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Preface

Historical background of the DeCCo project

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now
QinetiQ) into how to develop a compiler for high integrity applications that
is itself of high integrity. In that study, the source language was Spark, a
subset of Ada designed for safety critical applications, and the target was
Viper, a high integrity processor. Logica’ Formal Methods Team developed
a mathematical technique for specifying a compiler and proving it correct,
and developed a small proof of concept prototype. The study is described in
[Stepney et al. 1991], and the small case study is worked up in full, including
all the proofs, in [Stepney 1993]. Experience of using the PVS tool to prove
the small case study is reported in [Stringer-Calvert et al. 1997]. Futher
developments to the method to allow separate compilation are described in
[Stepney 1998].

Engineers at AWE read about the study and realised the technique could be
used to implement a compiler for their own high integrity processor, called the
ASP (Arming System Processor). They contacted Logica, and between 1992
and 2001 Logica used these techniques to deliver a high integrity compiler,
integrated in a development and test environment, for progressively larger
subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are repro-
duced in these technical reports. These are written in the Z specification
language. The variant of Z used is that supported by the Z Specific For-
maliser tool [Formaliser|, which was used to prepare and type-check all the
DeCCo specifications. This variant is essentially the Z described in the Z
Reference Manual [Spivey 1992] augmented with a few new constructs from
ISO Standard Z [ISO-Z]. Additions to ZRM are noted as they occur in the
text.
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The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports
(this preface is common to all the reports):

I1.

I1I.

IV.

Z Specification of Pasp

The denotational semantics of the high level source language, Pasp.
The definition is split into several static semantics (such as type check-
ing) and a dynamic semantics (the meaningof executing a program).
Later smeantics are not defined for those programs where the result of
earlier semantics is error.

Z Specification of Asp, AspAL and XAspAL

The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is
AspAL extended with some cross-module instructions that are resolved
at link time. The meaning of these extra instructions is given implic-
itly by the specification of the linker and hexer. AspAL is the target of
linking a set of XAspAL modules, and also the target of compilation
of a complete Pasp program. Asp is the non-relocatable assembly lan-
guage of the chip, with AspAL’s labels replaced by absolute program
addresses. The semantics of programs with errors is not defined, be-
cause these defintions will only ever be used to define the meaning of
correct, compiled programs.

Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of
a set of XAspAL target language templates.

Z Specification of Linker and Hexer

The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program
into an Asp program located at a fixed place in memory.

Compiler Correctness Proofs

The compiler’s operational semantics are demonstrated to be equiv-
alent to the source language’s denotational semantics, by calculating
the meaning of each Pasp construct, and the corresponding meaning
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of the AspAL template, and showing them to be equivalent. Thus the
compiler transformation is meaning preserving, and hence the compiler
is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manu-
ally, following the stated guidelines.
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1 Introduction

This document gives an algorithmic specification that defines the compiler;
it defines what AspAL statements are produced for each Pasp fragment.
Throughout the definition, wherever there has been a choice between clarity
and efficiency, the latter has been sacrificed to the former, so that the correct-
ness proofs will be made easier. The most obvious example of this is in the
extensive use of indirect instructions (see the AspAL definition document)
rather than immediate instructions in the definition of operators.

The specification has developed over time. This is due to adding additional
functionality as well as correcting errors shown up by proof work, and fur-
ther analysis. The additional functionality had been a combination of new
instructions and registers being provided on the chip by AWE, as well as
development, and optimisation of the operation of the compiler.

1.1 Critical assumption

Any module compiled under this specification has passed declaration and
type checking as specified in the formal Pasp language semantics.

That is, for each ordinary module
ModuleType Okay
and for the main module

MainModule Type Okay
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Parent Section: Pasp Specification

Parent Section: AspAL Specification

2 Translation domains

This section gives the definition of the translation environment. It also dis-
cusses the allocation of Asp data addresses to Pasp values. A semantics to
determine allocation of space on the stack is discussed. Finally, a number of
general functions and template fragments are defined.

2.1 Translation environment

During translation, Pasp variables are allocated Asp data addresses (memory
locations); the translation environment models this relationship. In defining
this environment, we also bear in mind the requirements for proving the
correctness of the compiler. Specifically, we need to be able to retrieve a
Pasp state from an Asp state and the translation environment, in order to
show that variables in the retrieved state have the same values as those in
the corresponding state produced by the Pasp dynamic semantics.

To help with this, the translation environment is divided into two parts, the
operational environment Fnv(Q, and the memory allocation environment,
MO. This division of the environment allows for scoped declarations. (It
also makes the proofs easier, because after translating the declarations, the
location environment should be equal to the Pasp dynamic semantics envi-
ronment. Thus in the remainder of the proof only the retrieved state and
the dynamic state need be compared.)

2.1.1 Operational environment

The operational environment EnvO maps Pasp identifiers to their operational
denotable values: the values that an identifier can take in the operational
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semantics. (This is analogous to the environment Env defined for the Pasp
dynamic semantics.) The operational denotable values are:

OPDENVALUE ::= opLoc((seqN -~ LOCN))
| opPFval{LABEL x LOCN))
| opImport{(ID)) | opEzport{{ VALUE))

e opLoc is used for variables and formal parameters. It has the same form
as the DENVALUEFE of loc in the Pasp denotable values: an injection
from a sequence of array indexes to the start location of that array.

e opPFual is used for procedures and functions. When a procedure or
function is called, the program stores the return address in the abstract
LOCN and then jumps to the LABFEL.

e oplmport is used for imported constants and (read only) variables.
When such a constant or variable is accessed, the actual value or mem-
ory location cannot be determined until link time.

e opExport is used for the value of all constants (some of which may be
exported).

The operational environment is a mapping from identifiers to denotable val-
ues.

EnvO == Env[OPDENVALUE]

The strategy used for location allocation for variables and formal parameters
is the same as that used in Pasp.

The trace environment associates an environment with each block in a pro-
gram. (Recall that the current implementation there are only two block
levels: the outermost ‘main’ block labelled by the module name, and the
block inside any procedure or function body, labelled by that procedure’s or
function’s name.)

EnvOTrace == EnvTr[OPDENVALUE]
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user variables assignment expression evaluation stack user AT operator
(not AT) adldresses ! variables scratchpad
bottomHeap = topVar Ttop&ack topOp

Figure 1: The memory map for a compiled Pasp module.

Module 1 user AT Module n user AT operator
user variables variables user variables variables scratchpad
(not AT) (not AT)
0 bottomHeap | = dtart , bottomHeap = dart | topOp 64 k

Figure 2: The memory map for a compiled and linked Pasp program.

2.1.2 Memory allocation map

Locations are abstract. Each value is stored in a single location, but Pasp
values have different sizes (one byte or two bytes), so abstract locations can
take up a variable number of physical Asp addresses.

Memory allocation maps an abstract location to the sequence of (one or two)
physical data addresses it corresponds to.

MO == LOCN -+ seq ADDR

2.2 Allocation of data addresses

The memory allocation scheme for a single module is shown in figure 1. Each

module is allocated an area of memory, which has

e a segment of memory for the module’s variables (the heap), which starts
at bottomHeap, and extends upwards to top Var.
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e ‘assignment addresses’: two bytes for each block, used to implement
the assign statement template.

e an expression evaluation stack (for storing temporary intermediate val-
ues when evaluating nested and binary expressions), which starts at
topStack and expands downwards; the first value on the stack is stored
at the addresses (topStack, topStack + 1).

Here we are concerned with compiling a single module, so we need only one
(relative) value for each of topVar and topStack. These are converted to
absolute addresses (a different bottomHeap for each module) by the linker
(figure 2), which also arranges the module memory blocks around any fixed
location variables (those allocated by the programmer to particular physical
addresses).

topVar : ADDR
topStack : ADDR
assignAddr : ID ~— seq ADDR

Finally, there is a global ‘operator scratchpad’. The 24 locations required
for the operator scratchpad are reserved at the very top of the memory map.
(For historical reasons, the bottom of this region has the name topOp.)

‘ topOp : ADDR

In performing arithmetic on several bytes it is usual to work from the least
significant byte to the most significant. We store multi-byte Pasp unsigned
values with the lo byte at address d, and the hi byte at address J + 1, and
use the address increment opcode to move along the value.

The function sizeof returns the number of bytes taken up by a value of some
Pasp types!. The size of a defined type? is taken to be 1.

Note that subrange is not in the domain of sizeof. sizeof should be called with a type
calculated from the type environment, which knows the base type of subranges.

2Currently the only defined type is an enumerated type. If records are added in the
future, it will be necessary to pass extra information to sizeof.
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‘ sizeof : TYPE + N

sizeof =
{boolean — 1, pbyte — 1, unsigned — 2, indirectAddr — 2}
U { ScopedType o scopedType Value 0Scoped Type — 1 }

2.3 Stack set-up semantics

Statements are used inside function call expressions, so we cannot assume
that the expression evaluation stack is empty when we translate a statement.
The offset from the top of the stack required for a statement is constant for
all statements in any given block. (Note that the main program block always
has an offset of zero.)

The size of this offset from the stack top for each block is given by the
following function:

OFFSET == N
blockOffset == ID -+ OFFSET

In order to calculate this function, it is necessary to traverse the program
blocks in calling order, from last to first. This constitutes a ‘pass’ through
the program, and we define a ‘static semantics’ to carry it out.

The stack set-up semantics S defines the block offset function for a pro-
gram. It is viewed as part of the compiler definition, as it is specific to the
requirements of the target device and target language.

The final block offset for a complete module is made global, for use in the
operational semantics. Its value is defined by the operational semantics of a
module.

‘ pst0 = blockOffset
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2.4 Utility template fragments

There are some AspAL fragments, sequences of X_INSTRs, that are used
in a large number of templates®. Here, functions that yield these fragments
are defined. This modularisation is helpful for two reasons: the specification
should be made clearer, and the proof requirements should be made simpler.

2.4.1 Store byte or word

The fragment Oy, stores a byte or a word, depending on the size of the
supplied type 7.

Oy, : TYPE + seq X_INSTR

V7 :TYPE e
Oy, 7 =if sizeof T=1
then (indirect bstd) else (indirect abstd)

2.4.2 Load byte or word

The fragment O, loads a byte or a word, depending on the size of the
supplied type 7.

O, : TYPE - seq X_INSTR

V7:TYPE e
O, T =ifsizeof T=1
then (indirect bldd) else (indirect abldd)

2.4.3 Register manipulations

The fragment Oy,; loads a word-length constant into the a and b registers.

3There used to be more, but some have been optimised into single new Asp instructions.
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Owi : WORD — seq X_INSTR

VYw: WORD e
O w = (tmmediate (aldi, theHiByte w))
™ (immediate (bldi, theLoByte w))

The fragment O;,; stores an immediate byte or a word, depending on the
size of the supplied type 7.

Oiri : TYPE x N - seq X_INSTR

V7 :TYPE; n:N|
sizeof T=1An € BYTE
V sizeof T=2An € WORD e
Opri (1,n) = if sizeof 7 =1
then (immediate (bldi,n)) else O, n
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3 Stack set-up semantics

This semantics calculates the offset from the top of the expression evaluation
stack needed when compiling a statement (needed because the statement may
be in a function, and function calls may occur in nested expressions taking
up stack space). This offset is the same for all statements in any given block.

The S semantics take an offset and a block offset, and return a new block
offset. (Recall that a blockOffset maps a block name to the offset for that
block.) The ‘interesting’ part of the definition is in procedure and func-
tion calls, where the supplied offset is max’ed with the block offset at the
procedure/function name.

3.1 Utility functions

We need to be able to combine blockOffset functions pessimistically, so we
define {} to do this. This returns the maximum of the two offsets for each
block.

For example, {z — 2,y — 4} f{z — 3,y — 1} ={z — 3,y — 4}

function 30 leftassoc(_1-)

‘ _fr_: blockOffset x blockOffset —+ blockOffset

YV f,g: blockOffset | dom f = dom g e
fhg=b:domf e mazx{f b,g b})

3.2 Operators

No stack set-up semantics need be defined for operators.

3.3 Expressions

The stack set-up semantics updates the block offset.
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The offset passed inductively down to component expressions (and which
represents the current stack offset) is incremented if the operational semantics
will use space on the expression stack.

3.3.1 Actual parameters

These are checked as expressions.

Sap == Sg

To check a list of actual parameters, the stack semantics are applied to each
element in turn, and the results combined pessimistically.

Sap+ :seq EXPR + OFFSET -+ blockOffset + blockOffset

YV : OFFSET e Spp« () § = id blockOffset
VFE :seq EXPR; € : EXPR; 0 : OFFSET; pst : blockOffset o
Sap<((€) T E)d pst = Sap« E 0 pst { Sap € 0 pst

3.3.2 Constant

A constant has no effect on the block offset function.

‘ Sg : EXPR - OFFSET -+ blockOffset -+ blockOffset
‘ Vk: VALUE; § : OFFSET e Sg(constant k)0 = id blockOffset

3.3.3 Value reference

A value reference uses up no more stack than its expression list.

V ValueRef o Sg(valueRef 0 ValueRef) = Sp+ E
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3.3.4 Unary expression

A unary expression uses up no more stack than its sub-expression.

Y UnyEzpr e Sg(unyFExpr 0 UnyExpr) = Sk €

3.3.5 Binary expression

A binary expression uses up no more stack than the worse of its two sub-
expressions.

