProcDecl ® Dppp(procDecl §) = Dpp 6
V' : FunDecl @ Dppp(funDecl §) = Dpp §

Tprp : PROC_FUN_DECL - STACK - DeclType - DeclType

V§ : ProcDecl ® Tppp(procDecl §) = Tpp 6
V9 : FunDecl ® Tppp(funDecl §) = Trp 6

Uprp : PROC_FUN_DECL + STACK -+ EnvUTrace +~ EnvUTrace

Y § : ProcDecl @ Uppp(procDecl 6) = Upp 0
V9 : FunDecl ® Uppp(funDecl §) = Upp o

Mprp : PROC_FUN_DECL +~ STACK -+ EnvMTrace +— EnvMTrace

Y § : ProcDecl @ Mppp(procDecl §) = Mpp &
V4§ : FunDecl @ Mppp(funDecl 6) = Mpgp §
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10 Import Declarations

10.1 Introduction

In this section, the semantics for import declarations are defined.

The procedure and function declarations are dealt with separately, although
they have very similar semantics, because the function import declares a local
variable with the same name as the function import declaration. None of the
formal parameters can have the same name as the import.

10.2 Meaning function signatures

10.2.1 Symbol declaration semantics

Dy : IMPORT_DECL + STACK -+ EnvDTrace + EnvDTrace

10.2.2 Type checking semantics

‘ Ty : IMPORT_DECL +— STACK -+ DeclType + DeclType

10.2.3 Use semantics

‘ Uns : IMPORT_DECL + STACK -+ EnvUTrace — EnvUTrace

10.2.4 Dynamic semantics

There is no dynamic semantics for imports, as the modules themselves have
no defined meaning: there is only a meaning for the whole MPROG.
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10.3 Import Constant

An import constant declaration is semantically similar to an ordinary con-
stant declaration.

10.3.1 Import Constant — Symbol decl semantics

The name of the constant is added as an imported symbol.

V¢ ID; 7: TYPE; B : STACK; pot : EnvDTrace o
Dy (constHdr (&, 7)) B pdt =
addImportSymbol &(last B)pdt

10.3.2 Import Constant — Type checking semantics

The type of the constant must be one of unsigned, byte or boolean.

V¢ ID; 7: TYPE; B : STACK; DeclType o
3 DeclType'; Value Type' |
p1t’ = update(prt, (last B),{& — const 0 ValueType'})
A (tc',1") = if T € {unsigned, pbyte, boolean}
then (tc ® {{ — checkOK}, 1)
else (tc @ {& — checkType Wrong}, type Wrong) e
T (constHdr (&, 7)) B 0DeclType = 0 DeclType’

10.3.3 Import Constant — Use semantics

The constant is marked as initially unread.

V¢ ID; 7: TYPE; B: STACK; put : EnvUTrace o
Upy (constHdr (&, 7)) B put = update(pvt, B, {£ — unread})
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10.4 Import Variable
An import variable declaration is semantically similar to an ordinary variable

declaration. An imported variable is read only in the module to which it is
imported.

10.4.1 TImport Variable — Symbol decl semantics

Using the VAR_DECL semantics as a basis, we get the semantics for import
variable declarations to be

V VarDecl; B : STACK; pdt : EnvDTrace |
A= (readOnly) NV =) e
dpot’ . EnvDTrace |
pot' =if T € ran typeName
then checkSymbol(typeName™ 7)B pdt else pit e
Dy (varHdr 0 VarDecl) B pdt =
addImportSymbol &(last B)pdt’

10.4.2 Import Variable — Type checking semantics

The type checking semantics of import variable declarations is the same as
for variables.

V VarDecl; B : STACK; DeclType |
A= (readOnly) NV =) e
3 DeclType' |
prt' =Ty OVarDecl B prt
A tc' = tc @ {€ — checkOK} o
T (varHdr 0 VarDecl) B 0 DeclType = 6 Decl Type’

10.4.3 Import Variable — Use semantics

The use semantics is the same as that for variables.
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V VarDecl; B : STACK; pvt : EnvUTrace |
A= (readOnly) NV = () e
dpvt’ : EnvUTrace | put’ = Uy 0 VarDecl B put e
Uy (varHdr 0 VarDecl) B put = put’

If a variable is imported, it must be used in the module, otherwise the use
after declaration semantics gives a warning.

10.5 Import Procedure

An import procedure declaration is semantically similar to a ProcDecl with
a skip body.

10.5.1 Import Procedure — Symbol decl semantics

Using the ProcDecl semantics as a basis, we get the semantics for import
declarations to be the same, except that the variable is added as ImportOk,
rather than checkOFk.

Y ProcHdr; B : STACK; pot : EnvDTrace o
Ipdt’ : EnvDTrace |
pot" = Dpup « (B ™ (§))(pdt & {{ — 2}) o
Dy (procHdr 0 ProcHdr)B pdt =
addImportSymbol &(last B)pot’

10.5.2 Import Procedure — Type checking semantics

The type checking semantics of an import procedure declaration is the same
as for a procedure with a skip body.

Y ProcHdr e
T (procHdr 6 ProcHdr) =
Tpp( & ==& 1 ==11,ASD == ( ),y == skip )
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10.5.3 Import Procedure — Use semantics

The use semantics of imported procedure are the same as those for proce-
dures.

Y ProcHdr e
U (procHdr 6 ProcHdr) =
Upp( § == T ==11,A8D == ( ),y == skip )

For procedures imported into a module, they must be subsequently called,
otherwise their use after declaration semantics will fail like an unused proce-
dure.

10.6 Import Function

An import function declaration is semantically similar to a FunDecl with a
skip body.

10.6.1 Import Function — Symbol decl semantics

Using the FunDecl semantics as a basis, we get the semantics for import
declarations to be the same, except that the variable is added as ImportOk,
rather than checkOk.

