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Preface

Historical background of the DeCCo project

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now
QinetiQ) into how to develop a compiler for high integrity applications that
is itself of high integrity. In that study, the source language was Spark, a
subset of Ada designed for safety critical applications, and the target was
Viper, a high integrity processor. Logica’ Formal Methods Team developed
a mathematical technique for specifying a compiler and proving it correct,
and developed a small proof of concept prototype. The study is described in
[Stepney et al. 1991], and the small case study is worked up in full, including
all the proofs, in [Stepney 1993]. Experience of using the PVS tool to prove
the small case study is reported in [Stringer-Calvert et al. 1997]. Futher
developments to the method to allow separate compilation are described in
[Stepney 1998].

Engineers at AWE read about the study and realised the technique could be
used to implement a compiler for their own high integrity processor, called the
ASP (Arming System Processor). They contacted Logica, and between 1992
and 2001 Logica used these techniques to deliver a high integrity compiler,
integrated in a development and test environment, for progressively larger
subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are repro-
duced in these technical reports. These are written in the Z specification
language. The variant of Z used is that supported by the Z Specific For-
maliser tool [Formaliser], which was used to prepare and type-check all the
DeCCo specifications. This variant is essentially the Z described in the Z
Reference Manual [Spivey 1992] augmented with a few new constructs from
ISO Standard Z [ISO-Z]. Additions to ZRM are noted as they occur in the
text.
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The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports
(this preface is common to all the reports):

I. Z Specification of Pasp
The denotational semantics of the high level source language, Pasp.
The definition is split into several static semantics (such as type check-
ing) and a dynamic semantics (the meaningof executing a program).
Later smeantics are not defined for those programs where the result of
earlier semantics is error.

II. Z Specification of Asp, AspAL and XAspAL
The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is
AspAL extended with some cross-module instructions that are resolved
at link time. The meaning of these extra instructions is given implic-
itly by the specification of the linker and hexer. AspAL is the target of
linking a set of XAspAL modules, and also the target of compilation
of a complete Pasp program. Asp is the non-relocatable assembly lan-
guage of the chip, with AspAL’s labels replaced by absolute program
addresses. The semantics of programs with errors is not defined, be-
cause these defintions will only ever be used to define the meaning of
correct, compiled programs.

III. Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of
a set of XAspAL target language templates.

IV. Z Specification of Linker and Hexer
The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program
into an Asp program located at a fixed place in memory.

V. Compiler Correctness Proofs
The compiler’s operational semantics are demonstrated to be equiv-
alent to the source language’s denotational semantics, by calculating
the meaning of each Pasp construct, and the corresponding meaning
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of the AspAL template, and showing them to be equivalent. Thus the
compiler transformation is meaning preserving, and hence the compiler
is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manu-
ally, following the stated guidelines.
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1 Introduction

This document provides the specification for the linker and hexer.

The linker transforms a sequence of XAspAL modules into an AspAL pro-
gram. The linker specification includes the abstract syntax and semantics,
and links together a number of compiled AspAL modules, CompModule. The
linker output program can be demonstrated to have the same meaning as an
equivalent Pasp program.

The hexer transforms an AspAL program into an Asp progrm. This trans-
formation is straightforward for the majority of the instructions, where no
change is required. AspAL label instructions are transformed to Asp absolute
program address instructions. This can result in a single AspAL instruction
being transformed in to a sequence of Asp instructions.
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2 Informal overview of linker

This section gives an overview of the definition of the linker. The purpose of
the linker is to link compiled module segments into one compiled program.

2.1 Design Decisions

There are a number of design decisions that have been taken during the
specification of the linker, and modules. These are as follows

• All module names have to be unique.

• All export identifiers have to be unique – that is, procedures and func-
tions with the same name cannot be exported from two different mod-
ules.

• All standard modules have to have an export declaration, even if it is
empty.

• All names of functions and procedures imported into a module must
be exported in a previous module in the linking list.

• No import can also be exported from the same module.

2.2 Concepts

The modules are written in Pasp. Pasp modules are compiled into XAspAL
code segments. The XAspAL instruction set is the labelled AspAL instruc-
tion set extended with extra X instructions required by the linker.

The set of instructions constituting AspAL is the XAspAL set with the cross-
module instructions removed.