However, the offset for the second sub-expression is calculated with 2 added
to the current offset, because when it is translated (with the operational
semantics) a word of stack space is used to store the result of the first sub-
expression. Also, the umod binary operator requires an extra 2 bytes of stack
space to store an intermediate result, which is also covered by the 2 added
to the second sub-expression.

YV BinFExpr; 0 : OFFSET; pst : blockOffset o
Sg(binExpr 0 BinExpr)d pst =
Sg e d pst ft Sg €(6+2)pst

3.3.6 Function call

If the value given by the block offset function is less than the current offset
in the expression stack (given by the argument ¢§), then its value is updated.
(This updated value will be used when calculating the offset for the function
body.) The offset for the function arguments is calculated using the modified
block offset function.

YV FunCallEzpr; 6 : OFFSET; pst : blockOffset o
Se(funCall 0 FunCallExpr)d pst =
Sape B 0(pst © {§ — maz{0, pst £}})
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3.3.7 Multiple expressions

The operational semantics of expression lists (given by Qg+ ) use an additional
2 locations on the stack if and only if the expression list is non-empty. (The
operational semantics of variable locations (given by Oy;) use no additional
locations.) So each individual expression is calculated as if it has this larger
offset, then the resulting block offset functions from all the expressions are
combined pessimistically.

Hence the stack set-up semantics of multiple expressions can be defined as
follows.

Sg+ :seq EXPR - OFFSET -+ blockOffset -+ blockOffset

YV : OFFSET e Sg«( )d = id blockOffset

Ve: EXPR; §: OFFSET o Sp«(€)d = Sp €(0 + 2)

VE,E :seq EXPR; § : OFFSET; pst : blockOffset o
Sp«(E ™ E")6 pst =Sg+ E § pst ft Sg« E' § pst

3.4 Statements
3.4.1 Multiple statements

The semantics is extended inductively to multiple statements.

Ss+ :8eq STMT - OFFSET — blockOffset + blockOffset

YV : OFFSET e Sg«( )d = id blockOffset
Vo :STMT; T :seq STMT; 6 : OFFSET; pst : blockOffset o
Ss«({(7) "T)d pst = Sg= T' § pst  Ss v 0 pst

3.4.2 Block

Calculating the offset for a block statement is the same as calculating it for
the sequence of body statements.
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‘ Ss : STMT -+ OFFSET -+ blockOffset + blockOffset
‘ VI :seq STMT o Sg(block I') = Sg« T’

3.4.3 Skip

A skip statement has no effect on the stack usage.

Vé: OFFSET e Sg skip 6 = id blockOffset

3.4.4 Assignment

An assignment statement makes no extra use of the stack beyond that re-
quired for calculating the location and expression value.

V AssignStmt; 0 : OFFSET; pst : blockOffset o
Ss(assign 0 AssignStmt)d pst = Sp« E § pst { Sg € 0 pst

3.4.5 If statement

The offsets required for conditional expression and each branch statement
are combined pessimistically.

YV IfStmt; 6 : OFFSET; pst : blockOffset o
Ss(ifStmt 01fStmt)d pst =
Spedpst t Ssv0 pstft S d pst

3.4.6 Case statement

The stack semantics for a branch is that of the executed statement.

‘ Scr @ Branch + OFFSET - blockOffset + blockOffset
‘ Y Branch e S¢p, 0 Branch = Sg
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This is extended in the usual manner to sequences of branches.

Scr+ @ seq Branch - OFFSET - blockOffset -+ blockOffset

YV : OFFSET e Scr+( )0 = id blockOffset
Vk : Branch; K :seq Branch; 6 : OFFSET; pst : blockOffset o
Scr (K ™ (k))d pst = Scr K 0 pst ft Ser k 6 pst

The results of calculating the offsets of the expression and the branches are
combined pessimistically.

YV CaseStmt; 6 : OFFSET; pst : blockOffset o
Ss(caseStmt 0 CaseStmt)d pst = Sg € § pst I Ser C 0 pst

3.4.7 Loop

The results of calculating the offsets of the expression and loop body are
combined pessimistically.

YV WhileStmt; 6 : OFFSET; pst : blockOffset o
Ss(whileStmt § WhileStmt)d pst = Sg € § pst ft Sg v 0 pst

3.4.8 Procedure call

The calculation for a procedure call is similar to that of a function call.

YV ProcCallStmt; 6 : OFFSET; pst : blockOffset o
Ss(procCall 0 ProcCallStmt)d pst =
Sap+ E 0(pst @ {§ > maz{d, pst £}})

3.5 Declarations

The operational semantics of named constant declarations, type definitions
and variable declarations have no effect on the stack usage; hence there is no
stack semantics to define for them.
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3.5.1 Procedures

The procedure body is processed as a statement.

‘ Sp : Body +— OFFSET -+ blockOffset + blockOffset
|V Body e Sp 0Body = Ss

Then calculating the offset for the procedure declaration itself just calls the
body semantics with the current offset of that procedure as its offset. This is
used as the start offset for those procedures and functions called in the body.

‘ Spp : ProcDecl -+ blockOffset - blockOffset

Y ProcDecl; pst : blockOffset o
Spp OProcDecl pst = Sp B(pst &) pst

3.5.2 Functions

A function is checked by applying the body semantics in the same way as for
procedures.

‘ Srp : FunDecl + blockOffset -+ blockOffset

YV FunDecl; pst : blockOffset o
Srp OFunDecl pst = Sp ((pst €)pst

3.5.3 Multiple declarations

The semantics for procedure and function declarations are defined in the
usual way.

‘ Sprp : PROC_FUN_DECL - blockOffset -+ blockOffset

Y dp : ProcDecl @ Sppp(procDecl dp) = Spp 0p
Vof : FunDecl @ Sprp(funDecl §f) = Sgp 6f
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For sequences of procedure and function declarations, each block is checked
in reverse order of declaration.

‘ Sprp+ : seq PROC_FUN_DECL -+ blockOffset + blockOffset

Sprp+( ) = id blockOffset
VA :seq PROC_FUN_DECL; 6 : PROC_FUN_DECL e
SPFD*(A A <5>) = Sprp+ Ao Sppp O

3.6 Import and Export Declarations

Variable import declarations are semantically similar to variable declarations,
which have no effect on the blockOffset.

Procedure and function import declarations are semantically similar to pro-
cedures and functions with Unknown bodies. Calculating a stack set-up
semantics, this shows there is no change to the blockOffset.

For the exports, we are only declaring the names and so these can be ignored
also.

3.7 Standard Module

The stack set-up semantics of a standard module are simple: there is no main
block, so the procedure and function declarations are checked in the initial
environment where all names in scope have zero offset.

Sy - Module - blockOffset

Y Module e
AB:PID | B = dom(7y 0Module).tc o
SM O Module = SPFD* APF(B X {0})
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3.8 Main Module

The stack set-up semantics of a main module are simple: the offset for the
main block is calculated with a zero current offset, in the initial environ-
ment where all names in scope have zero offset. Then the resulting block
offset is used in the calculation of the offset for the procedure and function
declarations.

Suya : MainModule -+ blockOffset

vV MainModule o
3B :PID | B =dom(7ys O MainModule).tc o
Suya OMainModule = (Sprp+ APF o Sg v 0)(B x {0})
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4 Stack amount set-up semantics

This semantics calculates how much expression evaluation stack is needed
(which depends on how deeply nested expression evaluation is).

4.1 Operators

The binary modulus operators use two extra bytes of expression evaluation
stack space to perform their processing. The other binary operators require
no additional stack space.

\ Aop : BIN_OP - OFFSET

VQ:{bmod, umod} & App ) =2
VQ: BIN_OP\ {bmod, umod} & App 2 =0

4.2 Expressions

The stack set-up semantics updates the maximum amount of stack space
used. The value is incremented if the operational semantics that translate
the expression uses space on the expression stack.

4.2.1 Actual parameters

These are checked as expressions.

Aap == Ag

To check a list of actual parameters, the stack semantics are applied to each
element in turn, and the results combined pessimistically.

Aaps 1 seq EXPR -+ blockOffset ~ OFFSET
Y psa : blockOffset @ App+( )psa =0

VFE :seq EXPR; ¢ : EXPR; psa : blockOffset o
Aup<((€) ™ E)psa = maz{Aap- E psa, Asp € psa}
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4.2.2 Constant

A constant has no effect on the stack offset amount.

\ Ag 1 EXPR —+ blockOffset + OFFSET
‘ Vk: VALUE; psa : blockOffset o Ag(constant k)psa = 0

4.2.3 Value reference

A value reference use up no more stack than the expression list.

V ValueRef o Ag(valueRef 0 ValueRef) = Ap« E

4.2.4 Unary expression

A unary expression uses up no more stack than its sub-expression.

Y UnyEzpr o Ag(unyEzpr 0 UnyExpr) = Ag €

4.2.5 Binary expression

Binary expression evaluation first evaluates the left argument, then stores it
on the stack and evaluates the right argument, then the operator combines
the arguments. So the stack space needed is the maximum of: that required
for the left argument; that for the right argument plus two bytes (as the left
argument is stored on the stack at this time); and that for the operator plus

two bytes (as the left argument is still stored on the stack at this time).

YV BinExpr; psa : blockOffset o
Ag(binExpr 0 BinEzpr)psa =
mar{Ag € psa,2 + Ag € psa,2 + Aop Q}
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4.2.6 Function call

The stack size required is obtained by extracting the value from the blockOffset
for this block, and comparing it with the stack space required for the param-
eters.

YV FunCallEzpr; psa : blockOffset o
Ag(funCall 0 FunCallExpr)psa = mazx{psa &, Aap E psa}

4.2.7 Multiple expressions

The operational semantics of expression lists (given by Op+) use an additional
2 locations on the stack if and only if the expression list is non-empty. The
operational semantics of variable locations (given by Oyyz) use no additional
locations. Hence the stack amount semantics of multiple expressions can be
defined as follows.

Apg- : seq EXPR - blockOffset +— OFFSET

Y psa : blockOffset ® Ap-( )psa =0
Ve : EXPR; psa : blockOffset @ Ap(e)psa =2+ Ag € psa
VE,E :seq EXPR; psa : blockOffset o

Ag-(E ™ E")psa = mar{Ag- E psa, Ap- E' psa}

4.3 Statements

The stack set-up semantics of statements update the block stack amount.

4.3.1 Multiple statements

The semantics is extended inductively to multiple statements.
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Ag+ :seq STMT — blockOffset +— OFFSET

Y psa : blockOffset ® Ag«( )psa =0

Vv :STMT; T :seq STMT; psa : blockOffset o
Ag-({(v) " T)psa = maz{Ag- I psa, As v psa}

4.3.2 Block

Checking a block statement is the same as checking the sequence of body
statements.

\ Ag : STMT - blockOffset — OFFSET
| VT :seq STMT o Ag(block T) = Ag- T

4.3.3 Skip

A skip statement has no effect on the stack usage.

V psa : blockOffset o Ag skip psa =0

4.3.4 Assignment

An assignment statement makes no extra use of the stack beyond that re-
quired for calculating the location and expression value.

V AssignStmt; psa : blockOffset o
Ags(assign 6 AssignStmt))psa = maz{Ag- E psa, Ag € psa}

4.3.5 If statement

The offsets required for conditional expression and each branch statement
are combined.

YV IfStmt; psa : blockOffset o
Ag(ifStmt 01fStmt)psa = maz{Ag € psa, As v psa, As v psa}
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4.3.6 Case statement

We define the stack semantics for branches; it is the semantics of the executed
statement.

‘ Acr, : Branch —+ blockOffset - OFFSET
‘ YV BranchSTMT e Acp, 0 Branch = Ag ~y

This is extended in the usual manner to sequences of branches.
‘ Acr+ : seq Branch -+ blockOffset +— OFFSET

Y psa : blockOffset @ Acp+( Ypsa =0
Vk : Branch; K :seq Branch; psa : blockOffset o
Acp«(K 7 (k))psa = max{Acr- K psa, Act k psa}

The results of checking the expression and the branches are combined pes-
simistically.

V CaseStmt; psa : blockOffset o
Ag(caseStmt 0 CaseStmt)psa = maz{Ag € psa, Acr» K psa}

4.3.7 Loop

The results of checking the expression and loop body are combined pes-
simistically.

YV WhileStmt; psa : blockOffset o
Ag(whileStmt 6 WhileStmt)psa = maz{Ag € psa, As v psa}

4.3.8 Procedure call

The checking of a procedure call is similar to that of a function call.

Y ProcCallStmt; psa : blockOffset o

Ag(procCall 0 ProcCallStmt)psa = maz{psa &, Asp« E psa}
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4.4 Declarations

The operational semantics of named constant declarations, type definitions
and variable declarations have no effect on the stack usage; hence there is no
stack semantics to define for them.

4.4.1 Procedures

The procedure body is processed as a statement.

‘ Ag : Body - blockOffset - OFFSET
| VBody e Ay §Body = Ag

Then checking the procedure declaration itself just calls the body semantics
with the current offset of the procedure as its argument. The value returned
is the amount of stack space used by the procedure body.

‘ App : ProcDecl - blockOffset + blockOffset

Y ProcDecl; psa : blockOffset o
App OProcDecl psa = psa U{&— Ap B psa}

4.4.2 Functions

A function is checked by applying the body semantics in the same way as for
procedures.

‘ App : FunDecl - blockOffset + blockOffset

YV FunDecl; psa : blockOffset o
App OFunDecl psa = psa U { — Ag [ psa}

4.4.3 Multiple declarations

There is clearly nothing to define for simple declarations. The semantics for
procedure and function declarations are defined in the usual way.
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‘ Aprp : PROC_FUN_DECL - blockOffset -+ blockOffset

YV dp : ProcDecl ® Appp(procDecl ép) = App dp
Véf : FunDecl ® Appp(funDecl 0f) = App Of

Each block is checked in order of declaration. (Compare the stack semantics
S, which is calculated in reverse order.)