Y FunHdr; B : STACK; pét : EnvDTrace o
Jpot’, pdt”, pot" . EnvD Trace |
pot’ = if 7 € ran typeName
then checkSymbol(typeName™ T)B pdt else pdt
A pdt" = addSymbol & E(pdt’ & {€ — T})
A ,0(575”’ = DPMD * H(B - <§>)p(5t” [ J
Dy (funcHdr 0 FunHdr)B pdt =
addImportSymbol &(last B)pot"”
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10.6.2 Import Function — Type checking semantics

The type checking semantics of an import function declaration is the same
as for a function declaration with a skip body.

Y FunHdr e
Tiy (funcHdr 0 FunHdr) =
Trp( ==& ==11,7 ==7,ASD == ( ),y == skip |

10.6.3 Import Function — Use semantics

The use semantics for imported functions are those for function declarations.

Y FunHdr e
Uy (funcHdr 0 FunHdr) =
Upp( E ==& Tl ==T1,7 == 1,ASD == ( ),y == skip

For functions imported into a module, they must be subsequently called, oth-
erwise their use after declaration semantics will fail as for unused functions.
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11 Export Declarations

In this section, the semantics for export declarations are defined. There is
only one export declaration in each of the standard modules. This should be
declaring the names of procedures and functions already declared completely
in that module. No procedures or functions imported to a module, should
be exported from the same module.

11.1 Export Declaration Semantics

The only semantics which need to be checked are the symbol declaration
semantics, there we ensure that the export names are not also imported to
the current module. If this is satisfactory, then the environment is restricted
to those exported identifiers. This has the functionality that any declaration
errors are still trapped within the semantics, and if this is correct then the
resultant environment can be used to trap declaration errors across modules.

11.1.1 Symbol declaration semantics

The export identifiers are checked in the outermost module block.

DExname checks that an exported name has been declared, and has not been
imported.

Dexname : ID — STACK — EnvDTrace — EnvDTrace

V¢ ID; B: STACK; pot : EnvDTrace o
dpd : EnvD; x : CHECK |
pd =@/ (pdto B)
A (€ € dom pd =
x=(lety ==pi¢e
if X' = ImportOK
then ImportExport else x' ))
A (& & dom pd = x = Undecl) o
DEXname 5 B pét = update(pétv Bv {5 = X})
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Each name in the export list is checked to ensure that the symbol has been
previously declared in the module.

Dgx : EXPORT_DECL — STACK — EnvDTrace — EnvDTrace

V= :seqlID; B: STACK; pdt: EnvDTrace o
dpot’ . EnvDTrace | pdt' = Dgxname « = B pot e

11.1.2 Type checking semantics

Each exported name is checked to have been declared as a constant name, a
non-writeOnly variable name, a procedure name, or a function name.

Texname : ID +— STACK -+ DeclType -+ DeclType

V& :ID; B: STACK; DeclType o
dx : CHECK; idt : IDTYPE; tc' : Env[CHECK] |
idt = prt (last B)¢
ANX =
if idt € ran const
U { v : ran variable | writeOnly & attributeOf v }
U ran procedure U ran function
then tc & X checkOK else checkType Wrong
ANtd =te@{E— x} o
Texname & B 0DeclType = (| prt == prt,tc == tc’ )

11.1.3 Use semantics

For the use semantics, no further information can determined, so no seman-
tics is defined.

11.1.4 Dynamic semantics

Similarly to the import declarations, the export declaration has no meaning
semantics as none are required. The meaning is defined only for a whole

MPROG.
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12 Modules

12.1 Introduction

In this section, the checking semantics for modules are defined. This includes
the main and standard modules. The semantics are given in the usual order:
symbol declaration, type checking, use semantics. No dynamic semantics are
defined, only an MPROG has dynamic semantics defined.

12.2 Module header
12.2.1 Module header — Symbol declaration semantics

The declaration meaning of a module header maps it to an environment. A
module header’s check status is the result of checking the declarations; note
that the declarations may include import declarations, as well as procedures
and functions of which the bodies are also checked.

Dy : ModuleHdr +— EnvDTrace

YV ModuleHdr e
Apdt, pot’, pot” : EnvDTrace |
pdt =Dy « AL ({E — pd0}
A pdt' =Dgp « AS(§)pdt
N p(5t” = DPFD * APF<§>p(5t, ®
Dy OModuleHdr = pdt”

Firstly the import declaration list is checked in an initial trace environment.
(containing the reserved constant identifiers), yielding an updated trace en-
vironment. Then the simple declarations are checked in this updated envi-
ronment, yielding a trace environment complete with all the global constant,
variable, and import declarations. The procedure/function declaration list is
checked in this; the procedure and function names are checked to ensure that
they have not already been defined, and each nested block is also checked in
the relevant environment.
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12.2.2 Module header — Type checking semantics

The type checking meaning of a module header maps it to a trace type envi-
ronment (preserved for use in the use, dynamic, and operational semantics)
and a map from blocks to check status.

Tun - ModuleHdr -+ DeclType

YV ModuleHdr e
3 DeclType; DeclType’; DeclType” |
0 DeclType =
Tin « AI(E)( prt == {{ — p70}, tc == T |
A ODeclType’ = Tgp « AS{(£)0DeclType
A ODeclType” = Tprp « APF(£)0DeclType' o
Ty OModuleHdr = 6 DeclType”

12.2.3 Module header — Use semantics

We now define the use semantics of the module header. The environment
status is the result of successively checking the various declarations starting
from the initially empty use environment.

Uy : ModuleHdr - EnvUTrace

VY ModuleHdr e
dpvt, put’, put” : EnvUTrace |
pUt = Z/{[M * A[(g)@
A put' =Usp « AS(E)put
A pvt” = Z/{PFD % APF<f>pUt, L]
Uy OModuleHdr = put”

12.2.4 Module header — Dynamic semantics

There are no dynamic semantics for a module header.
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12.3 Standard module
12.3.1 Standard module — Symbol declaration semantics

The declaration meaning of a module maps it to an environment. A module’s
check status is the result of checking the body statement in the environment
of the declarations, to ensure that no exports are also imports to the module.