AspAL == XAspAL \ {xProc, xCall , xBvar}
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The Asp instruction set has jump and goto instructions to specific data ad-
dress locations. It is AspAL with all the remaining X-instructions removed,
and the label values replaced by the specific locations and offsets.

Asp == AspAL \ {xData, xIndirect , xLabel}

So, for a Pasp module, the compiler performs the following action

compile : Module 7→ CompModule

which is

compile : Module 7→ seqXAspAl × . . .

One the Pasp modules havve been compiled individually, they can be linked
(see later).

2.3 Compiler output

The output from the compilation stage is a collection of items. These are
required by the linker, and comprise the module’s name, the compiled XAs-
pAl instructions, the amount of memory required for stack and heap, and
the addresses of the fixed variables, the symbol declaration environment,
the type checking environment, and the compiler translation environment.
These are combined into a single syntactic structure CompModule, which has
been declared earlier but is displayed again here for convenience, along with
definitions of the module compiler templates.

CompModule ==

ID module name

× seqX INSTR compiled code, XAspAL

× N size, heap + stack

× (P ATTR 7→ P DATA ADDRESS ) fixed AT vars

× EnvD declaration environment

× EnvT type environment

× EnvOTrace translation environment

×MO memory allocation map
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jump to label 0


code for SDs

code for PFDs


label 0


code for SD init


jump to label 0


code for SDs

code for PFDs


label 0


code for SD init


code for main body


Figure 1: Compiled code structure of a module, and a main module

OM : Module 7→ CompModule

OM ∗ : seqModule 7→ seqCompModule

OMA : MainModule 7→ CompModule

The linker then takes these segments to AspAL (which is a subset of X INSTR
as defined previously). The standard module and main module are treated
differently, and so are defined separately.

link : seqCompModule × CompModule 7→ seqX INSTR

Then the hexer takes the AspAL, and generates Asp. It does this by removing
the abstract jumps to labels, replacing them with jumps to specific addresses,
thereby removing the relocatable nature of the AspAL.

hex : seqAspAL 7→ seqAsp

2.4 Code structure

Figure 1 shows the structure of a compiled module, and a compiled main
module.

Figure 2 shows the structure of a linked program of modules. The linker fixes
up the labels so that they do not clash, and puts the modules in contiguous
memory space, so that at the end of initialisation code in one module is the
jump at the beginning of the next module.
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Figure 2: Linked code structure of a sequence of modules



6 The DeCCo project papers IV: Z Specification of Linker and Hexer

3 Linker input — assigning memory locations

Parent Section: Compiler Specification

The input to the linker, is a sequence of CMODULE , along with some other
required information. The minaddr , and maxaddr data addresses specify
the memory range where the linked program’s data should reside. All the
fixed variables should be within this range, as well as the modules’ heaps and
stacks and the operator stack. In addition, the value of sizetopop is required,
which is currently fixed at 16.

The assignment of memory addresses for each module, fixed variable, and
operator stack has to be performed in a definite order, and at each stage
checks are required to ensure that the space has been correctly assigned.

3.1 Memory Assignment

The free (unallocated) memory is modelled as a sequence of free memory
blocks (pairs of addresses). The pairs of addresses define a range of memory
locations, inclusive at both extremities.

Free == { F : seq(ADDR × ADDR) |
( ∀ n : domF • (F n).1 ≤ (F n).2 )
∧ ( ∀ n : dom(front F ) • (F n).2 < (F (n + 1)).1 ) }

The constraints ensure that no blocks are empty, that blocks do not overlap,
and that later blocks are at higher addresses.

When a new address is required a value is removed from those available.
Initially Free is given by the hardware memory map.

Address assignment proceeds as follows:

1. The given location ‘AT’ variables are assigned.

2. The operator stack is assigned at the highest value possible, and the
value of topOp is set
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3. Each module’s space is assigned in order, using the lowest addressed
large enough block.

3.2 Free block manipulations

freesize takes a sequence of free blocks, and returns the corresponding se-
quence of their sizes.

freeSize : Free → seq N

∀F : Free •
freeSize F = { n : domF • n 7→ (1 + (F n).2− (F n).1) }

blockify takes a set of addresses, and returns the free block structure that
contains precisely those addresses.

blockify : P ADDR → Free

∀∆ : P ADDR •
∃F : Free | ∆ =

⋃
{ n : domF • (F n).1 . . (F n).2 } •

blockify ∆ = F

3.3 Extractor functions

Two functions are required to extract required information from the CMODULE s.
These are for the variables at fixed addresses, and the sizes of the modules.