‘ Aprp« : seq PROC_FUN_DECL -+ blockOffset + blockOffset

APFD*< > = id blockOffset
VA :seq PROC_FUN_DECL; 6 : PROC_FUN_DECL e
APFD*(<5> a A) = Appp~ Ao Appp 0

4.5 Import and Export Declarations

The import declarations require definition in the blockOffset so that any
calls to imported functions and procedures can be properly updated; nothing
is required for imported variables. Each imported procedure or function
declaration identifier is mapped to 0 stack amount.

A - IMPORT_DECL — blockOffset -+ blockOffset
Y ProcHdr; psa : blockOffset o
A (procHdr 0 ProcHdr)psa = psa U {€ — 0}

Y FunHdr; psa : blockOffset o
A (funcHdr 0 FunHdr)psa = psa U {{ — 0}

And by usual extension to sequences.

‘ A - seq IMPORT_DECL -+ blockOffset - blockOffset

A () = id blockOffset
VAI :seq IMPORT_DECL; 61 : IMPORT_DECL e
A]M*(<($Z> ~ AI) == .A[M* A] o A[M 52

For the exports, we are only declaring the names to be exported and therefore
this requires no stack usage, and can be ignored.
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4.6 Standard Module

The stack set-up semantics of a standard module are simple: there is no
main block, so the procedure and function declarations are checked in the
environment generated from applying the import declarations to the initial
environment. The export declarations cause no change to the blockOffset,
and so are ignored.

Ay - Module -+ blockOffset

YV Module o
AB:PID | B = dom(7y0Module).tc o
Ay OModule = (Appps APF o Apy« AI(B x {0})

4.7 Main Module

The stack amount semantics of a main module are simple: the procedure
and function declarations are checked in order, then the main statement is
checked. As discussed before, export declarations cause no change to the
blockOffset, and so are ignored. However the import declarations have to be
set up in the semantics so they cause no extra use in the amount of stack
used.

Ana : MainModule - blockOffset

YV MainModule o
B :PID; psa : blockOffset |
B = dom(7y40 MainModule).tc
A psa = (Aprp APF o Ay AI)(B x {0}) @
Apra 0 MainModule = psa U {& — Ag v psa}
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5 Operators

The meaning function for operators yields a sequence of instructions that
translate the operator on the assumption that one argument is contained in
the a and b registers (with the most significant byte in the a register), and
that the second argument, if any, is contained on the top of the expression
evaluation stack, which is referenced by the data register. We also assume
that boolean and byte values are contained in the b register as this is where
they will be loaded when a value reference is executed.

The values of the carry bits are undefined before and after the fragment.

5.1 Unary Operators, single byte arguments

The single byte argument is in the b register. The single byte result is left
in the b register.

Ovpo : UNY_OP — LABEL — LABEL x seq X_INSTR

VI:LABEL e
Oyo not | = (I, (immediate(bxoi, 1)))
A Oy bnot | = (1, (immediate(bxoi, MaxByte)))

e not: boolean not. b:= b zor 1

e bhnot: byte not. b := b xor FF

Oupo : UNY_OP — LABEL — LABEL x seq X_INSTR
Vi1:LABEL e

Ouo bleft | = (1, (indirect ccb) ™ (indirect 1rb))

A Oyo bright 1 = (1, (indirect ccb) ™ (indirect rrb))

e bleft: byte shift left, multiply by 2.

e bright: byte shift right, divide by 2.
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Ouo : UNY_OP — LABEL — LABEL x seq X_INSTR

V1:LABEL e
Oyo byteToBool | = (I,
(immediate(beqi, 0)) ™ (indirect ncb)
™ (immediate(bldi, 0)) ~ (indirect 1rb))
A Oyo boolToByte | = (1,())
A Opo unsgnToByte | = (1,( ))

e byteToBool: cast byte to boolean. Test if the byte is zero, leaving the
result in the b-carry; negate it, then rotate it into cleared b register.

e boolToByte: cast boolean to byte. Do nothing; the representation of a
boolean is a byte.

e unsgnToByte: cast unsigned to byte. Do nothing; this has the effect of
truncating the hi byte, because the result is assumed to be a byte, and
hence in the b register only.

Ouvo : UNY_OP — LABEL — LABEL x seq X_INSTR
VI:LABEL e
Ouo ord 1 =(1,())
A Oyo suce | = (I, (indirect ccb) ™ (immediate(buai, 1)))
A Oyo pred | = (I, (indirect ccb) ™ (immediate(busi,1)))

e ord: cast enumerate type to byte. Do nothing; the representation of
an enum is a byte.

e succ: increment enum. b, := clear; b := b+ 1(+b.)
The Pasp semantics does not define the result of incrementing venum bmaz;
the result here is bmax + 1, or zero if bmax = 255.

e pred: decrement enum. b, := clear; b:=b— 1(—b.)
The Pasp semantics does not define the result of decrementing venum 0;
the result here is 255.
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5.2 Unary Operators, two byte arguments

The two byte argument is in the a and b register, with the hi byte in ¢ and
the lo byte in b. The two byte result is left in the a and b register.

Ovpo : UNY_OP — LABEL — LABEL x seq X_INSTR

VI:LABEL e
Ovo unot 1 = (I,
(immediate(axoi, MazByte))
™ (immediate(bxoi, MazByte)))

e unot: unsigned not. a := a xor FF; b:=b zor FF

Ouo : UNY_OP — LABEL — LABEL x seq X_INSTR

Vi:LABEL e

Opo uleft 1 = (1+1,
(indirect ccb) ™ (indirect 1rb)
™ (indirect sca) ~ (xLabel(zrjb, 1))
™ (indirect cca) ™ (xLabel(xli, 1))
™ (indirect 1lra))

A Oyo uright 1= (1+1,
(indirect cca) ™ (indirect rra)
™ (indirect scb) " (xLabel(zrja,l))
™ (indirect ccb)  (xLabel(xli, 1))
™ (indirect rrb))

o uleft: unsigned shift left.

e uright: unsigned shift right.

Ovpo : UNY_OP — LABEL — LABEL x seq X_INSTR

VI:LABEL e
Ovo byteToUnsgn | = (I, (immediate(aldi,0)))
A Oyo hiByte | = (1, {(indirect blda))
A Opo loByte 1 = (1,())
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e hyteToUnsgn: cast byte to unsigned. a :=0
This clears any garbage out of the a register, effectively setting the hi
byte to zero.

e hiByte: cast unsigned to value of its high byte
divide by 256, or, move a into b

e [oByte: cast unsigned to value of its low byte
do nothing

5.3 Binary Operators — overview

The meaning function for binary operators is a map from an operator, a data
address and a label to label and a sequence of instructions.

The primitive binary operator instructions provided by the Asp chip are de-
signed to work with the left hand argument in the a, b registers, and the
right hand argument either an immediate value, or in the memory pointed to
by the data address register. But the Asp compiler translates binary expres-
sions from left to right, and so first evaluates the left hand argument, storing
the result in memory on the expression evaluation stack, then evaluates the
right hand argument, leaving the result in the a, b registers, then applies the
binary operator. This order difference causes a complication to some of the
template algorithms, and should be noted.

The data address is the address of the first operand, on the expression eval-
uation stack. For two byte values, d points to the lo byte at address §, and
the hi byte is at address 6 + 1 (also remember the expression stack grows
‘downwards in memory, so the ‘top of the stack is at the lowest memory ad-
dress.) If the contents of the data register are altered to store partial results,
they must be restored to complete the calculation.

The labels are required as some of the larger arithmetic templates require
relative jumps.

5.4 Binary Logical Operators
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Opo : BIN.OP — OFFSET — LABFEL — LABFEL x seq X_INSTR

Vo : OFFSET; |: LABEL e
Opo and 6§ | = (I, (indirect band))
A Opo or § I = (l, (indirect bord))
Vé: OFFSET; |: LABEL e
Opo band § | = (I, (indirect band))
A Opo bor § | = (1, (indirect bord))
A Opo bror § | = (I, (indirect bxod))
Vé: OFFSET; |: LABEL e
Opo wand § 1 = (I,
(indirect band) ~ (immediate(dpi, 1)) ™ (indirect aand))
A Opo uor 0 1 = (I,
(indirect bord) ~ (immediate(dpi, 1)) ™ (indirect aord))
A Opo uzor § 1 = (1,
) 7 (timmediate(dpi, 1)) 7 (indirect axod))

(indirect bxod

e and: boolean and. b := b A mem D

e or: boolean or. b := bV mem D

e band: byte and. b :=b A mem D

e bor: byteor. b:=bV mem D

e hoxr: byte xor. b := b xor mem D

e uand: unsigned and. b:=b A mem D; a:=a A mem(D + 1)
e yor: unsigned or: b:=bV mem D; a:=aV mem(D + 1)

e yozr: unsigned xor: b := b zor mem D; a := a xor mem(D + 1)

5.5 Binary Unsigned Comparison Operators

In the case of two byte comparison operators such as ueq, we want to combine
the results of two tests, one on the lo byte, one on the hi byte, and leave the
boolean comparison result in the b register. There are two ways to do this:
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1. Rotate the test result into the corresponding register, store this and
then use the corresponding logical instruction,

2. Build an ‘if then else’ construction.

The latter technique, which is the one we use, requires fewer instructions in
general, and also makes the function definition simpler, as there is no need
to use a temporary address as an argument; on the other hand, it is likely to
be harder to reason about.

Note that although we are using an ‘if then else’ construction, we cannot in-
clude the test of the lower byte in the then clause (where it logically belongs)
because we cannot decrement the data address register.

5.5.1 Unsigned equality

This template computes the result of the test (¢ hi,e lo) = (a, b)

if (b = € lo) then res := false; jump end
res := (a = € hi)
label end

Opo : BIN.OP — OFFSET — LABEL — LABFEL x seq X_INSTR
Vo :OFFSET; | : LABEL e
Opo ueq 6 1= (1 +1,
(indirect beqd)
™ (immediate(bldi,0)) ~ (indirect ncb)
™ (xLabel(xrjb, 1))

™

{
(immediate(dpi, 1)) ~ (indirect aeqd)
™ (indirect cbldca) ™ (indirect 1rb)

™ (xLabel(xli, 1)))

5.5.2 Unsigned greater than

This template computes the result of the test (e hi,e lo) > (a, b)
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The algorithm is a little obscure, because we compare the lo bytes before
incrementing the address register to compare the hi bytes.

if(b < € lo) then jump [

if(a = € hi) then res := false; jump end
label [

if(a > € hi) then res := false; jump end
res 1= true

label end

Opo : BIN.OP — OFFSET — LABFEL — LABFEL x seq X_INSTR
Vé: OFFSET; | : LABEL e
Opo ugt 0 1= (1+2,
(indirect scb) ™ (indirect bucd)
™ (immediate(bldi, 0))

~

immediate(dpi, 1)) 7 (indirect ncb)
™ (zLabel(zrjb, 1))

)

(

(

(indirect aeqd)

(xLabel(zrja, 1 4+ 1))
™ (zLabel(xli, 1))

(

(

(

(

)

)

indirect cca) ™ (indirect aucd)
™ (zLabel(zrja, l + 1))
immediate(bldi, 1))

™ (xLabel(xli, 1 + 1)))

)

5.5.3 Unsigned greater than or equal to

This template computes the result of the test (¢ hi,e lo) > (a,b)
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Opo : BIN.OP — OFFSET — LABFEL — LABFEL x seq X_INSTR

Vé: OFFSET; | : LABEL e
Opo uge § 1 = (1 + 2,
(indirect ccb) ™ (indirect bucd)
™ (immediate(bldi, 0))

™

immediate(dpi, 1)) 7 (indirect ncb)
™ (zLabel(zrjb, 1))

N\

(

(

(indirect aeqd)

(xLabel(zrja,l 4+ 1))
™ (zLabel(xli, 1))

(

(

(

(

)

)

indirect cca) ~ (indirect aucd)
zLabel(zrja,l + 1))
immediate(bldi, 1))

™ (xLabel(xli, 1 + 1)))

)

™\

5.5.4 Other Binary Unsigned Comparison Operators

It is worth reiterating a point made in the introduction to this document;
wherever we can make a proof more easy or clear by sacrificing a bit of effi-
ciency, we are likely to do so. It is clear that more efficient implementations
of the une operator are possible. However, the one we have chosen will be
quicker to prove correct than repeating a similar proof to that required for
ueq.
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Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

Vo:OFFSET; |: LABEL e
301" : LABEL; I,T': seq X_INSTR |
(I''T) = Opo ueq 6 1
N (l”,[’) =Qpo not ' e
Opo une 6 1= (", 1"1)
Vé:OFFSET; | : LABEL e
301" LABEL; 1,1' : seq X_INSTR |
(I''T) = Opo uge 0 1
N (l”,[/) = OUO not ' e
Opo ult § 1 =" 1"1")
Vé:OFFSET; | : LABEL e
301" LABEL; 1,1' : seq X_INSTR |
(I''T) = Opo ugt 0 1
A" 1) =Opo not I' e
Opoule § =", 11"

5.6 Binary Byte and Enumeration Comparison Oper-

ators

Because they manipulate a single register, the comparison operators for byte

values are simpler.