Dy : Module +~ EnvDTrace

YV Module o
3pdt, pdt’ : EnvDTrace |
pot = Dyy O ModuleHdr
A pot" = Dpx e(€)pit e
Dy 0 Module = pdt’

The condition for the rest of the semantics to be defined is that every identifier
in the final trace environment maps to checkOK or to ImportOK .

— ModuleDeclOkay
Module

(rano|Joran)(Dy 0 Module) C {checkOK , ImportOK }

Some of this symbol declaration information is needed to perform cross-
module checks (either when flattening Pasp modules to a program, or when
linking AspAL modules). D), returns an environment comprising the im-
ported names (mapping to ImportOK ), and the exported and module names
(mapping to checkOK).

D, - Module + EnvD

Y Module | ModuleDeclOkay o
Ipdt . EnvDTrace; = : P ID; pd : EnvD |
pot = Dy O Module
= = dom(|J(ran pot) o> {ImportOK })
A pd = (E x {ImportOK})
U (rane U{&} x {checkOK})
D 0 Module = pd
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12.3.2 Standard module — Type checking semantics

The type checking meaning of a standard module maps it to a trace type
environment (preserved for use in the use, dynamic, and operational seman-
tics) and a map from blocks to check status. The statement is checked in the
environment of the declarations.

Ty - Module +— DeclType

Y Module | ModuleDeclOkay o
3 DeclType; DeclType' |
0 DeclType = Ty 0 Module Hdr
A ODeclType’ = Trxname « €(&)0DeclType o
Ty OModule = 6 DeclType'

So the type trace environment from type checking a module looks like (where
¢ represents the module name, pf represents a procedure or function name, v
represents a simple declaration name, and ap represents a parameter name):

{& = {ph > procedure((¢, pfi),
(formalParam(ap,...),..., formalParam(ap;,...))),

D v function((€, pf).

(formalParam(ap,...),..., formalParam(ap;,...)),. ..
vy > variable(...), ... vy — const(...)},
ph — {ap; — formalParam(apy,...),..., ap; — formalParam(ap;, ...
pfn — {ap1 — formalParam(apy,...),..., ap; — formalParam(ap;, ...

The corresponding BlockType Check value looks like

{pfi — checkOK, ..., pf, — checkTypeWrong}

The additional condition for the later semantics to be defined is that the type
checking semantics yields checkOK for every block in the module:
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__ ModuleTypeOkay
ModuleDeclOkay

dtc: Env|CHECK] |
Ty OModule = (| prt == p7t0,tc ==tc |) ®
ran tc = {checkOK }

Later semantics make use of the global type environment p7t0.

Some of this type information is needed to perform cross-module checks (ei-
ther when flattening Pasp modules to a program, or when linking AspAL
modules). 7y, returns a type environment comprising the types claimed for
the imported names and of the types given to the exported names.

Tz - Module +— EnvT

Y Module | Module TypeOkay o
dpdt : EnvDTrace; = : P ID; pr: EnvT |
pot = Dy O Module
A 2 = dom(|J(ran pdt) > { ImportOK })
Apr= (2 Urane) Qp7t0 & o
Tur O Module = pt

So the type environment used for cross module checks looks like (where pf
represents an imported or exported procedure or function name, v represents
an exported variable name, and ap represents a parameter name):

{pr — procedure((§, pf1>7
(formalParam(apy,...), ..., formalParam(ap;,...))),

pf, = function((€. pf,)
(formalParam(apy,...),..., formalParam(ap;,...)),...),

vz — variable(...)}

12.3.3 Standard module — Use semantics

We now define the use semantics of the module. The environment status is
the result of checking the various header declarations; no further checking of
the exports is done.
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Uy - Module + EnvUTrace

Y Module | Module TypeOkay
dput . EnvUTrace | put = Uy O ModuleHdr o
Uy O Module = put

All names (except reference parameters and exported variables) should be
properly used. An implementation should deliver a warning if this is not the
case.

_ ModuleUseOkay
ModuleTypeOkay

drefs : ID « ID; put, put’ : EnvUTrace |
refs = { b : dom p7t0; & : ID |
¢ € dom(ptt0 b)
A pTt0 b £ € ran formalParam
A (formalParam™(p7t0 b £)).c = ref }
U ({&} x rane)
A put = Uy O Module
A put’ = (dom refs < put)
U{ b:dom pvt N dom refs o
b= (refs( {b} ) < put b)} e

pot' = &

12.3.4 Standard module — Dynamic semantics

There are no dynamic semantics for an individual module, only for a complete
MPROG. This is because it is impossible to define the meaning of a mod-
ule unless all the declarations are complete, and for imported declarations
insufficient information is known at compile time. Therefore, the meaning of
a module forms part of the meaning of a whole MPROG with all the other
modules.
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12.4 Main module

12.4.1 Main module — Symbol declaration semantics

Daa : MainModule — EnvDTrace

V MainModule o
Apdt, pot' : EnvDTrace |
pot = Dyy O ModuleHdr
A pdt' =Dg v (§) pit e
Duya OMainModule = pdt’

The body statement is checked in the environment of the checked header.

The condition for the rest of the semantics to be defined is that every identifier
in the final trace environment maps to checkOK or to ImportOK .

__ MainModuleDeclOkay
MainModule

(rano|Joran)(Dya  MainModule) C {checkOK , ImportOK } |

Some of this symbol declaration information is needed to perform cross-
module checks (either when flattening Pasp modules to a program, or when
linking AspAL modules). Dja;, returns an environment comprising the im-
ported names (mapping to ImportOK ), and the main module name (mapping

to checkOK).

Dasar : MainModule +~ EnvD

YV MainModule | MainModuleDeclOkay o
3pdt . EnvDTrace; Z: P ID; pd : EnvD |
pot = Dyra O MainModule
= = dom(|J(ran pot) o> { ImportOK })
A pd = (2 x {ImportOK }) U ({&} x {checkOK}) o
Dar, 0 MainModule = pé
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12.4.2 Main module — Type checking semantics

The type checking meaning of a main module maps it to a a trace type envi-
ronment (preserved for use in the use, dynamic, and operational semantics)
and a map from blocks to check status. The statement is checked in the
environment of the declarations.