The getAts function extracts the fixed ‘AT’ addresses from a sequence of
modules.

getAts : seqCompModule 7→ seq(P ATTR 7→ P ADDR)

∀M : seqCompModule •
getAts M = { n : domM • n 7→ (M n).α }

The getModSize function extracts the module sizes from a sequence of mod-
ules.
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getModSize : seqCompModule 7→ seq N

∀M : seqCompModule •
getModSize M = { n : domM • n 7→ (M n).size }

3.4 Allocation of operator stack

The operator stack memory is allocated at the top of the highest possible
location in the given free memory (done after assignment of the AT variables).

assignTopOp : Free × N 7→ Free × ADDR

∀F : Free; size : N •
∃ s : seq N; maxBlock : N |

s = freeSize F ∧ maxBlock = max (ran s) •
(maxBlock < size ⇒ assignTopOp(F , size) = (F , 0))
∧ (size ≤ maxBlock ⇒

( ∃ n : domF ; F ′ : Free; δ : ADDR |
n = max (dom(s −B (0 . . (size − 1))))
∧ (F ′, δ) =

if s n = size
then (squash({n} −C F ), (F n).1)
else (F ⊕ {n 7→ ((F n).1, (F n).2− size)},

(F n).2− size + 1) •
assignTopOp(F , size) = (F ′, δ)) )

• maxblock < size : there is no free block large enough for the operator
stack.

• n : the index of the highest block in memory large enough to hold the
operator stack

• F ′ : the free memory after assigning the operator stack: if the selected
block is the same size as the stack, it is removed from the free sequence;
if it is larger than the operator stack, it remains in the free sequence,
but with reduced size.
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• δ : the address allocated to of the operator stack (the smallest data
address of the assigned block).

3.5 Assignment of module memory space

Each module is allocated its required space (the total of its stack and heap).
The stack starts at the top of the allocated block of memory, and works
down. The heap upwards from the bottom.

The assignVal function is very similar to assignTopOp, except that it starts
at the lowest free memory address trying to find space to allocate the memory
for the module. If no block of memory large enough can be found then the
module has the address start zero assigned to it.

assignVal : Free × N 7→ Free × ADDR

∀F : Free; size : N •
∃ s : seq N; maxBlock : N |

s = freeSize F ∧ maxBlock = max (ran s) •
(maxBlock < size ⇒ assignVal(F , size) = (F , 0))
∧ (size ≤ maxBlock ⇒

( ∃ n : domF ; F ′ : Free; δ : ADDR |
n = min(dom(s −B (0 . . (size − 1))))
∧ (F ′, δ) =

if s n = size
then (squash({n} −C F ), (F n).1)
else (F ⊕ {n 7→ ((F n).1 + size, (F n).2)},

(F n).1) •
assignVal(F , size) = (F ′, δ)) )

The assignMod function takes a sequence of free blocks, and a sequence
of module sizes, and assigns each module the required space, if possible.
The output is the updated sequence of free blocks and a sequence of start
addresses for each module. Any modules that cannot be allocated space are
assigned the address 0.
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assignMod : Free × seq1 N 7→ Free × seq1 ADDR

∀F : Free; size : N •
∃F ′ : Free; δ : ADDR |

(F ′, δ) = assignVal(F , size) •
assignMod(F , 〈size〉) = (F ′, 〈δ〉)

∀F : Free; size : N; s : seq1 N •
∃F ′,F ′′ : Free; δ : ADDR; ∆ : seq1 ADDR |

(F ′, δ) = assignVal(F , size)
∧ (F ′′, ∆) = assignMod(F ′, s) •

assignMod(F , 〈size〉a s) = (F ′′, 〈δ〉a ∆)

3.6 Additional global functions required

Additional global functions and declarations are required to resolve actual
parameter addressing across modules.

A sequence of the addresses of the at variables is required. This is made
global so that it can be accessed from within the type checking and the
linker; its value is defined in TL later.

atsMap : seq(P ATTR 7→ P ADDR)

Functions that map each module to its start address, to its operational trace
environment, and to its memory allocation map, are required. A value for
the address of topop is required. These are made global so that they can be
accessed from within the linker; their values are defined in link later.

modStart : ID 7→ ADDR
compEnv : ID 7→ EnvOTrace
compMap : ID 7→ MO
topop : ADDR
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4 Linker symbol declaration semantics

The symbol declaration semantics for the linker are analogous to those de-
fined for the modularised program, DMP .