Opo : BIN_.OP — OFFSET — LABEL — LABEL x seq X_INSTR

Vé:OFFSET; | : LABEL e
Opo beq 6 1 = (I,
(indirect beqd) — (immediate(bldi,0)) ~ (indirect 1rb))
A Opo blt § 1 = (I,
(indirect ccb) ™ (indirect bucd)
™ (immediate(bldi, 0)) 7 (indirect 1rb))
A Opo ble § 1 = (I,
(indirect scb) ™ (indirect bucd)
™ (immediate(bldi, 0)) 7 (indirect 1rb))
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Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

Vé: OFFSET; | : LABEL e
300" LABEL; I,1':seq X_INSTR |
(I'T) = Opo beq 6 1
N (l”,[’) =Qpo not ' e
Opo bne 6 1= (I",1"1)
Vé:OFFSET; | : LABEL e
301" LABEL; 1,1' : seq X_INSTR |
(I''T) =Opo ble 61
N (l”,[’) = OUO not ' e
Opo bgt 6 1=("1"1)
Vé:OFFSET; | : LABEL e
301" LABEL; 1,1' : seq X_INSTR |
(I''T) =0Opo blt 01
A" 1) =Opo not I' e
Opo bge 6 L= (", 11"

The two comparison operators for enumerated values are the same as their
byte equivalents.

‘ Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

Opo eeq = Opo beg

Opo ene = Opp bne

5.7 Binary Byte Arithmetic Operators

Some of the templates for arithmetic operators require data addresses in
order to store partial results. These addresses are at and above topOp. We
start with the byte arithmetic operators, which require comparatively simple
templates.
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Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

Vo : OFFSET; | : LABEL e
Opo bplus 6 1 = (I,
(indirect ccb) ™ (indirect buad) ~ (indirect hltcb))
A Opo bminus § | = (I,
(zData(xsdro,0)) ™ (indirect bstd)
™ (xData(zsdrs,d)) ~ (indirect b1dd)
™ (xzData(zsdro,0))
™ (indirect ccb) 7 (indirect busd)
™ (indirect hltcb))

Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

Vé: OFFSET; |: LABEL e
Opo bmul 6 1 = (I,
(immediate(aldi,0)) 7 (indirect aumd)
~ (immediate(aeqi, 0))
™ (indirect nca) " (indirect hltca))
A Opo bdiv 6 1 = (I,
(zData(zsdro,0)) ~ (indirect bstd)
“ (xzData(zsdrs,d)) ~ (indirect bldd)
~ (zData(zsdro,0))
™ (immediate(aldi, 0))
™ (indirect audd))

Asp byte division yields the modulus in the a register; this is moved to the
b register.

Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR

V& : OFFSET; |: LABEL e
Jldiv : LABEL; Idiv : seq X_INSTR |
(ldiv, Idiv) = Opo bdiv § | e

Opo bmod 6 | = (ldiv, Idiv ™ (indirect blda))
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5.8 Binary Unsigned Addition and Subtraction Oper-
ators

The operands are the opposite way round to the way the Asp instructions
work. Since uplus is commutative, this does not matter, however for uminus
they have to be swapped.

Opo : BIN.OP — OFFSET — LABEL — LABFEL x seq X_INSTR
Vo : OFFSET; |: LABEL e
Opo uplus § 1 = (I,
(indirect ccb) ™ (indirect buad)
™ (indirect caldcb)
™ (immediate(dpi, 1))
™ (indirect avad) " (indirect hltca))
A Opo uminus § | = (I,
(zData(zsdro,0)) ~ (indirect abstd)
“ (xzData(zsdrs,d)) ~ (indirect abldd)
™ (zData(zsdro,0)) ™ (indirect ccb)
indirect busd) ~ (indirect caldcb)
immediate(dpi, 1))

indirect ausd) ~ (indirect hltca))

~

N\

{
{
A
{

These operators work from the low byte to the high byte.

The template for uminus can be optimised further when the instruction for
copying C register to data addresses is provided. The C' register can then
be used as a temporary store during the swapping.

5.9 Binary Unsigned Multiplication Operator

The algorithm underlying the template for unsigned multiplication is based
on conventional long multiplication. In the following algorithm only the
lower two bytes of the answer are calculated, i.e. any overflow in the answer
is quietly ignored.
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A global optimisation has been incorporated into the system. This allows
the umul and udiv operators to be moved to a common region, and called
(similar to functions) when required. This allows a space saving for these
operators, which increases with each Pasp call to the operators.

The templates for these operators are kept (but renamed eg Oyypyr) for
inclusion by the linker on a conditional linkage basis. The new templates
for each of these operators consists of a sequence of XAspAL instructions.
These store the arguments, return address (as a label), and handle the call
to, and return from, the new function- style operators.

The linker will only include the template for one of these operators if a
call actually exists in the compiled XAspAL instructions. To achieve this
an XAspAL instruction zCallOp is used to identify calls to one of these
operators. This instruction is trapped and handled at the link stage. A new
function binopfn is used to map the operators to their unique label ids. This
is valid as the operator templates will appear as the first module in the linked
system, and so any subsequent modules will be labelled with higher labels.

\ binopfn : BIN_OP -+ LABEL

binopfn umul = 0

binopfn udiv =1

The next label to be used is 10, as udiv operator requires 8 labels also.

firstAvailableLabel == 10
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OUMUL . seq X_INSTR

Ovumur =
(zLabel (zli, binopfn umul))

™ (zData(zsdro,16)) ™ (indirect b1dd)
™ (immediate(aldi,0))

)

immediate(dpi, 2)} (indirect aumd)

)

immediate(dpi, —16)) — (indirect bstd)
immediate(dpi, 15)) 7 (indirect b1dd)

(
(
(
(dpi, 1)
(
(
(
(

)

)

immediate ) 7 (indirect aumd)

immediate —15)) 7 (indirect bstd)

immediate(dpi, 13)) ~ (indirect bldd)
,0)

)

immediate(dpi, 3)} (indirect aumd)

)

dpl,

)

)

)

)

immediate(dpi, —16)) 7 (indirect ccb)
indirect buad) ~ (indirect bstd)
immediate(dpi, —1)) 7 (indirect c1dd)
immediate(dpi, 18))

indirect abldd)

zlndirect zag)

)

)

)

N\

~

(
(
(
(
(
(
(
(immediate ald
(
(
(
(
(
(
(

Vo : OFFSET; |: LABEL e
Opo umul 6 1= (1+1,
(indirect cldab)

™ (xData(zsdrs,d)) ~ (indirect abldd)

™ (zData(zsdro, 18)) ™ (indirect abstd)
(immediate(dpi, —2))  (indirect cstd)
™ (xLabel(xll, 1))

(immediate(dpi, 4)) ~ (indirect abstd)
(

(

(

N\

)

“(zCallOp(binopfn umul))
™ (xLabel(xli, 1))
™ (indirect abldc))

Opo : BIN_OP — OFFSET — LABEL — LABFEL x seq X_INSTR
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The template O yypr, is now standalone. Its arguments and return labels are
stored in the operator stack, from topOp + 16 to topOp + 21. The left hand
argument u, from the memory, is stored in 16,17; the right hand operator
v, from the a, b registers, is stored in 18,19; the return label is stored in
20,21. The dependence upon a stack address now no longer exists. This,
and the introduction of the new Aspb instructions allow the templates to be
optimised quite substantially.

topOp + 2 and topOp + 3 are used to store the result of the multiplication.
The Asp multiplication instruction calculates the value of z % b + a, where z
is the data field. The 16-bit answer is stored with the most significant byte
in the a register.

This template contains 33 instructions, however a number of these are due
to the mechanism used to return from the operator.

First the value of vy % uy is calculated, and the low byte stored. The high
byte is retained in the a register, and is added to vy * u;. The low byte of
the result is stored at topOp + 3. Finally, vy * uy is calculated and added to
the contents of topOp + 3. There is no need to calculate u; * vy.

5.10 Binary Unsigned Division Operator

The algorithm for unsigned division that is represented by the following tem-
plate is based on ideas in volume 2 of ‘The Art of Computer Programming’
by D. E. Knuth.

The arguments and return labels are stored in the operator stack. The left
hand argument u, from the memory, is stored in 0,1; the right hand operator
v, from the a, b registers, is stored in 3,4; the return label is stored in 7,8.
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opudivstart : LABEL — seq X_INSTR

VI:LABEL e
opudivstart [ =
(xLabel(xli, 1))

™ (zData(zsdro,4)) ~ (indirect aldd)
immediate(aeqi, 0
zLabel(zrja,l + 1)
immediate(dpi, —

)

~—

) 7 (indirect nca)

)

)

) 7 (indirect bldd)

w
-~ —

)

immediate(aldi

)
~—

)

™ (indirect audd)
™ (indirect bstd)
)) ~ (indirect bldd)

~\

immediate(dpi,

w N -
o —
~ ~— ~— O ~ ~—

)

immediate(dpi, —

)

(

(
immediate(dpi,

(

(

indirect audd)
indirect aldd)

immediate(dpi, 3

)

~

o~ o~

immediate(dpi, 3
zLabel(zrgs, | + 8

)

o~ o~ o~ o~~~ o~~~




42

The DeCCo project papers I1I: Z Specification of Compiler Templates

opudivmain : LABEL — seq X_INSTR

VI:LABEL e
opudivmain [ =
opudivstart | ™ (xLabel(xli, | + 1))
™ (immediate(auci, 128))
~ (zLabel(zrja,l + 2))

)

immediate(auai, 1))
immediate(dpi,2)) ~ (indirect astd)
immediate(aldi, 1))
immediate(bldi,0))

indirect audd) ~ (indirect bstd)
immediate(dpi, —6)) 7 (indirect bldd)

)

)

)

)

)

)

immediate(aldi,0))

)

immediate(dpi, 6)) ~ (indirect aumd)
immediate(dpi, —6)) ~ (indirect bstd)

(
(
(
(
(
(
(
(
(
(
(immediate dp 1)) ™ (indirect bldd)
(
(
(
(
(
(
(
(
(
(

)

)

)

immediate(dpi, b))  (indirect aumd)

)

)) 7~ (indirect abstd)

)

immediate(dpi, 2)) ~ (indirect bldd)

)

)

immediate(aldi,

)

immediate(dpi, 3)) ™ (indirect aumd)

)

)

immediate(dpi, 1)) ™ (indirect bldd)
immediate(dpi, 2)

)

(
(
(
(
(
immediate(dpl,
(
(
(
(
(
(

(indirect aumd)

)

immediate(dpi, —2)) ~ (indirect bstd)

)"
-9
)
0)
)
immediate(dpi, —3)) ~ (indirect bstd)
)
)7
2
™ (xzLabel(xrgs, [ + 3))
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opudivzero : LABEL — seq X_INSTR

VI:LABEL e
opudivzero | =

opudivmain |~ (zLabel(zli, | + 2))

™ (immediate(dpi, —2))

™ (immediate(aldi, 0)) © (indirect astd)
™ (xLabel(xli, | + 3))

zData(zsdro,2)) ™ (indirect aldd)
immediate(dpi, 2)) ™ (indirect aeqd)
zLabel(zrja, | + 4))

immediate(dpi, —3)) 7 (indirect b1dd)
immediate(dpi, 3)) 7~ (indirect audd)
zLabel(zrgs, |+ 5))

™ (xLabel(xli, | + 4))

immediate(bldi, 255))

N\

)

)

)

)

™\

{
{
{
{
{
{
{
{
{
{

)
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opudivrem : LABEL — seq X_INSTR

VI:LABEL e
opudivrem [ =
opudivzero | ™ (xLabel(xli, | + 5))
™ (immediate(dpi, 1)) 7 (indirect bstd)
™ (immediate(dpi, —2)) 7 (immediate(aldi, 0))
indirect aumd) ~ (indirect bstd)
immediate(dpi, 1)) ™ (indirect bldd)

)

)

)

immediate(dpi, 1)) 7 (indirect aumd)

)

immediate(dpi, —3)) 7 (indirect cca)

)

indirect aucd)
zLabel(zrja,l + 7))

)

)

indirect aeqd) ~ (indirect nca)

(
(
(
(
(
(
(
(
(xLabel(zrja, | + 6))
(
(
(
(
(
(
(
(

)

)

immediate(dpi, —1))

indirect ccb)  (indirect bucd)

xLabel (zrjb, [ 4 7))

indirect beqd) ~ (indirect ncb)
zLabel(zrjb, [ 4 6))

immediate(dpi,2))  (indirect aldd)
immediate(dpi, —3)) 7 (indirect aucd)
zLabel(zrja, | + 7))

)

)

)

)

)

)

~
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opudivg : LABEL — seq X_INSTR

VI:LABEL e
opudivg | =
opudivrem | ™ (xLabel(zli, | + 6))
™ (zData(zsdro,5)) ™ (indirect b1dd)
™ (immediate(aldi,0))
(zLabel(zrgs, | + 8))
™ (xLabel(xli, 1 + 7))
™ (xData(zsdro, 5))
{
{
{

™

™ (indirect bldd) " (indirect ccb)
immediate(aldi, 0)) ~ (immediate(busi, 1))

™ (zLabel(xli, | + 8))

)

The stand-alone UDIV operation implements the division algorithm, then
returns to the caller, saving/restoring the contents of the a, b registers. There
are approximately 200 instructions in the complete template.