Tua - MainModule + DeclType

YV MainModule | MainModuleDeclOkay o
3 DeclType; StmtType'; tc' : Env|CHECK] |
0 DeclType = Ty 0 Module Hdr
A 0StmtType' = T v(§)prt
ANt =tcd{€ — ('} e
Tya OMainModule = (| prt == prt’, tc == tc' )

The condition for the rest of the semantics to be defined is that the type
checking semantics yields checkOK for every block in the module:

— MainModule Type Okay
MainModuleDeclOkay

dtc: Env[CHECK] |
Tua OMainModule = (| prt == p7t0,tc == tc ) ®
ran t¢c = {checkOK'}

Later semantics make use of the global type environment p7¢0.

Some of this type information is needed to perform cross-module checks (ei-
ther when flattening Pasp modules to a program, or when linking AspAL
modules). T4z returns a type environment comprising the types claimed
for the imported names.

Tarar - MainModule + EnvT

Y MainModule | MainModule TypeOkay o
dpot : EnvDTrace; = : P ID; pr: EnvT |
pot = Dyra O MainModule
= = dom(J(ran pdt) > {ImportOK })
ANpT=Z <p1t0 & e
Tuar 0 MainModule = pt
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12.4.3 Main module — Use semantics

We now define the use semantics of the module. The environment status is
the result of checking the body statement in the environment of the checked

header declarations.

Unra : MainModule +— EnvUTrace

YV MainModule | MainModule TypeOkay o
dput, pvt’ . EnvUTrace |
put = Uy 0 ModuleHdr
A put’ =Us v (§) put
Unia O MainModule = put’

All names (except reference parameters) should be properly used. An imple-
mentation should deliver a warning if this is not the case.

__ MainModuleUseOkay
MainModule Type Okay

drefs : ID « ID; pvt, pvt’ : EnvUTrace |
refs = { b : dom p7t0; £ : ID |
¢ € dom(p7t0 b)
A ptt0 b € € ran formalParam
A (formalParam™(p7t0 b £)).c = ref }
A put = Upya O MainModule
A put’ = (dom refs < put)
U{ b:dom pvt N dom refs o
b— (refs(| {b} ) < pvt b)} e

put' = &

12.4.4 Main module — Dynamic semantics

There are no dynamic semantics for an individual module, only for a complete
MPROG. This is because it is impossible to define the meaning of a mod-
ule unless all the declarations are complete, and for imported declarations
insufficient information is known at compile time. Therefore, the meaning of
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a module forms part of the meaning of a whole MPROG with all the other
modules.
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13 Modularised Program

13.1 Introduction

The Pasp interpreter takes a modularised program (collection of Pasp mod-
ules), and flattens it into an unmodularised program, which it can then exe-
cute.

We define symbol declaration, type declaration, and use semantics for the
modularised program. The dynamic semantics define the meaning semantics
of a modularised program.

The Pasp meaning of the modularised program (dynamic semantics) can be
shown to correspond to the Asp meaning of the same program, with each
module compiled, and then all of the modules linked together. (The linker
takes the compiled Pasp modules (now in AspAL), and links these together
into one AspAL program. The hexer then takes this AspAL program, and
makes an Asp program.)

13.2 Modularised program — Symbol declaration

All the symbols within each module are checked by the individual module
semantics. D), provides a module’s symbol declaration environment of those
IDs visible outside the module (which includes exports and module names).
For a modularised program, we want to ensure that

e module names are not multiply declared

e cach import to a module has been declared as an export in a previous
module

Therefore the environment returned by D, in addition includes all imported
IDs, so that these can be checked for previous export declarations.

It is known by pre-checks that the declarations within the modules are con-
sistent. The checking takes the form of two parts depending on whether the
value is checkOK , or ImportOK for that identifier.
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If the check state is checkOK, then it is either an export from the module,
or the name of the module. This identifier is checked to ensure that it is not
already declared within any previous module.

If the check state is ImportOK, then it is an import to the module. This
identifier is then checked to ensure that it is properly declared (by being
exported in a previous module).

The function checkLink performs these checks. Each identifier in the en-
vironment is checked, and a corresponding entry is created in the updated
EnvDL environment.

checkLink : ID x EnvD - EnvDTrace - EnvDTrace

V'm : ID; pé : EnvD; pdt : EnvDTrace o
dpd" . EnvD |
pd' ={ & :dompd; x: CHECK |
dpd" : ID « CHECK; = :PID |
pd” = J(ran pdt) A Z = dom pd”
x = if pd & = checkOK

then if ¢ € = then MultiDecl else checkOK

else if £ € = A {checkOK} = pd"( {¢} )
then ImportOK else ImportUndecl } o

checkLink(m, pd)pdt = update(pdt, (m), pd’)

The standard module semantics checks the declaration environment produced
from the module, and updates the modularised program’s semantics corre-
spondingly. This maintains any incorrect declarations, so that the correct
state can be determined in the top level modularised program semantics. If
the module’s declaration semantics are correctly defined, it applies checkLink
to the EnvDL environment produced so far.

Dup : Module +~ EnvDTrace +— EnvDTrace

Y Module; pdt : EnvDTrace | ModuleDeclOkay o
dpd : EnvD | pd = Dy, 0 Module o
Dyp OModule pdt = checkLink(&, pd)pdt

The main module semantics is checked similarly.
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Diuap : MainModule +— EnvDTrace - EnvDTrace

YV MainModule; pét : EnvDTrace | MainModuleDeclOkay o
dp6 1 EnvD | pd = Dyjar, 0 MainModule o
Dyrap OMainModule pdt = checkLink (&, pd)pot

The Dy;p semantic checks the complete modularised program.
Duyp : MPROG + EnvDTrace

V M : seq Module; m : MainModule
A pdt, pot' : EnvD Trace |
pot =Dyp « M & N pdt' = Dyap m pot e
Dyp(M, m) = pét’

The modularised program environment EnvDTrace contains sufficient infor-
mation to check whether a name is exported. The environment pdt0 is made
global for use in later semantics.