All the symbols within each module have been checked on compilation. Each
module’s symbol declaration semantics has been restricted to those IDs vis-
ible outside the module, that is, exports and module names. We therefore
want to ensure that module names are not multiply declared. We also want
to check that imports to a module have been declared as an export in a
previous module. Therefore, each of the symbol declaration semantics also
includes all the imported ID , so that these can be checked for previous export
declarations.

The symbol environment defined for the modularised program semantics,
EnvD , is used for the linker also. The function checkLink is re-used to
perform the required linker checks.

The CompModule’s declaration semantics update the linker environment
EnvD with the appropriate information from the module’s declaration se-
mantics. The EnvD environment is updated with checkLink applied to the
module’s environment.

DLM : CompModule 7→ EnvDTrace 7→ EnvDTrace

∀CompModule • DLM θCompModule = checkLink(ξ, ρδ)

The usual extension to a sequence of modules allows a definition of DLM ∗ .

DLM ∗ : seqCompModule 7→ EnvDTrace 7→ EnvDTrace

DLM ∗〈 〉 = idEnvDTrace

∀ cm : CompModule; M : seqCompModule; ρδt : EnvDTrace •
∃ ρδt ′, ρδt ′′ : EnvDTrace |

ρδt ′ = DLM cm ρδt ∧ ρδt ′′ = DLM ∗ M ρδt ′ •
DLM ∗(〈cm〉 a M )ρδt = ρδt ′′

The DL semantics checks naming for a complete program. This ensures that
there are no name clashes between any exports, or module names, as well
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as checking that for each import there is a preceding export from another
module.

DL : seqCompModule × CompModule 7→ EnvDTrace

∀M : seqCompModule; cm : CompModule •
∃ ρδt , ρδt ′ : EnvDTrace |

ρδt = DLM ∗ M ∅ ∧ ρδt ′ = DLM cm ρδt •
DL(M , cm) = ρδt ′

The linker’s declaration semantics are correct if the following condition is
satisfied.

LinkDeclOkay
M : seqCompModule
cm : CompModule

ρδt0 = DL(M , cm)

(ran ◦
⋃
◦ ran)ρδt0 ⊆ {checkOK , ImportOK}

This check encapsulates all the modules’ and program’s declaration checking.
If this fails then the particular module, and identifier can be found which are
incorrectly declared.
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5 Linker type checking semantics

The type checking semantics for the linker are analogous to those defined for
the modularised program, TMP .

We know, from the symbol declaration semantics for the linker, that any
import declaration is previously exported. The main type checking for the
linker is to ensure that the types of imported declarations match those of
the actual declaration in the exporting module. A type check environment
is produced that defines the check state for each import to modules within
the program.

The CompModule’s type semantics update the linker’s type check environ-
ment with a check state for each imported declaration to the module. It
is already known from checks at the compilation stage that the type check
environment for the module checks correctly.

TLM : CompModule 7→
EnvTTrace × EnvDTrace 7→ EnvTTrace × EnvDTrace

∀CompModule • TLM θCompModule = checkLinkType(ξ, ρτ)

The usual extension to a sequence of modules allows a definition of TLM ∗ .

TLM ∗ : seqCompModule 7→
EnvTTrace × EnvDTrace 7→ EnvTTrace × EnvDTrace

TLM ∗〈 〉 = id(EnvTTrace × EnvDTrace)

∀ cm : CompModule; M : seqCompModule;
ρτδt : EnvTTrace × EnvDTrace •

∃ ρτδt ′, ρτδt ′′ : EnvTTrace × EnvDTrace |
ρτδt ′ = TLM cm ρτδt ∧ ρτδt ′′ = TLM ∗ M ρτδt ′ •

TLM ∗(〈cm〉a M )ρτδt = ρτδt ′′

The TL semantics type checks the linking of a complete program. The mod-
ule’s type checking is performed for the compilation, and is known to be
correct. The linker semantics ensure that the types of declarations that are
exported from a module, and any import using that declaration, are the
same. This also sets the global atsMap sequence.
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TL : seqCompModule × CompModule 7→ EnvTTrace × EnvDTrace