OUDIV . seq X_INSTR

V1: LABEL |l = binopfn udiv e
Ouprv =

opudivg I " (indirect cldab)
™ (xData(zsdro, 7)) ™ (indirect abldd)
™ (zIndirect rag)

Unsigned division is called by placing the arguments and return address in
the correct places in scratchpad memory, then jumping to udiv.
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Opo : BIN_.OP — OFFSET — LABEL — LABFEL x seq X_INSTR
Vé: OFFSET:; |: LABEL e
Opo udiv § 1 = (1 +1,
(zData(zsdro,3)) ~ (indirect abstd)
™ (xData(zsdrs,d)) ~ (indirect abldd)
™ (xData(zsdro,0)) ™ (indirect abstd)
™ (zLabel(xll, 1))
™ (xData(zsdro, 7)) ™ (indirect abstd)
(
(

~ (xCallOp(binopfn udiv))
™ (zLabel(xli, 1)) ™ (indirect abldc))

5.11 Binary Unsigned Modulus Operator

The unsigned modulus operator is defined in terms of unsigned multiplication
and division, using the equation

zmody =z —yx*(zdivy)

Consequently, the mod operator takes up a further two addresses on the
expression evaluation stack.

Opo : BIN_.OP — OFFSET — LABEL — LABEL x seq X_INSTR

Vo : OFFSET; |: LABEL e
Aldiv, Imul, Iminus : LABEL; Idiv, Imul, Iminus : seq X_INSTR |
(ldiv, Idiv) = Opo udiv 0
A (Imul, Imul) = Opo umul(§ + 2)ldiv
A (Iminus, Iminus) = Opo uminus 0 Imul e
Opo umod 6 | = (Iminus,
(xData(zsdrs,d + 2))

™ (indirect abstd) ~ Idiv ™ Imul 7 Iminus)

Note that this operator template uses the data addresses from topOp to
topOp + 10 inclusive.
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5.12 Binary Casting Operators

byte ToEnum(enum Type, byte) puts the enum Type on the stack, and the byte
in the b register. The result is the byte in the b register, so nothing needs to
be done.

join(hi, lo) has the hi byte on the stack, and the lo byte in the b register.
The hi byte needs to be loaded into the a register.

‘ Opo : BIN_.OP — OFFSET — LABEL — LABEL x seq X_INSTR

Vo :OFFSET; |: LABEL e
Opo byteToEnum § | = (1,())
A Opo join 6 1 = (I, (indirect aldd))
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6 Expressions

The expression templates calculate the value denoted by the expression. The
value is left in the a and b registers, or just the b register if the value is boolean
or byte.

The meaning functions for expressions are quite complicated, as a large
amount of information is required to calculate the templates. In particu-
lar

e the argument data address offset points to the top of the expression
evaluation stack, ‘above’ which the locations may be used to store in-
termediate results

e the argument label is the next label name to be used

e the result label is the new next label name to be used, taking into
account, any labels used to translate the expression

6.1 Utility function — location of identifier

O pgaaar calculates the code fragment that loads into the [a, b] registers the
data address corresponding to the relevant identifier (variable or parameter).
It is used by Oy, which in turn is used to calculate the relevant address in
both value reference expressions, and the lhs of assignment statements.

The parameters to Ogqqq- are:

o [DTYPE of the identifier
e MO: the memory allocation map
e OPDENVALUE: of the identifier (from the EnvOTrace environment)

e seq SubrangeN: the sequence of lower and upper array bounds of the
identifier

There are two cases: formal parameter and variable.



The DeCCo project papers I1I: Z Specification of Compiler Templates 49

6.2 Utility function — location of identifier — formal
parameter

formalParameter is call by reference, so indirect addressing:

1. (xzsdrh,d): set the data register D to § offset from the heap, D :=
0 + bottomHeap

2. abldd: load [a,b] with the address stored there

Ogugar - IDTYPE x MO x OPDENVALUE x seq SubrangeN —+
seq X_INSTR

Vi : IDTYPE; po: MO; odv: OPDENVALUE; NN : seq SubrangeN |
i € ran formalParam A (formalParam™ i).2 = ref o
Ogadar (i, po, odv, NN) =
(let 6 == (startAddr o po o opLoc™ odv)( ) e
(zData(zsdrh,§)) ~ (indirect abldd))

6.3 Utility function — location of identifier — variable

There are three cases:

e declared ‘AT’ wvariable, placed at a fixed location:
(zlada, 0): load [a, b] with the immediate absolute address d, [a, b] := d

e ordinary declared variable (no ‘AT’ attributes):
(xlrda,0): load [a,b] with the immediate relative address 0, [a, b] :=
0 + bottomHeap

e declared imported variable:
xBvar: special command for the linker to fixup
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Vi : IDTYPE; po: MO; odv: OPDENVALUE; NN : seq SubrangeN |
i € ran variable o
JA:PATTR |
A = attributeOf 1
Albs ={ n:domNN en (NNn).lb } e
(A Nran dataAt # @ =
O gadar (i, po, odv, NN) =
(let § == (startAddr o po o opLoc™ odv)lbs e
(zData(zlada, d))))
A (A Nran dataAt = @ A\ odv € ran op_loc =
O gadar (i, po, odv, NN) =
(let § == (startAddr o po o opLoc™ odv)lbs e
(xData(zlrda,0))))
A (odv € ran opImport =
O gadar (i, po, odv, NN) =
(zBvar(opImport™ odv, lbs)))

6.4 Actual parameter

The translation of an actual parameter stores the required value at the correct
addresses in the store. For call by value, the stored value is the value of the
actual parameter, while for call by reference it is the start address of the
variable.
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Oup : EXPR +
IDTYPE - STACK -+ ID - EnvOTrace x MO -+
OFFSET -+ LABEL + LABFEL x seq X_INSTR

Ve: EXPR; i: IDTYPE; B: STACK; b: ID; pot : EnvOTrace;
wo : MO; §: OFFSET; | : LABEL |
i € ran formalParam e
3 FormalType; I' : LABEL; I : seq X_INSTR |
1 = formalParam 6 FormalType
A(c=wval = (I',1) = Of € B(pot,po)d 1)
A (¢ =ref =
( 3¢ :ID; i’ : IDTYPE; odv: OPDENVALUE |
(&==¢ E == 1) DvalueRef™ €
A i = lookup (&', B, pTt0)
A odv = lookup(§', B, pot) e
I = Opgaaar(V', o, 0dv, NNY AT =1) ) @
Oup €i B b(pot,po)s = (I',1" (zPa(b,§)) ™ Oy 7)

In this fragment, the store address for the actual parameter is the formal
parameter address in the declaring procedure or function. This is unknown
at module compile time, and is fixed up by the linker.

1. I: load the parameter value/reference into [a, b]. Calculating a value
might consume labels; calculating a reference location does not.

2. zPa(b,§) : the linker determines the correct formal location
3. O, store the parameter at that location

To translate a list of actual parameters, each parameter is translated in turn,
and the results concatenated.
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Oyp+ : seq EXPR +
seq IDTYPE +— STACK -+ ID - EnvOTrace x MO -+
OFFSET -+ LABEL + LABFEL x seq X_INSTR

VB :STACK; b: ID; puot : EnvOTrace x MO;
0: OFFSET; |: LABEL e
Oap+( ) )B b ppot 6 1= (1,())
VE :seq EXPR; ¢ : EXPR; I :seqIDTYPFE; ©: IDTYPF;
B :STACK; b: ID; puot : EnvOTrace x MO;
d: OFFSET; | : LABEL |
H#HE =#1 o
311" : LABEL; P, P’ :seq X_INSTR |
(I'yP)=0Qapei Bbpuotdl
A", P)=0Oup ET1 Bbpuotol e

Oap-((€) " E)((i) " I)B b ppot 6 1 = (I", P~ P')

6.5 Constant

The value of a boolean or byte constant is immediately loaded into the b
register. The value of an unsigned constant is immediately loaded into the a
and b registers.

This translation uses up no new labels.

Og : EXPR —
STACK -+ EnvOTrace x MO + OFFSET + LABEL +
LABEL x seq X_INSTR

Vv: VALUE; B : STACK; puot : EnvOTrace x MO;
0: OFFSET; |: LABEL e
Og(constant v)B puot 6 | = (1, O (constType v, number v))

6.6 Value Reference

6.6.1 Value Reference — named constant
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V ValueRefExpr; B : STACK; pot : EnvOTrace; po : MO;
d: OFFSET; | : LABEL |
E={()e
Vi : IDTYPE | i = lookup(&, B, prt0) A i € ran const e
Jodv : OPDENVALUE | odv = lookup(&, B, pot) e
(odv € ran opImport =
Og(valueRef 0 ValueRefExpr)B(pot, jo)d | =
(1, (zConst £)))
A (odv ¢ ran opImport =
(Fk: VALUE | k = (const™ i).v e
Og(valueRef 0 ValueRefEzpr)B(pot, po)d | =
Og(constant k)B(pot, 110)d 1))

If the named constant is an imported constant, mark it using xConst, other-
wise look up the value in the type environment, and load its value directly
into [a, b].

6.6.2 Value Reference — enumerated value

V ValueRefFExpr; B : STACK; puot : EnvOTrace x MO,
d: OFFSET; | : LABEL |
E=()e
Vi : IDTYPE | i = lookup(§, B, pTt0) A i € ran enum Value o
dbmaz, b : BYTE | venum(bmaz, b) = (enumValue™ i).v e
Og(valueRef 0 ValueRefExpr)B pupot 6 | =
(1, (timmediate(bldi, b)))

The enumerated value is looked up in the type environment, and its value
loaded directly into b.

6.6.3 Value Reference — enumerated type
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V ValueRefExpr; B : STACK:; puot : EnvOTrace x MO;
d: OFFSET; | : LABEL |
E={()e
Vi : IDTYPE | i = lookup(&, B, prt0) A i € ran enumType o
3b: BYTE | b = #((enumType™ i).Z) o
Og(valueRef 0 ValueRefEzpr)B puot 6 | =

(1, (immediate(bldi, b)))

The enumerated type’s size is looked up in the type environment, and its
value loaded directly into b.

6.6.4 Value Reference — variable

V ValueRefExpr; B : STACK:; puot : EnvOTrace x MO;
0: OFFSET; |: LABEL e
Vi: IDTYPE |
i = lookup(&, B, pTt0)
A 1 & ran const U ran enum Value U ran enum Tiype o
37: TYPE; I': LABEL; I : seq X_INSTR |
T =typeOf i AN (I',1)=Qvy, E B ppot 6 1 £ e
Og(valueRef 0 ValueRefExpr)B puot 6 1 =
(I', I ™ (indirect daldab) ~ Oy, T)

For a variable:

1. I: load the data address of the relevant array element into [a, b]. (Oyy

evaluates the expression list to calculate the offset, then multiplies the
offset by the size of the type and adds the position of the first element
of the array.)

2. daldab: load [a, b] into D

3. Oy load the value from mem D to [a, b]
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6.7 Unary expression

In this case the body expression is translated (which results in its value being
stored in the a and b registers) and then the translation of the unary operator
is concatenated to the fragment.

YV UnyEzpr; B : STACK; ppot : EnvOTrace x MO;
0: OFFSET; | : LABEL e
301" . LABEL; I,1': seq X_INSTR |
(I''I) =0g € B ppot § 1
AN T)V=0po ¥ 1e
Og(unyExpr 0 UnyExpr)B puot § 1 = (I",1 1)

6.8 Binary expression

VY BinFExpr; B : STACK; puot : EnvOTrace x MO,
0: OFFSET; |: LABEL e
301,12,13 : LABEL; I1,12,13 : seq X_INSTR |
(11,11) = O € B ppot 6 1
A (12,12) = Og € B puot (6 +2)I1
A(13,13) =0po 25120
Og(binExpr 0 BinEzpr)B pupot 6 | = (I3,
I1T 7™ (zData (zsdrs,?))
™ (indirect abstd) 12 7 (zData(xsdrs,d)) — 13)

Algorithm:

1. I1: translate expression ¢, leaving result in [a, b]

2. zData(zsdrs,d): set D := topStack — J, to next available space on
expression evaluation stack.

3. abstd: store value of € on expression stack
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4. I2: translate expression e, leaving result in [a, b]. This translation uses
an expression stack offset of d + 2, so that the value of € is not overwrit-
ten. So two addresses are used to store the value of the subexpression,
even if it has boolean or byte type, because the information to calculate
the type of the subexpression is not readily available at this point. (The
binary expression can re-use the two addresses if it has to calculate a
modtype expression.)

5. xData(xsdrs,d): set D := topStack — §, so pointing to €

6. I3: translate the binary operator, which leaves the result € Q) € in [a, b]

6.9 Function call

Y FunCallEzpr; B : STACK; puot : EnvOTrace x MO;
0: OFFSET; |: LABEL e
dBf : STACK; I : seq IDTYPE; sr: Subrange; ' : LABEL,
P :seq X_INSTR |
function(Bf, I, sr) = lookup(&, B, ptt0)
AN(I',P)=0ups E 1 BE puotloe
Og(funCall  FunCallExpr)B puot 6 1 = (I'+ 1,
P ™ (xLabel(xll,1"))
™ (indirect cldab) ~ (zCall &)
™ (xLabel(xli, ")) ™ (indirect abldc))

Algorithm:

1. P: calculate the values of the actual parameters, and store them at the
correct formal parameter locations.

2. (zll,1): store the return label [ in the C register. (This label is stored
on the heap by the function itself, and used to return to the correct
place.)

3. xCall &: call the function &.
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4. (zli, 1): place the return label [ here.

5. abldc: load the result from C into [a, b]. (The function leaves its result
in the C' register.)