‘ pdt0 : EnvDTrace

The modularised program’s declaration semantics are correct if the following
condition is satisfied.

__ MProgDeclOkay
M : seq Module

m : MainModule
(rano| Joran)pdtO0 C {checkOK, ImportOK }

This check encapsulates all the modules’ and the program’s declaration check-
ing. If it fails then the particular module and identifier can be found that is
incorrectly declared.

13.3 Modularised program — Type checking

We know, from the symbol declaration semantics for the modularised pro-
gram, that any import declaration is previously exported. The type checking
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for the modularised program ensures that the types of imported declarations
match those of the actual declaration in the exporting module. A type check
environment is produced that defines the check state for each import to mod-
ules within the program.

The verify function is used to check imported against actual declarations.
Each of these should be compatible in type definitions, and if they are not
then a failure check status is returned.

verify : IDTYPE x IDTYPE - CHECK

Vidt,idt' : IDTYPE e
verify (idt,idt")
= if (3 ValueType; ValueType' |
1dt = const 0 ValueType
A idt" = const 0 ValueType' o
T=1)
V (3 VarType; VarType' |
idt = variable 0 VarType
A idt" = variable 0 VarType' o
0 Array Type = 0 Array Type’
A OSubrange Type = 0 Subrange Type’
N A" = {readOnly})
V (3 ProcType; ProcType' |
1dt = procedure 6 ProcType
A idt" = procedure 0 Proc Type' o
[=1)
V (3 FunType; FunType' |
idt = function 0 FunType
A idt" = function 0 FunType' o
I = 1" A Subrange Type = 0 Subrange Type')
then checkOK
else checkType Wrong

It is known by the symbol declaration checks, that the declarations within
the program are correct (both within, and between modules).

The function checkLinkType performs the checks to ensure that the imports
to a particular module are correctly typed. This is done by comparing the
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type definition from the exporting module with the import declaration. Its
parameters are

m: the name of this module

p7: this module’s type environment

pT1t: the preceding modules’ combined type trace environment of their
exports

pot: the preceding modules’ combined check trace environment of their
incorrectly typed imports

The environments are updated with the appropriate information.

checkLinkType : ID x EnvT -+
EnvTTrace X EnvDTrace +— EnvTTrace X EnvDTrace

Vm : ID; pt: EnvT; prt: EnvTTrace; pot : EnvDTrace o
Jimport : P ID; pé : EnvD; pr’ @ EnvT |

import = dom(pdt0 m > {ImportOK })

A pd = { & :import; b : dom pit0; x : CHECK |
¢ € dom(pdt0 b)
A x = verify(pr &, pTt b &) # checkOK o

§—x}
A pt' = import < pT e
checkLinkType(m, pT)(prt, pot) =
(prt U{m = p7'}, pot U {m > pé})

checkLink Type works as follows:

e import : the set names imported by this module, determined from the
global symbol declaration semantics.

e The block b where that function or procedure is exported is determined
from the previous modules’ type tract environment.

e [f the type of the import and the type of the export are not the same,
the fact is noted in the pdt environment. (pd is empty if all imports
type check correctly.)
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e This module’s exports are added to the prt¢ environment.

The single module semantics check the type environment produced from
the module, and update the modularised program’s semantics correspond-
ingly. If the module’s type semantics are correctly defined, it applies the
checkLinkType function to the EnvT Trace environment produced so far.

Tup : Module +~ EnvTTrace x EnvDTrace +
EnvTTrace x EnvDTrace

Y Module; prt: EnvTTrace; pdt : EnvDTrace | Module TypeOkay
dp7: EnvT | pr = Ty 0 Module o
Tyup OModule(ptt, pot) = checkLinkType(&, pT)(pTt, pdt)

The main module semantics check the type environment similarly.

Tuap : MainModule + EnvTTrace x EnvDTrace -+
EnvTTrace x EnvDTrace

Y MainModule; prt : EnvTTrace; pdt : EnvDTrace |
MainModule TypeOkay o
dp7: EnvT | pr = Tyar, OMainModule o
Tyvap O MainModule(ptt, pit) =
checkLinkType (&, pT)(pTt, pdt)

The 7yp semantic checks the complete modularised program.

Tup : MPROG - EnvTTrace x EnvDTrace

YV M : seq Module; m : MainModule | MProgDeclOkay e
dprt, prt’ : EnvTTrace; pdt, pdt' : EnvDTrace |
(prt,pdt) = Typ - M (2, D)
A (prt', pdt’) = Tyap m(ptt, pit) e
Typ (M, m) = (prt’, pt')

The modularised program’s type checking semantics are correct if all im-
ported names type check okay.
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__ MProgTypeOkay
MProgDeclOkay

(ran osecond)(Typ (M, m)) = @

13.4 Renaming, for dynamic semantics

It cannot be assumed that all constants, variables, and declarations are
unique in name across modules. Therefore a renaming policy that gener-
ates such unique names is applied to all the modules in turn.

All the global constants, type definitions, variable declarations, procedure
and function declarations in each module have to be modified, unless they
are exported names. Exported names are not updated, which leaves the
name global across all the modules. All the procedure and function calls,
and value references, also have to be updated with the appropriate identifier.

It is not necessary to rename all the constants, variables, and type dec-
larations within the procedures and functions. However, for simplicity of
definition, this is done also.

13.4.1 Generating new names

All the required entities can be renamed by modifying the identifier to in-
corporate the module name (also an identifier). This is possible as in the
concrete syntax, the identifier type is a string.

‘ addMod : ID + ID —+ ID

addMod takes the name of the module and the current identifier, and gen-
erates a new, globally unique, identifier (by adding the module name to the
identifier).

renID takes the name of the module and the current identifier, and generates
the appropriate new identifier. Exported names, found in the global pdt0,
are not renamed.
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\ renID : ID + ID - ID

Vm,&: 1D e
renID m & = if £ € dom(pdt0 m) then & else addMod m &

13.4.2 Renaming types

A name bound is renamed by adding the module name. A number literal
bound needs no renaming.