∀M : seqCompModule; cm : CompModule | LinkDeclOkay •
∃ ρτδt , ρτδt ′ : EnvTTrace × EnvDTrace |

atsMap = getAts(M a 〈cm〉)
∧ ρτδt = TLM ∗ M (∅, ∅)
∧ ρτδt ′ = TLM cm ρτδt •

TL(M , cm) = ρτδt ′

The type checking semantics also ensures that attributed variables are as-
signed to sensible memory locations. These locations depend on the supplied
hardware memory map. minAddr and maxAddr are the lowest and high-
est addressable memory locations. voidMap is the set of non-addressable
locations between these extremes; nvramMap is the set of nvram locations;
readOnlyMap is the set of read only locations; writeOnlyMap is the set of
write only locations. ram is all the remaining locations, derived from the
above values.

HwMap
minAddr ,maxAddr : ADDR
voidMap, nvramMap, readOnlyMap,writeOnlyMap : P ADDR
ram : P ADDR

〈voidMap, nvramMap, readOnlyMap,writeOnlyMap, ram〉
partition minAddr . . maxAddr

The linker’s type checking semantics are correct if the following conditions
are satisfied.
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LinkTypeOkay
LinkDeclOkay
hw : HwMap

(ran ◦second)(TL(M , cm)) = ∅
disjoint

⋃
◦ ran ◦atsMap

∃HwMap; map : P ATTR 7→ P ADDR |
hw = θHwMap
∧ map = { A : {∅, {nvram}, {readOnly}, {writeOnly}} •

A 7→
⋃
{ n : dom atsMap • atsMap n A } } •

disjoint〈voidMap,
⋃

(ranmap)〉
∧ map{nvram} ⊆ ram ∪ nvramMap
∧ map{readOnly} ⊆ ram ∪ readOnlyMap
∧ map{writeOnly} ⊆ ram ∪ writeOnlyMap
∧ map ∅ ⊆ ram ∪ nvramMap

The conditions ensure that:

• the linked modules type-check correctly

• no ‘AT’ locations overlap between modules (that the locations do not
overlap within a module is checked at compile time)

• that memory attributes are assigned to appropriate physical memory
types:

– no variables are assigned to void loactions

– nvram variables are assigned to ram or nvram memory

– readOnly variables are assigned to ram or readOnly memory

– writeOnly variables are assigned to ram or writeOnly memory

– ‘AT’ variables with no requested memory type are assigned to ram
or nvram memory
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6 Linker dynamic semantics

6.1 Phases

The dynamic semantics can be defined in a number of phases.

6.1.0.1 Make all labels unique. Each module has unique label num-
bering, but the labels numbers have to be made unique across all the modules

6.1.0.2 Flatten. All the labels are now unique, and so the sequence of
module segments can be flattened, and concatenated to the main code seg-
ment.

6.1.0.3 Replace X instructions. All the xProc and xCall XAspAL in-
structions have to be replaced with AspAL instructions.

6.1.0.4 Jump to start of code. If there is any unsigned library code
present, a jump around this to the first module is needed.

All of these phases can be incorporated into a single pass by the linker.

6.2 Label environment

EnvL is a label environment, used to map procedures and functions to their
corresponding unique labels.

EnvL == Env [LABEL]

6.3 Update X DATA INSTR

upddata updates a particular X DATA INSTR with the new memory offset
required, so that all the instructions use fixed addressing. This takes an
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XAspAL instruction to a AspAL instruction that can be understood by the
hexer.

upddata : X DATA INSTR × ADDR × ADDR × N 7→ X INSTR

∀ dinstr : X DATA INSTR; start , δ : ADDR; size : N •
upddata(xlrda, δ, start , size) = xData(xlada, δ + start)
∧ upddata(xsdro, δ, start , size) = xData(xsdr , topop + δ)
∧ upddata(xsdrs , δ, start , size) = xData(xsdr , start + size − 2− δ)
∧ upddata(xsdrh, δ, start , size) = xData(xsdr , start + δ)
∧ upddata(xlada, δ, start , size) = xData(xlada, δ)
∧ upddata(xsdr , δ, start , size) = xData(xsdr , δ)

updparam updates a single actual parameter call instruction.