6.10 Multiple expressions

Multiple expressions occur as array indices. The templates that translate a
sequence of expressions calculate the offset represented by the sequence of
values from the position of the first element of the array.

The code calculates the array index offsets to give the same result as the
Pasp locationOffset function. That is X;(ss; * (si; — (ssr;).0b)). The naming
used here is instead X;(ne; * (¢; — Ib;)).

6.10.1 Single expression index

This template performs the calculation ne; * (¢; — Ib;). There is a (compile
time) optimisation for the case ne =1
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O

: EXPR —
STACK -+ EnvOTrace x MO + OFFSET + LABEL +
TYPE - N x N -+ LABEL x seq X_INSTR

: EXPR; B : STACK; puot : EnvOTrace x MO; 6 : OFFSET,

l: LABEL; 7: TYPE; Ib:N e
dle, lminus : LABEL; Ie, Iminus : seq X_INSTR |
(le,Ie) = O € B puot 6 1
A (Iminus, Iminus) =
if 7 = unsigned
then Opp uminus 6 le else Opp bminus J le o
Op1 € B ppot 0 1 7(lb, 1) = (Iminus,
Ie ™ (zData(xsdrs,0)) ™ Osr 77 Opri (1, 1b) 7 Iminus)

: EXPR; B : STACK; puot : EnvOTrace x MO; 6 : OFFSET,

l: LABEL; 7 : TYPE; lb,ne : N |
ne>1e
Jle, lmul : LABEL; Ie, Imul : seq X_INSTR |
(le,Ie) = Oy € B ppot 6 1 7(lb, 1)
A (Imul, Imul) =
if 7 = unsigned
then Opp umul 0 le else Ogo bmul § le ®
Op1 € B ppot 0 1 7(lb, ne) = (Imul,
Ie ™ (zData(zsdrs, 8)) ™ Osr 77 Opri(T,me) — Imul)

6.10.2 Multiple expression template

This template performs the calculation ¥;Og; €;. The first expression in the
sum is calculated at the top of the stack, 4. The remaining expressions are
calculated at 0 + 2, and the running total is kept at 0.
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Op- 1 seq; EXPR —
STACK - EnvOTrace x MO - OFFSET +~ LABEL +
TYPE -+ seqN x seqN +~ LABEL x seq X_INSTR

Ve: EXPR; B: STACK; puot : EnvOTrace x MO; 6 : OFFSET
l: LABEL; 7: TYPE; lb,ne :N e
Op«(e)B ppot 6 1 T((Ib), (ne)) = Op1 € B ppot 6 1 7(1b, ne)
VE :seq, EXPR; e : EXPR; B: STACK; ppot : EnvOTrace x MO;
0: OFFSET; |: LABEL; T : TYPFE,
LB, NE :seqN; lb,ne : N |
#LB =#NE e
3IE, le, Iplus : LABEL; IE, Ie, Iplus : seq X _INSTR |
(IE,IE) = O+ E B puot 6 | 7(LB, NE)
A (le,le) = Oy € B ppot(d + 2)IE 7(1b, ne)
A (Iplus, Iplus) =
if 7 = unsigned
then Opp uplus 6 le else Opgp bplus § le o
Opg«(E ™ (€))B puot 6 I (LB ™ (lb), NE ™ (ne)) =
(Iplus,
IE ™ (zData(zsdrs, §)) ™ Osr T
e
™ (xzData(zsdrs,d))  Iplus)

6.11 Variable location

Oy, calculates the data address of an array element reference, by adding a
data address offset (the location offset multiplied by the size of the type)
to the address of the first element. This address is known at compilation
time (either absolute for ‘AT variables, or relative to bottomHeap) unless the
variable is a call by reference formal parameter, in which case it is retrieved
from a data address known at compilation time.
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Oy : seq EXPR +
STACK —+ EnvOTrace x MO + OFFSET -+
LABFEL + ID + LABEL x seq X_INSTR

VE :seq, EXPR; B: STACK; pot : EnvOTrace; po : MO;
0: OFFSET; |: LABEL; £ :ID e
J4: IDTYPE; odv: OPDENVALUE; NN : seq SubrangeN;
Taddr : seq X_INSTR |
i = lookup(&, B, pTt0)
A odv = lookup(&, B, pot)
A NN = arrayOf @
A laddr = Ogaaar (i, po, odv, NN) e
Ovi( )B (pot,p0)d 1 £ = (1, Iaddr)
A ( Ira,mi: TYPE; IE,loff1,loff2, Iplus : LABEL,;
IE, Ioff 1, Ioff 2, Iplus : seq X _INSTR;
LB, NE : seqN |
Ta = typeOf 1
A 71 = arraylndexType 1
A( Vn:dom NN e
LB n = (NN n).Ib
A NE n = numkElts(((n+1)..#NN) 1 NN) )
A (IE,IE) = O« E B(pot,po)d | Ti(LB, NE)
A (loff 1, Ioff 1) = if Ta = pbyte
then Oyo byteToUnsgn IE else (IE,())
A (loff2, loff2) = if i = unsigned
then Oyo uleft IE else (loff1,())
A (Iplus, Iplus) = Opo uplus 6 loff2 e
Ovi E B(pot, pn0)d 1 £ = (Iplus,
IE ™ Toff1 ™ Ioff2
™ (xData(zsdrs,d)) ~ (indirect abstd)
~ laddr

™ (xData(zsdrs,d))  Iplus) )

This template is very simple for variables of zero dimension, where the ex-
pression sequence is of zero length. In this case, the template I loads the
variable’s address into the [a, b] registers
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If the variable is an array, the array’s start address must have the correct
offset for that index added to it. The algorithm is:

1. IE: convert the sequence of array indexes into the relevant index offset,
leaving the index offset in [a, b].

2. Ioff1: convert the index offset to an unsigned value (if the index type
is a byte, convert it to an unsigned value)

3. Ioff2: convert the index offset into an address offset in [a, b] (if the
array element type is unsigned, multiply the index offset by two)

4. (zsdrs,6): D = topStack — 6

5. abstd: store the array address offset on the stack
6. Iaddr: load the value start address into [a, b]

7. (wsdrs,0): D := topStack —§

8. Iplus: add the start address to the address offset, leaving the required
address in [a, b]
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7 Statements

Translating statements does not alter the environment, but does produce a
sequence of labelled instructions.

7.1 Multiple statements

The translation of a single statement is extended in a straightforward way
to one of a list of statements.

Ogs« :5eq STMT —+
STACK -+ EnvOTrace x MO + LABEL +~ OFFSET —+
LABEL x seq X_INSTR

VB :STACK; puot : EnvOTrace x MO; | : LABEL; § : OFFSET e
Os+()B ppot 16 =(1,())
Vv :STMT; T :seq STMT; B : STACK; puot : EnvOTrace x MO;
[: LABEL; § : OFFSET e
311,12 : LABEL; 1,1": seq X_INSTR |
(11,I1) =Og v B puot 1 6
A(12,1") = Og« T B puot 115 e
Os+({(y) "T)B puot 1 6 = (12,1 ™ 1')

7.2 Block

Translating a block statement is the same as translating the sequence of body
statements.

OS :STMT +
STACK - EnvOTrace x MO +— LABEL +~ OFFSET +
LABEL x seq X_INSTR

VI :seq STMT o Og(block I') = Og« T’
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7.3 Skip

A skip statement is compiled to a nop rather than to an empty sequence.
This allows a Pasp program to use multiple skips to implement a delay.

VB :STACK; puot : EnvOTrace x MO; | : LABEL; 6 : OFFSET e
Og skip B puot | 6 = (I, (indirect nop))

7.4 Assignment

The assignment template has the function of updating the store with the
value of the expression. To do this, the data address of the lhs is calculated
and temporarily stored in the block’s ‘assignment address’;; then the value
of the expression is calculated and stored in the C' register; then the value is
stored at the lhs address.

V AssignStmt; € : EXPR; B : STACK; puot : EnvOTrace x MO;
[: LABEL; 6 : OFFSET e
311,12 : LABEL; Iloc, I : seq X_INSTR; i : IDTYPE;
7: TYPE; §' : OFFSET |
(11,Iloc) = Oy, E B ppot 6 1 &
A i = lookup(&, B, ptt0)
A (12,1) = Opg € B puot § 11
AT = typeOf i
A &' = head(assignAddr(last B)) e
Os(assign 0 AssignStmt)B pupot 16 = (12,
Iloc ™ (xData(zsdrh, ")) ™ (indirect abstd)
™ (indirect cldab)
™ (xData(zsdrh, ")) ™ (indirect abldd)

™ (indirect daldab) ™ (indirect abldc) — Oy, T)

Algorithm:

1. lloc: calculate data address of {[E], result in [a, b]
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2. (wsdrh,&'): D := &'+ bottomHeap

3. abstd: store address of {[E] at D, on heap

4. I: calculate expression e, result in [a, b]

5. cldab: C :=la,b]; C :=¢

6. (wsdrh,d'): D := ¢ + bottomHeap, contains address of {[E]
7. abldd: load address of {[E] into [a, b]

8. daldab: D := [a, b]; D := address of {[F]

9. abldc: [a,b] := C; [a,b] :==¢

10. Os,: store € at address of {[E]

7.5 If statement

The expression is evaluated and the result put in the a carry bit. The a
and b registers are then loaded with the address of the next instruction after
the translation of the else statement and its associated goto. Then a jump is
made on the contents of the a carry bit. The translation of the else statement
comes next, followed by a goto to the statement following the translation of
the entire ‘if then else’. This is followed by the translation for the then
statement.
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V IfStmt; B : STACK; puot : EnvOTrace x MO; | : LABEL;
d: OFFSET e
311,102,103 : LABEL; I,I',IE : seq X_INSTR |
(I1,IE) = Og € B puot § 1
A(12,1') = Og v B puot 11 6
A(13,1)=0Og v B ppot (124 1)5 e
Os(ifStmt 0IfStmt)B puot 1 6 = (13 + 1,
IE
™ (indirect rrb)
™ (xLabel(xrjbl, 12)) ™ I’
™ (xLabel(xrg, 13))
™ (xLabel(xli, 12)) ™
™ (xLabel(xli, l3)>)

7.6 Case statement

The dynamic semantics of case statements are defined by calculating the
dynamic semantics of an equivalent fragment of Pasp (written out in abstract
syntax) which contains no case statements. The operational semantics are
defined as the (operational) meaning of the same fragment, thus making
the proof of the correctness immediate by structural induction. In order
to evaluate the expression at the head of the case statement just once, a
temporary variable is used to store the expression value.

The functions defining the equivalent Pasp fragment can be found in the
Pasp specification.

V CaseStmt; B : STACK; puot : EnvOTrace x MO; | : LABEL;
0: OFFSET e
Os(caseStmt 0 CaseStmt)B puot 1 § =
Og(block({assign( & ==&, E == (),e ==¢€))
“(limbSwitch K £)))B pupot 1§
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7.7 Loop

The loop statement defined is a while-do, rather than a repeat-until loop.
This means that the loop body could not be called at all if the condition is
false.

Y WhileStmt; B : STACK; puot : EnvOTrace x MO,

[: LABEL; 6 : OFFSET e

3UE,1S : LABEL; IE, IS : seq X_INSTR |
(IE,IE) = Og € B puot § (I1+1)
A (1S,1S) = Ogs v B puot IE § e

Ogs(whileStmt 0 WhileStmt)B pupot 1 6 = (1S + 1,

(xLabel(xli, 1)) ™ IE
™ (indirect rrb)  (indirect ncb)
~ (zLabel(xrjbl, 1S)) ™ IS
™ (xLabel(zrg, 1))
™ (xLabel(xli, 1S)))

There is one jump and one goto in the translation of a loop statement. Firstly
the expression is translated, the result is moved to the b carry bit, and the
jump address is loaded into the a and b registers. Then the carry bit is
inverted and a jump to the instruction after the end of the translation of the
loop statement (i.e. the jump is performed if the result of the expression was
false). The next sequence of instructions carries out the body of the loop,
and jumps back to the beginning of the translation of the loop statement
in order to re-evaluate the expression. The jumps are performed relative to
labelled instructions.

7.8 Procedure call

The operational semantics of a procedure call is a simplified version of the
operational semantics of a function call. The final part of the function call
fragment that moves the return value from the C register to the a, b registers
is omitted.
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Y ProcCallStmt; B : STACK; puot : EnvOTrace x MO;

[: LABEL; 6 : OFFSET e
3 ProcType'; I' : LABEL; I : seq X_INSTR |
procedure 0 ProcType' = lookup (&, B, pTt0)
AN(U',1)=0Oup« EI' BE puotdle
Ogs(procCall 0 ProcCallStmt)B puot 1 6 = (I' + 1,

I ™ (xLabel(zll, 1))
™ (indirect cldab) ™ (zCall &)
™ (xLabel(xli, "))
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8 Declarations

Declarations do not translate to instructions. Instead they cause modifi-
cations to the components of the translation environment. The definitions
given here should be compared with the definition of the dynamic semantics
of declarations.

We assume that the checks embodied in the static semantics are carried
out before compilation, and that the type environment and constant table
are available. There is no need, therefore, to define any semantics for the
declaration of named constants or type definitions.

8.1 Utility functions

opUsedLocations returns the set of all locations used by an operational envi-
ronment, those used by variables, and those used to store call return labels.

opUsedLocations : EnvOTrace - P LOCN

V pot : EnvOTrace o
opUsedLocations pot =
U{ b :dompot; £:ID; f:seqN = LOCN |
¢ € dom(pot b) A\ pot b § = opLoc f e
ran f }
U{ b:dompot; :ID; | : LABEL; locn : LOCN |
¢ € dom(pot b) A pot b & = opPFuval (1,locn) e
locn }

uss returns the set of all data addresses used by a memory allocation envi-
ronment.