‘ renBnd : ID - BOUND -+ BOUND

V'm, & : ID e renBnd m(name &) = name(renlD m &)
Vm:ID; k: VALUE | k € ran name o renBnd m k = K

A subrange is renamed by renaming both bounds.

‘ renSR : ID + Subrange - Subrange

V'm : ID; Subrange
renSR m 0Subrange =
( Ib == renBnd m b, ub == renBnd m ub |

A sequence of subranges is renamed by renaming each element of the se-
quence.

renSRs : ID -+ seq Subrange + seq Subrange

Vm:ID e renSRs m( ) = ()
Vm : ID; sr: Subrange; SR : seq Subrange e
renSRs m({sr) ™ SR) = (renSR m sr) ~ renSRs m SR

Types are then renamed in the obvious way
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renType : ID - TYPE - TYPE

V'm : ID; 7 : {unsigned, pbyte, boolean, type Wrong, indirectAddr, returnAddr} e
renType m 7 =T
Vm : ID; sr: Subrange o
renType m(subrange sr) = subrange(renSR m sr)
Vm,£: 1D e
renType m(typeName &) = typeName(renID m &)
A renType m(typeValue &) = typeValue(renID m &)
V'm : ID; ScopedType o
renType m(scoped TypeName 0Scoped Type) =
scopedTypeName( & == renID m &, b == renlD m b )
A renType m(scoped Type Value 6 Scoped Type) =
scoped Type Value( & == renID m &, b == renID m b |

13.4.3 Renaming expressions

Expressions are renamed by renaming their constituent parts. Each value ref-
erence and function call name are renamed, unless they refer to an exported
name.

renFExpr : ID +— EXPR -+ EXPR

Vm: ID; k: VALUE e renEzpr m(constant k) = constant k

Vm : ID; ValueRefExpr e
renExpr m(valueRef 6 ValueRefExpr) =
valueRef | & == renID m &, E == renExpr mo E |
Vm : ID; UnyFxpr e
renExpr m(unyEzpr 0 UnyExpr) =
unyFEzpr({ ¥ == ¥, e == renFxpr m € )
Vm : ID; BinExpr e
renExpr m(binExpr 0 BinExpr) =
binExpr( Q == Q, el == renExpr m €l,e2 == renEzpr m €2 )
Vm : ID; FunCallEzpr e
renExpr m(funCall 0 FunCallEzpr) =
funCall| & == renID m &, E == renExpr mo E )
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13.4.4 Renaming statements

Statements can be renamed similarly to expressions, with the only constructs
that require any work being assign and procCall.

| renStmt : ID - STMT + STMT

13.4.5 Simple Declaration

We rename a simple declaration by renaming the specific kind of declaration.

renSimpleDecl : ID - SIMPLE_DECL + SIMPLE_DECL

Vm : ID; ConstDecl o
renSimpleDecl m(constDecl 6 ConstDecl) =
constDecl( & == renID m £,k ==K |)

Vm : ID; EnumDecl o
renSimpleDecl m(typeDecl(enumDecl 8 EnumDecl)) =
typeDecl(enumDecl{ & == renID m &,
E==renlD moZ))

Vm : ID; VarDecl o
renSimpleDecl m(varDecl 6 VarDecl) =
varDecl{ & == renlD m £, A == A,
SR == renSRs m SR, 7 == renType m 7,V == V|

The renamed simple declarations of a Module and a MainModule are

renSDofM : Module + seq SIMPLE_DECL
YV Module ® renSDofM 6 Module = renSimpleDecl & o AS

renSDofMA : MainModule + seq SIMPLE_DECL
YV MainModule ® renSDofMA 0 MainModule = renSimpleDecl £ o AS
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13.4.6 Renaming procedures and functions

Formal parameter declarations and routine body are renamed in the obvious
way.

‘ renParamD : ID + ParamDecl — ParamDecl

‘ renBody : ID -+ Body - Body

The rename function, and procedure declarations are defined next. The
routine names are renamed only if they are not exported.

renProcHdr : ID + ProcHdr - ProcHdr

V'm : ID; ProcHdr e
renProcHdr m 6 ProcHdr =
( & == renID m &, 11 == renParamD moll |

renProcD : ID + ProcDecl + ProcDecl

V'm : ID; ProcDecl o
3 ProcDecl’ |
0 ProcHdr' = renProcHdr m 0 ProcHdr
A OBody' = renBody m 0Body e
renProcD m 6 ProcDecl = 6 ProcDecl’

renFunD : ID + FunDecl +~ FunDecl

Vm : ID; FunDecl o
3 FunDecl |
0 ProcDecl’ = renProcD m 6 ProcDecl
AT =renType m T o
renFunD m 0 FunDecl = 0 FunDecl’

The procedure and function declaration is defined in terms of its constituent
parts.
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renPFD : ID + PROC_FUN_DECL + PROC_FUN_DECL
Vm : ID; d : ProcDecl o
renPFD m(procDecl 6) = procDecl(renProcD m §)

Vm :ID; §: FunDecl o
renPFD m(funDecl 6) = funDecl(renFunD m §)

The renamed procedure and function declarations of a Module are

‘ renPFDofM : Module -+ seq PROC_FUN_DECL
‘ Y Module ® renPFDofM 6 Module = renPFD ¢ o APF

The renamed procedure and function declarations of a MainModule are

‘ renPFDofMA : MainModule -+ seq PROC_FUN_DECL
‘ YV MainModule ® renPFDofMA 6 MainModule = renPFD ¢ o APF

13.5 Modularised program — Dynamic Semantics

The dynamic semantics for the modularised program define the Pasp meaning
of the program. Each module on its own does not have any meaning and it
is only the combination of all the modules into a modularised program which
has any meaning.

The meaning of the MPROG program is given by the meaning of the corre-
sponding flattened Prog program.