‘ usedAddrs : MO - P ADDR
‘ Yo : MO e usedAddrs pro = (rano|Joran)uo

newLabelAddr returns a data address suitable for storing a label, along with
suitably updated environments.
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newLabelAddr : (EnvOTrace x MO) x (ID x ID) x LABEL -+
(EnvOTrace x MO) x ADDR

Y pot : EnvOTrace; o : MO; £,¢ :ID; | : LABEL e
dpot’ : EnvOTrace; po' : MO; locn : LOCN; 6 : ADDR |
disjoint({locn}, op UsedLocations pot)
A disjoint({0,d + 1}, usedAddrs o)
A pot’ = update(pot, (&), {& — opPFval(l, locn)})
A po' = po & {locn +— (6,0 +1)} o
newLabel Addr((pot, pot), (£,£),1) = ((pot’, pot'), )

newVarAddr returns an allocation of new data addresses suitable for storing
a value, along with the update to the memory map environment.

newVarAddr : (EnvOTrace x MO) x ID x IDTYPE
OPDENVALUE x MO

V pot : EnvOTrace; po: MO; € :ID; +: IDTYPE e
Jpo’: MO; f:seqN + LOCN; 7: TYPE; A:PATTR;

d: ADDR |

[ = allocate(i, opUsedLocations pot)

A dom po’ = ran f

AT = typeOf 1

A A = attributeOf i

A (ran dataAt N A # & = dataAt § € A)

A(Yi:dompo'; n:N|n=1[0—min(domuo’) e
(sizeof T=1= po’ I = (6+ n))
A (sizeof T=2=po' l=(+2*n,d+2*xn+1)))

A disjoint(usedAddrs o', usedAddrs po) e

newVarAddr((pot, o), &, 1) = (opLoc f, po')

The conditions on f here are the same as those on the f defined in My in
the specification of Pasp. The extra conditions ensure the following:

e dompuo’ =ranf
The function po’ defines the mapping from abstract locations to con-
crete data addresses. The condition ensures all and only those abstract
locations used have data addresses associated with them.
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ran dataAtNA# o= de€ A
If the variable has an at attribute, that required address is used for 9.

sizeof T=1= ...
If the type requires one data address, then o comprised a contiguous
block of data addresses, each corresponding to a location.

sizeof T=2= ...

If the type requires two data addresses, then po comprised a contiguous
block of data addresses, with two contiguous addresses corresponding
to each location.

disjoint . ..
The new data addresses are previously unused (this puts a constraint
on the allowed values of 4.

8.2 Variable declaration

8.2.1 Variable declaration — allocating locations

The location trace environment is updated to assign conceptual locations to
all the array entries, and the memory allocation trace environment is updated
to assign data addresses.

Oy : VarDecl - STACK -+ EnvOTrace x MO - EnvOTrace x MO

V VarDecl; B : STACK; pot : EnvOTrace; po : MO e
34 : IDTYPE; odv: OPDENVALUE; po': MO |
i = lookup(&, B, pTt0)
A (odv, po’") = newVarAddr((pot, po),&, i) e
Oy 0VarDecl B(pot, o) =
(update(pot, B, {& — odv}), po U po')

8.2.2 Variable declaration — initialisation

A sequence of instructions that initialises the variable is produced
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Ovyr : VarDecl +~ STACK + EnvOTrace x MO -+ seq X_INSTR

Y VarDecl; B : STACK; ppot : EnvOTrace x MO |V = () e
Ovy 0VarDecl B pupot = ()

V VarDecl; B : STACK; pot : EnvOTrace; po: MOV # () e
d4: IDTYPE; odv: OPDENVALUE; NN : seq SubrangeN;
Tloc, Irep : seq X_INSTR; sL:N; 7' : TYPE |
i = lookup(&, B, pTt0)
A odv = lookup(&, B, pot)
A NN = arrayOf i
A Tloc = Ogaqar (i, po, odv, NN)
A sL = #(dom(opLoc™ odv))
AT = typeOf i
AN#HV =1=
Irep = Opi(7', number(init Value(V 1) B))
~n:1..(sL—1)e
n i (Ogy 77 (immediate(dpi, sizeof 7'))) })

ANI<#V =
Irep=""/{n:1..(sL—1)e
n = (O (7', number (init Value(V n)B))
™ Oy 7' 7 (immediate(dpi, sizeof T'))) }
™ Opi(7!, number (initValue(V sL)B))) e
Ovr 0 VarDecl B(pot, po)
= lloc ™ (indirect daldab) ~ Irep — Oy, 7'

Algorithm:

e case # I/ = 0: no initialisation, so no code produced.
e Jloc: the memory location of the (start of) the variable

e 7': the type of the variable from the type environment (any subranges
replaced by base type)

e case #V = 1,#L = 1: simple variable.

— daldab: store address in D
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— O(V 1): immediate load initialisation value into [a, b]

— O,,: store initialisation value
e case #V = 1,#L > 1: block array initialisation.

— daldab: store address in D
— O7(V 1): immediate load initialisation value into [a, b]
— repeat #L — 1 times
x O, store initialisation value in nth array location
* dpi: increment D

— O,,: store initialisation value in last location
e case #V > 1,#L > 1: full array initialisation.

— daldab: store address in D
— repeat #L — 1 times
* Op;(V n): immediate load nth initialisation value into [a, b]

x (g4, store initialisation value in nth array location

* dpi: increment D
— O4(V #L): immediate load last initialisation value into [a, b]
— O,,: store initialisation value in last location
8.3 Simple Declarations

8.3.1 Simple Declarations — allocating locations

Simple declarations can update the translation environment; only constant
and variable declarations result in any change.
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8.3.2

Ogp : SIMPLE_DECL + STACK -+
EnvOTrace x MO + EnvOTrace x MO

V ConstDecl; B : STACK; pot : EnvOTrace; po : MO e
dpot’ : EnvOTrace | pot’ = update(pot, B,{§ — opExport k}) e
Ogp(constDecl 8 ConstDecl) B(pot, j1o) = (pot’, j0)

Vo: TYPE_DEF; B:STACK e
Osp(typeDecl §)B = id(EnvOTrace x MO)

Vo : VarDecl @ Ogp(varDecl §) = Oy §

Simple Declarations — initialisation

Simple declarations can produce initialisation instructions; only variable dec-
larations result in any code.

Ogspr : SIMPLE_DECL + STACK —+
EnvOTrace x MO -+ seq X_INSTR

V¢ : ConstDecl; B : STACK; prot : EnvOTrace x MO e
Ospi(constDecl §)B prot = ()

Vo : TYPE_DEF; B : STACK; prot : EnvOTrace x MO e
Ogspi(typeDecl §)B prot = ()

V§ : VarDecl @ Ogp(varDecl §) = Oy 6

Multiple declarations produce instructions that are the concatenation of the
individual declarations’ instructions.

Ospr+ : seq SIMPLE_DECL +
STACK -+ EnvOTrace x MO -+ seq X_INSTR

VB : STACK; prot: EnvOTrace x MO @ Ogpr«( )B prot = ()

V6 : SIMPLE_DECL; A :seq SIMPLE_DECL; B : STACK;
prot : EnvOTrace x MO e

OSDI*(<(5> ~ A)B p’i'O?f = OSDI 0B pTOt ~ OSDI* A B pTOt
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8.4 Routines
8.4.1 Parameters

The operational semantics of parameter declarations allocates a single loca-
tion for the formal parameter (as in the dynamic semantics) together with
an appropriate number of data addresses. For parameters that are called by
value, the appropriate number is given by the size of the value’s type. For
parameters that are called by reference, the appropriate number is given by
the size of a data address, which is 2.

Opup : ParamDecl +~ STACK —+
EnvOTrace x MO - EnvOTrace x MO

YV ParamDecl; B : STACK; pot : EnvOTrace; po : MO e
3 VarType'; odv : OPDENVALUE; po' : MO |
A'=a N SR = () A Td = unsigned
A (c=ref =
0 Subrange Type' =
(b ==0,ub==0,7 == indirectAddr |))
A (¢ # ref =
(3 Formal Type
0 FormalType” =
formalParam™ (pTt0(lastB)E) e
0 Subrange Type' = 0Subrange Type"))
A (odv, po’) =
newVarAddr((pot, po), &, variable  VarType') o
Opup OParamDecl B(pot, o)
= (update((pot, po), B,{& — odv})uo U po')

This definition is extended in the usual inductive fashion to sequences of
parameter declarations.

Opup+ : seq ParamDecl + STACK —+
EnvOTrace x MO + EnvOTrace x MO
VB :STACK e Opyp+( )B = id(EnvOTrace x MO)
V7 : ParamDecl; 11 : seq ParamDecl; B : STACK e
Opyp+({m) “T)B = Opyp+ 11 Bo Opyp © B

//’
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8.4.2 Body

The procedure body is mapped to the translation of the variable initiali-
sations and the body statement. These is calculated with an environment
updated by the declarations of the local variables. The correct offset from
the top of the expression stack is passed as an argument.

Op : Body +
STACK - LABEL -+ EnvOTrace x MO - OFFSET —+
(EnvOTrace x MO) x (LABEL x seq X_INSTR)

YV Body; B : STACK; | : LABEL; puot : EnvOTrace x MO;
0 : OFFSET e
dppot’ : EnvOTrace x MO; I' : LABEL; Ii, Ib : seq X_INSTR |
ppot’ = Ogp« A B puot
A Ii = Ogpr- A B puot’
AU, Ib) =Og v B puot' 1§ e
Op 0Body B 1 ppot 6 = (ppot’, (I', Ii ™ Ib))

8.4.3 Procedures

We are now ready to define the operational semantics of procedure declara-
tions. The label for the program address of the first instruction is passed as
an argument to this semantics so that it can be stored in the environment
and used to label the instructions used to translate the procedure. When the
procedure is called, a pair of data addresses are allocated to store contents
of the C register — the return address. The environment is updated to re-
serve these addresses, and location used. The body template is followed by
a fragment to jump to the return address. We assume here that the return
address is modelled by an unsigned integer (ie a label).
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Opp : ProcDecl -+
STACK -+ LABEL + EnvOTrace x MO -+
(EnvOTrace x MO) x (LABEL x seq X_INSTR)

Y ProcDecl; B : STACK; | : LABEL; pot : EnvOTrace; po : MO e
Jppot’, ppot”, ppot” : EnvOTrace x MO; ' : LABEL;
I :seq X_INSTR; ¢ : OFFSET |
ppot’ = Opyp- II(B ™ (£))(pot & {{ — @}, po)

A (ppot”, (I, 1)) = Op B(B ™ (§))(I + 1)ppot’(pst0 &)
A (ppot™, ) = newLabelAddr(puot”, (€, last B),1) e
Opp 0ProcDecl B 1 (pot, o) =

(,O,UzOt/”, (l/,
(zProc(&, 1))

™ (xData(zsdrh,d)) ~ (indirect cstd) [
™ (xData(zsdrh,0)) ™ (indirect abldd)
™ (xIndirect zag)))

Algorithm:

e zProc(,1): the label [ corresponding to the start of procedure &, used
by the linker

o (zsdrh,d): set D to & + bottomHeap. (The return label in MO is
stored relative to bottomHeap, for d the actual position on the heap
is bottomHeap + §. New heap addresses are to store the label.)

e cstd: store return label from C' to d+ bottomHeap. (The label to return
to is stored in the C register just before the procedure is called. This
label is not necessarily known at compilation time, as the caller could
be in a different module. The linker resolves labels across modules.)

e [: procedure body template
e (xzsdrh,d): set D to § + bottomHeap
e abldd: load return label from § + bottomHeap into [a, b]

e zag: jump to label stored in [a, b]
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8.4.4 Functions

The operational semantics of function declarations is identical to that of
procedure declarations, apart for the allocation of memory for the return
value. This value is stored in the C' register before the function completes,
and returns. The caller then retrieves the value from the C register, and
puts it into the a and b registers.

The function has to retrieve the value to store in the C register. This is
achieved similarly to how the value was previously retrieved by the caller.
This is done by using the EnvOTrace and MO variables (pot”, and po”)
which have the correct information.
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Oprp : FunDecl +
STACK -+ LABEL + EnvOTrace x MO -+
(EnvOTrace x MO) x (LABEL x seq X_INSTR)

YV FunDeclB : STACK; | : LABEL; pot : EnvOTrace; po: MO; e
3 FunType'; VarType';
ppot’ ppot”  ppot™ . EnvOTrace x MO;
pot” : EnvOTrace; o', po" : MO;
odv : OPDENVALUF,
I': LABEL; I : seq X_INSTR; 6,0' : OFFSET |
ppot’ = Opyp~ II(B ™ (£))(pot & {{ — @}, pio)
A O FunType’ = function™ (prt0(last B)E)
NA =2 NSR =3 A Td = unsigned
A (odv, o) = newVarAddr(ppot', &, variable 0 VarType)
A (pot”, po") = (update(ppot’, (§), {€ — odv}), po U po’)
A (ppot™, (I, 1)) =
Op 0Body(B ™ (§))(I + 1)(pot”, o")(pst0 &)
A (ppot™ ") = newLabelAddr(ppot™, (€, last B), 1+ 1)
A § = (head o j10" & o opLoc™(pot” £ £))( ) e
Opp OFunDecl B l(pot, o) =
(/)/wt"", (l/7
(xProc(&,1))
™ (xData(zsdrh, ")) ™ (indirect cstd) I
™ (zData(zsdrh,§)) ~ (indirect c1dd)

(
™ (xData(zsdrh,d")) ™ (indirect abldd)
™ (xzIndirect zag)))

8.4.5 Routines

In order to use the generic extensions of semantic functions to sequences, we
define an operational semantics for procedure/function declarations.
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OPFD : PROC_FUN_DECL -
STACK - LABEL + EnvOTrace x MO -+
(EnvOTrace x MO) x (LABEL x seq X_INSTR)
Y § : ProcDecl ® Oppp(procDecl §) = Opp 6
Vo : FunDecl ® Oppp(funDecl §) = Opp §

8.5 Import declarations

Import declarations generate no code. The linker fixes up the addresses when
the imported declarations are referenced in the code. Constant and variable
import declarations change the environment.

Orp : IMPORT_DECL -+ EnvO x MO -+ EnvO x MO
V¢ ID; 7: TYPE; po: EnvO; po: MO e
Osn(constHar(€, 7)) (po, 10) = (po & {€ r— oplmport €}, o)

Y VarDecl; po : EnvO; po: MO e
Op(varHdr 6 VarDecl)(po, o) = (po & {& — opImport &}, po)

V& : ProcHde ® Op(procHdr §) = id(EnvO x MO)
Vo : PunHdr e Op(funcHdr §) = id(EnvO x MO)

8.6 Multiple declarations

Translating an empty declaration list has no effect on the environment.
Translating a list of declarations is done by translating the head of the list
(thereby changing the environment), and then translating the tail of the list
in the new environment.

Osp+ : seq SIMPLE_DECL —+
STACK -+ EnvOTrace x MO —+ EnvOTrace x MO
VB :STACK e Ogp+( )B = id(EnvOTrace x MO)
Vo :SIMPLE_DECL; A :seq SIMPLE_DECL; B : STACK e
Osp+((0) " A)B =0Ogp« A BoOgp § B
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OPFD* . seq PROC_FUN_DECL +
STACK - LABEL + EnvOTrace x MO -+
(EnvOTrace x MO) x (LABEL x seq X_INSTR)

VB :STACK; | : LABEL; puot : EnvOTrace x MO e
Oprp-( ) B 1 ppot = (ppot, (1,()))
VA :seq PROC_FUN_DECL; § : PROC_FUN_DECL; B : STACK;
[ : LABEL; ppot : EnvOTrace x MO e
Jppot’, ppot” : EnvOTrace x MO; I',1" : LABEL,;
I,I':seq X_INSTR |
(puot’,(I',1)) = Oppp 6 B 1 puot
A (ppot” (1", 1) = Oppp~ A B 1" pot’ e
Oprp<((6) T A)B | puot = (puot”, (1", 1 1))

Op+ : seq IMPORT_DECL + EnvO x MO + EnvO x MO
Op+( ) = id(EnvO x MO)
Vo : IMPORT_DECL; A :seqIMPORT_DECL e

Om+({(0) "A)=0Omp Ao Opp 6
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9 Modules and Programs

9.1 Utility Functions

The addition of blockOffset functions element-wise is required, so we define
H to do this.

function 30 leftassoc(_H_)

‘ _H_: blockOffset x blockOffset - blockOffset

Vf,q: blockOffset | dom f = dom g e
fBg=Ab:domfef b+gb)

9.2 Address allocation
9.2.1 Case statement addresses

Opgny allocates locations and memory addresses for the temporary variables
associated with case statements that have no explicit declaration; locations
and addresses are assigned by extracting information from the type trace
environment.
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Opny : EnvTTrace - EnvOTrace x MO

YV prt . EnvTTrace o
dpot : EnvOTrace; po : MO |
dom pot = dom ptt
A( Vb, b :dompot e
dom(pot b) = dom(prt b > ran temp Var)
A (V€ :dom(pot b); & : dom(pot b') e
( 31: LOCN e pot b & = opLoc{( )+ 1})
A(pot bE=poth < =bANE=E))
A dom po = ran(|J(opLoc™( (rano|Joran)pot |)))
A (V¢ :dom(pot b) e
31 :dompo; 6 : ADDR |
[ = opLoc™ (pot b &)( ) e
po 1=(0))
AN(YLU :dompoepol=pol' <1l=1))e
Ogne pTt = (pot, po)

This loose specification constructs from a type trace environment, an EnvOTrace
environment and MO map with the following properties:

e The environment is defined for precisely the same blocks.

e The EFnvOTrace environment is defined for precisely the temporary case
variables.

e Fach temporary variable is mapped to a single location.
e These locations are disjoint.

e The MO map for each block is defined for precisely the locations given
in the EnvOTrace.

e Each location is mapped to a single data address.

e These addresses are disjoint.
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9.3 Module address allocation

The function addrs takes a mapping from array indexes to abstract locations
(that is, information about all the abstract locations used to store the array),
and a memory allocation map (from locations to data addresses), and returns
the set of all data addresses mapped to by the supplied locations (that is, all
the data addresses used to store the array).

‘ addrs : (seqN -» LOCN) x MO — P ADDR

Vf:seqN -+ LOCN; po: MO e
addrs(f, po) = ran(|J(ran(po o f)))

moduleAddr takes an operational trace environment and memory allocation
map, and returns an ‘AT’ variable data address map. It also puts some
constraints on some global variables to do with memory allocation.
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moduleAddr : EnvOTrace X MO - PATTR - P ADDR

YV pot : EnvOTrace; po: MO e
Jal,a2:PADDR; atMap : ID x ID x PATTR + P ADDR;
atMemMap : P ATTR - P ADDR |
atMap =
{b:domprt0; £:ID; 6 : ADDR; A, A" :PATTR |
¢ € dom(p7t0 b)
N A = attributeOf (pTt0 b &)
A dataAt 0 € A
N A" = AN {readOnly, writeOnly, nuram} e
(b,&, A") — addrs(opLoc™(pot b §), po) }
AN(Vb,EID; AJA :PATTR |
(b,&, A') € dom atMap
N A = attributeOf (pTt0 b §) @
dataAt(min(atMap(b,&, A"))) € A)
A disjoint atMap
N atMemMap =
{ A" {2, {readOnly}, {writeOnly },{nvram}} e
a— {0, :ID|(b,§,A") € dom atMap e
atMap(b, &, A') } }
A al = usedAddresses po \ |J(ran atMemMap)
A a2 = ran(|J(ran assignAddr))
A dom assignAddr = dom pot
A disjoint{al, a2)
A ( Vb :dom assignAddr e
30 : ADDR e assignAddr b = (0,0 +1) )
A topVar > maz (al Ua2) e

module Addr(pot, o) = atMemMap

e atMap = ... : a mapping of all the ‘AT’ variables, from (block, vari-

able name, attributes) to the set of data addresses used to store that
variable. (This is one or two addresses for a simple variable, several for
an array variable. The addresses are contiguous.)

e dataAt... € A : each ‘AT’ variable starts at the requested absolute

address (the linker does not change these addresses).
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e disjoint atMap : the ‘AT’ data addresses do not overlap. (This check in-
cludes all the data addresses involved, not just the start ones explicitly
mentioned in the ‘AT’ declaration.)

e atMemMap = ... : a mapping from each kind of ‘AT’ attribute (plain
‘AT’ read only ‘AT’ write only ‘AT’, and nvram ‘AT’) to all the data
addresses requested for that attribute.

e «al: the relative addresses used by all the user variables (ordinary, case
statement, but not ‘AT”)

e a2: the ‘assignment addresses’ (used in the assign template)

e dom assignAddr: there are assignment addresses for precisely the de-
clared blocks

e disjoint: The assignment addresses are distinct from the user addresses.
e There are two contiguous assignment addresses per block

e topVar: the user addresses and assignment addresses are below top Var
(are all in the heap).

9.4 Compiled module

A CompModule is the output from the compilation of a module. It is used
as the input to the linker, which requires not just the code, but also enough
information to do cross-module checking, and to resolve cross-module jumps.

The CompModule consists of the name of the module (an identifier), the
compiled sequence of instructions, the size of the memory required (heap and
stack combined), the addresses used as fixed ‘AT’ addresses in the module,
the declaration and type environments, the operation trace environment, and
the memory allocation map.
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__ CompModule
&:ID
I :seq X_INSTR
size : N
a:PATTR - PADDR
pd : EnvD
p7 : EnvT
pot : EnvOTrace
o : MO

9.5 Module

To compile a module, the various stack amounts are calculated, the declara-
tions are compiled to I, the simple declarations’ initialisations are compiled
to [i, and various environments are computed.

Oy - Module - CompModule

YV Module o
dpsa : blockOffset; CompModule’; pot : EnvOTrace;

I,1i:seq X_INSTR; | : LABEL |

pst0 = Sy OModule N psa = Ay 0 Module

N ((p0t7 Mol)v (Z7 [)) =
Oprp» APF(§)1(Osp- ASD(§)(Oppy p7t0))

A pot" = update(pot, (£), first(Op« Al(D,D)))

A Ii = Ogpr= ASD{(E)(pot’, po”)

A 1" = (xzLabel(zrg, 1)) ~ I 7 (zLabel(zli, 1)) ™ i

A o = module Addr(pot’, po’)

A size! = topVar + maxz(ran(psa B pst0))

N pd" = Dy, 6 Module

A p1t' = Ty, OModule o

Oy OModule = 6 CompModule’

e pst @ the stack set-up semantics, globally accessible to the module

e psa : the stack amount set-up semantics
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((pot, no’), (I, 1)) : the environments, next label, and instructions that
result from compiling a module’s declarations in the initial ‘case state-
ment’ environments. (Recall that the environment stores relative ad-
dresses of non-‘AT’ variables, relative to the bottom of the heap, to
be fixed up by the linker.) Each module has a contiguous sequence of
label numbers starting from 1 (these are renumbered when the linking
occurs to ensure all the labels are unique).

e pot’: include any imported variables in the environment.
e [i : simple declaration initialisation instructions
e [ : jump around declarations, and perform initialisation

o o : the ‘AT’ variable data addresses

The structure of the generated code is

e jump to label [
e code for procedures and functions
e label [

e code to initialise simple declarations ¢

9.6 Main Module

The main module template is specified similarly to the standard module. It
has a further sequence of compiled instructions I’, for the body statement.
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Oua : MainModule + CompModule

V MainModule
dpsa : blockOffset; pot,pot’ : EnvOTrace; CompModule';

I,1i,1o : seq X_INSTR; 1, : LABEL; |
pst0 = Sya 0 MainModule
A psa = Apya O MainModule
N =¢
A ((pot, po'), (1, 1)) =
Opppe APF(E)1(Ogpe ASD (E)(Opny pr10))
A pot’ = update(pot, (£), first(Op« Al(D, D)))
A Ii = Ogpr= ASD{(E)(pot’, po”)
A (U, 1o) = Og (&) (pot’, wo’)l topStack
N 1" = (zLabel(zrg,l")) ™ I ™ (zLabel(xli, ")) ™ Ii ™ lo
A o = moduleAddr(pot’, po')
A size' = topVar + maz(ran(psa B pst0))
A pd&" = Dyar, 0 MainModule
A pt" = Tyar, O MainModule o

Oura OMainModule = 0 CompModule’

The structure of the generated code is

e jump to label [’

9.7 Program

code for procedures and functions

code to initialise simple declarations [i

code for body statement I’

The operational semantics of a complete Pasp program is not defined in this
document; it is given by the linker.
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A Operator Optimisation

A.1 Introduction

This appendix discusses the validity of changes to the operator templates,
and the global optimisation of uwmul and udiv.

The approach behind the optimisation is to remove the inline substitution
of the templates for each call to one of the operators. The templates are
replaced by specially optimised templates which are positioned at a fixed
place in the memory. When a call to one of the operators is made, a function
style call is made to the appropriate special template.

The function style call puts the two operands, and the label to return to in
fixed locations in the operator scratchpad and then calls the operator tem-
plate. This call is made by using unique labels to identify the beginning of
each of the operators. A special XAspAL instruction is used by the com-
piler, because at the linking stage, conditional linking of these operators is
performed so that only the templates for those operators called are included.

The return value from the operation is passed back from the optimised tem-
plates in the C' register. This value is then recovered to the a and b registers
and the operation is complete, as this emulates the operation of the original
template.

A.2 Template algorithm

The algorithm used by the templates to calculate their operation is identical
to previously. The optimisations possible are provided by the new Aspb
instructions to step the data address register back, as well as perform multiple
operations in a single instruction (eg storing a word to memory locations
pointed to by the data address, as well as multiplication and division). Each
of these Asp instructions has been specified, and their operation can be shown
to be equivalent to the sequence of previously used Asp instructions.
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A.3 Function-Call algorithm

The function calling algorithm used for the operators is the same as for
general function calls. The operands are put onto the scratchpad rather
than into calculated positions in the heap, and the return label is put onto
the scratchpad rather than passed into the function body in the C' register.
The actual XAspAL instructions used for the call are different, however this
is purely used as a flag for the linker, and the instructions passed to the hexer
are identical.

The calling template puts the RIGHT hand operator in the scratchpad ad-
dresses 16,17 (usually from the a and b registers) in the standard lo-byte,
hi-byte format. The LEFT hand operator (usually from addr, addr+ 1) is in
18,19, and the label within the calling template, for the optimised template
return to, is put in addresses 20,21. (The case for udiv is different.)
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