Only various selected parts of each MPROG are required for use in the
program. The imports and exports can be discarded. Each required sequence
of declarations can be extracted from the MPROG in question by extracting
the required part from each Module.
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flatten : MPROG — ATTR — Prog

VY M : seq Module; m : MainModule; a : ATTR e
3 Prog |
§=m.g
NAS =" /(renSDofM o M) ™ renSDofMA m
N APF =" /(renPFDofM o M) ™ renPFDofMA m
Ay = renStmt &€ m.y e
flatten(M, m)a = 0 Prog

The dynamic (meaning) semantics of the modularised program can now be
defined. The meaning of the MPROG is written in terms of the meaning of
a Prog.

The MPROG is checked to be correctly defined for the symbol declaration
and type checking semantics. This ensures that when the MPROG is split
apart, and re-assembled without the imports or exports, then the remaining
function and procedure calls make sense. This is also achieved by renaming
definitions within each module to avoid name clashes when amalgamated
together.

The declared of M p is required for the modularised program re-writing, but
is defined in the next section.

‘ Mp : Prog - Store - Store

‘ Muyp : MPROG - ATTR -+ Store + Store
YV M : seq Module; m : MainModule; a : ATTR | MProgTypeOkay e
3 Prog | 0Prog = flatten(M, m)a e
Muyp(M,m)a = Mp 0Prog
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14 Program

14.1 Program — Symbol declaration semantics

The declaration meaning of a program maps it to an environment. A pro-
gram’s check status is the result of checking the body statement in the en-
vironment of the declarations; note that the declarations may include pro-
cedures and functions of which the bodies are also checked. The outermost,
global, block is given the name of the program.

Dp : Prog +— EnvDTrace

Y Prog e
Ipdt, pot’, pét” - EnvDTrace |
pdt = Dsp « AS (§) { — pd0}
N pét’ == DPFD * APF <§> p5t
A pdt" = Dg v (£) pit' e
Dp 0Prog = pot”

The constant declaration list is checked in an initial trace environment con-
taining the reserved constant identifiers, yielding an updated trace environ-
ment. Then the variable declaration list is checked in this, yielding a trace
environment complete with all the global constant and variable declarations.
Finally, the procedure/function declaration list is checked in this; the proce-
dure and function names are checked to ensure that they have not already
been defined, and each nested block is also checked in the relevant environ-
ment.

The condition for the rest of the semantics to be defined is that every identifier
in the final trace environment maps to checkOK .

__ ProgDeclOkay
Prog

(ranol|Joran)(Dp 0Prog) C {checkOK}

It is a subset relation, not equality, because it is possible that the program
declares no identifiers.
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14.2 Program — Type checking semantics

The type checking meaning of a program maps it to a a trace type envi-
ronment (preserved for use in the use, dynamic, and operational semantics)
and a map from blocks to check status. The statement is checked in the
environment of the declarations.

Tp : Prog - DeclType

Y Prog | ProgDeclOkay
3 DeclType; DeclType'; StmtType”; tc" : Env|CHECK] |
O DeclType =
Tsp « AS(E)( prt == {{ — p70}, tc == |
A 0 DeclType’ = Tprp « APF(£)0DeclType
A 0StmtType"” = Tg (&) prt’
ANt =t @{{— "} o
Tp OProg = (| prt == prt" tc ==t )

The condition for the rest of the semantics to be defined is that the type
checking semantics yields checkOK for every block in the program:

ProgTypeOkay
ProgDeclOkay

‘ ran(Zp 0Prog).tc = {checkOK }

14.3 Program — Use semantics

The meaning function defined for the use after declaration semantics on dec-
larations of variables just checks the use of defined types. The initial use
environment is empty.

The initial value of use semantics for procedures and functions is formed
when checking their declaration, since it contains the body statement.

We now define the use semantics of a program. The environment status is the
result of checking the statement in the environment formed from the initially
empty environment.
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Up : Prog + EnvUTrace

Y Prog | ProgTypeOkay e
dput, put’, put” . EnvUTrace |
put =Usp « AS (§) @
A put' = Uppp « APF (£) put
A put” =Ug v (&) put’ e
Up 0 Prog = put”

All names should be properly used. An implementation should deliver a
warning if this is not the case.

__ ProgUseOkay
ProgTypeOkay

@ = ran(Up §Prog)

14.4 Program — Dynamic semantics

Before defining the dynamic semantics of a Pasp program, it is necessary
to define a function that allocates locations for temporary variables. These
variables are associated with case statements and have no declaration; hence
locations must be assigned by extracting information from the type trace
environment.



176

The DeCCo project papers I: Z Specification of Pasp

Mgn » EnvTTrace + EnvM Trace

YV prt . EnvTTrace o
dpt . EnvMTrace |
(Vb,E: 1D o
(b € dompt < b € domprt)
A (& €dom(pt b) < prt b & € rantempVar) )
AN(Yb:domprt; £:ID | & € dom(pt b) e
3f :seqN - LOCN |domf ={()} e
pt b &=locf)
A (Vb b :domprt; €& : ID |
{prt b & prt b’ '} CrantempVar o
ptbE=pth & oV =brE=E)e
MEm/ th:pt

This loose specification has three conditions on the resulting trace environ-

ment.

e The environment is defined for precisely the set of temporary variables.

e Each temporary variable is mapped to a single location.

e The environment is injective; no location is used more than once.

Given type and meaning environments, the locations allocated to variables
with a certain attribute are

locnOfAttr : EnvTTrace x EnvMTrace + ATTR - P LOCN

Vo1t EnvTTrace; pt : EnuMTrace; a: ATTR e
31:PLOCN |
I=U{b:domprt; £:1ID |
¢ € dom(ptt b)
A a € attributeOf (pTt b &) o

ran(loc™(pt b €))}
locnOfAttr(ptt, pt)a =1

The dynamic meaning of a program is its final output streams as a function
of its input streams.
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Mp : Prog + Store - Store

Y Prog; X : Store | ProgTypeOkay
3 DeclType; pt, pt', pt” : EnvM Traceo, o', 0" : State |
0 DeclType = Tp 0 Prog
A pt = Mgy, pTt
A pt' = Mgp « AS(&)pt
A pt" = MPFD * APF<€>ptl
ANoX=X
A 0.1 = locnOfAttr(ptt, pt)readOnly
A 0.0 = locnOfAttr(prt, pt)writeOnly
A dom(X > ran stream) = 0.1 U 0.0
Ao’ = Mgpr AS{E)pt” o
Ao = Mg ’Y<€>pt// o e
Mp OProg ¥ = outOf o”

The semantics are defined only if the static checks are satisfied.

The dynamic semantics of the declarations is used to define the environment
(which allocates locations) and the input and output subsets. These must
satisfy the following constraints:

e The locations allocated to all readOnly and writeOnly variables are the
sets of input and output locations respectively.

e The locations mapped by the store to a stream value are precisely these
input and output sets.

The program’s meaning is given by the output streams of the meaning of the
statement applied to the store with the variables initialised, and with the
input and output locations determined as described above.
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A General DeCCo Toolkit

This section contains definitions in common to several of the DeCCo speci-
fications.

A.1 Raising to a power

Z has no ‘raise to a power’ operator, so we define one.

function 30 leftassoc(_ T _)

‘ TNy xN—=N
Vn:Nienl0=1
Vo,p:NyenTp=nx(nl(p-—1))

A.1.1 Byte

The byte type is defined so as to take advantage of the greater speed offered
by using single register operations in the compiled code.

BYTE ==0..255

A.1.2 Boolean

We model the boolean type with a free type of two constants:

BOOLEAN ::= ptrue | pfalse

Note: 7Z has true and false as keywords, so those names cannot be used in

the definition of BOOLFEAN.
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A.2 Bits

In order to define the logical operators such as or, and, and zor, it is neces-
sary to be able to write numbers as sequences of bits. We first define a BIT.

BIT == {0,1}

The first element of the sequence is the least significant bit.

‘ NatToBits : N — seq BIT
NatToBits 0 = ()
Vn :N; @ NatToBits n = (nmod 2) ~ NatToBits(n div 2)

This definition ensures that the most significant bit (if there is one) is always
one (i.e. there is no leading zero).

The inverse of the above function is given by

‘ BitsToNat : seq BIT - N
BitsToNat{ ) =0
Vb:BIT; B:seqBIT e
BitsToNat({b) ™ B) = b + 2 * BitsToNat B

Logical operators are defined for single bits. The definitions are given in
terms of arithmetic operations, for concision.

BitNot : BIT ~» BIT
BitOr, BitXor, BitAnd : BIT x BIT — BIT

BitNot = {0+ 1,1+ 0}

Vb,c:BIT e
BitOr(b,c)=1—(1—=0)*% (1 —¢)
A BitXor(b, ¢) = (b+ ¢) mod 2
A BitAnd(b,c) = b * c
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These definitions are extended to bit sequences. First we define OR. Recall
that the empty sequence represents zero.

function 30 leftassoc(_OR._)

‘ _OR_:seqBIT x seq BIT — seq BIT
Vs,t:seqBIT; b,c: BIT e
sOR()=sN()ORt=t
A ((b) 7 s)OR({c) ™ t) = (BitOr(b,c)) ~ (s OR t)

function 30 leftassoc(_XOR._)

‘ _XOR_:seqBIT x seq BIT — seq BIT
Vs, t:seqBIT; b,c: BIT e
sXOR()=sN{()XORt =1t
A ((b) 7 s)XOR((c) " t) = (BitXor(b,c)) ~ (s XOR t)

function 30 leftassoc(_AND_)

‘ _AND _:seqBIT x seq BIT — seq BIT

Vs, t:seqBIT; b,c: BIT e
sAND () =sAN()ANDt =1
A ((b) 7 $)AND((c) ™ t) = (BitAnd(b,c)) ~ (s AND t)
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B Pasp Toolkit

B.1 Distributed override

The generic function @/ distributes function overriding over a sequence.

:[LvX} i
®/:seq(L+ X)— (LX)
®/()=2
Vf:L+ X;s:seq(L+ X)e®/(s ™ (f)) =0/sDf

B.2 Extending meanings to sequences

Many of the meaning functions on sequences of items can be derived from
the relevant meaning function on single items in a generic manner.

Some meaning functions M take an item ¢ in the context of some block b and
environment p, to yield a new environment p’. The meaning of a sequence
of such items is often the meaning of tail of the sequence, evaluated in that
environment given by the meaning of the first item. This meaning is M.,
where

function(_,)

:[XvBaE]
w:X—>B—-FE—FE)—>seqX >B—-FE—E
Vm: X —>B—-F—>F, . X;,Z:seqX; b:Be

m,()b=1id F
Am, (& T EYb=m,Zbomé&b

Some meaning functions M take an item £ in the context of some idType
i, blockstack s, block b and environment p, to yield a new environment p.
The meaning of a sequence of such items is often the meaning of tail of the
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sequence, evaluated in that environment given by the meaning of the first
item. This meaning is M,, where

function(_,)
—_[X,1,8,B, E]

w:X>1I—-8S—-B—>F—F)—
(seq X —seq]l - S — B — F — E)

Vvm: X —>I1—-S—B—-F-—>F ¢ X,
Z:seqX; i:1;7i:seql; s:S5; b:Be
m,{()()sb=idFE
Am, (& T E)(i) T u)sb=m,ZiisbomEisb

B.3 Vector operations

The following two functions perform vector summation and dot products
respectively.

sum : seqZ X seq 4 —+ seqZ
dotProduct : seqZ X seqZ —+ 7

sum((), ()) = ()
dotProduct((),()) =0

Vsl,s2:8eqZ; nl,n2:7Z | #sl =#s2 e
sum((nl) 7 s1,(n2) 7 s2) = (nl +n2) = sum(sl, s2)
A dotProduct((nl) 7 s1,(n2) 7 s2) =
nl * n2 + dotProduct(sl, s2)
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