updparam : ID × ID × ID 7→ X INSTR

∀ ξ, ξ′, ξf : ID •
∃ ξm : ID ; ρot : EnvOTrace; µo : MO ; l : LOCN |

(ξf 6∈ dom(ρδt0 ξ) ⇒ ξm = ξ)
∧ (ξf ∈ dom(ρδt0 ξ) ⇒ ρδt0 ξm ξf = checkOK )
∧ ρot = compEnv ξm ∧ µo = compMap ξm
∧ l = opLoc∼(ρot ξf ξ′)〈 〉 •

updparam(ξ, ξf , ξ′) =
xData(xsdr ,modStart ξm + head(µo l))

6.4 Update X INSTR

updsngl takes a single XAspAL X INSTR and converts it to the correspond-
ing AspAL instruction (still an X INSTR). It ensures that all the labels are
unique by adding the accumulated label offset value n (in SizeAddr) of all
the modules processed so far to any label instructions in this module. It also
maintains the highest numbered label defined in the module, m in LabelEnv ,
as well as the mapping of the module’s procedure and function names to
their unique labels. The ρl label environment is the combination of exports
already defined, overridden by any local procedure and function definitions.
This mapping provides all the information required to replace any xCall call
in the module.
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LabelEnv
m : N
ρl : EnvL
used : P LABEL

SizeAddrs
ξ : ID
n, size : N
start : ADDR

6.4.1 Update xData

An xData instruction is updated by replacing any relative addressing with
absolute addressing.

updsngl : X INSTR × LabelEnv × SizeAddrs 7→
seqX INSTR × LabelEnv

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xData •
∃ di : X DATA INSTR; δ : ADDR; I ′ : seqX INSTR |

i = xData(di , δ)
∧ I ′ = 〈upddata(di , δ, start , size)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv)

6.4.2 Update xProc

An xProc instruction is replaced by an xLabel instruction, identifying the
instruction as the start of the routine.
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∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xProc •
∃ ξ′ : ID ; l : LABEL; I ′ : seqX INSTR; LabelEnv ′ |

i = xProc(ξ′, l)
∧ m ′ = max {m, l}
∧ ρl ′ = ρl ⊕ {ξ′ 7→ (l + n)}
∧ used ′ = used
∧ I ′ = 〈xLabel (xli , l + n)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv ′)

6.4.3 Update xLabel

An xLabel instruction where the label is unique relative to the module is
updated with a label that is globally unique.

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xLabel •
∃ li : X LABEL INSTR; l : LABEL; I ′ : seqX INSTR; LabelEnv ′ |

i = xLabel(li , l)
∧ m ′ = if li = xli then max{m, l} else m
∧ ρl ′ = ρl
∧ used ′ = used
∧ I ′ = 〈xLabel(li , l + n)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv ′)

6.4.4 Update xBvar

An xBvar instruction is replaced by an xData instruction referencing the
appropriate variable in the exporting module.
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∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xBvar •
∃ ξ′, ξm : ID ; N : seq N; A : P ATTR;

ρot : EnvOTrace; µo : MO ; l : LOCN ; δ : ADDR;
I ′ : seqX INSTR |

i = xBvar(ξ′,N ) ∧ ξm ∈ dom ρδt0
∧ ξ′ ∈ dom(ρδt0 ξm)
∧ A = (variable∼ (ρτ t0 ξm ξ′)).A
∧ ρot = compEnv ξm ∧ µo = compMap ξm
∧ l = opLoc∼(ρot ξm ξ′)N ∧ δ = head(µo l)
∧ I ′ = 〈xData(xlada,

if A ∩ ran dataAt = ∅
then modStart ξm + δ else δ)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv)

6.4.5 Update xConst

An xConst instruction is replaced by load instructions that load the value of
the appropriate constant in the exporting module.

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xConst •
∃ ξ′, ξm : ID ; ρot : EnvOTrace; κ : VALUE ; I ′ : seqX INSTR |

i = xConstξ′ ∧ ξm ∈ dom ρδt0
∧ ξ′ ∈ dom(ρδt0 ξm)
∧ ρot = compEnv ξm
∧ κ = opExport∼(ρot ξm ξ′)
∧ I ′ = Olτ i(constType κ, number κ) •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv)

6.4.6 Update xCall

The xCall instruction is replaced by an xrg goto instruction, with a label
identifying the routine to go to. The routine could be internal or external to
the module. If a procedure or function is declared locally within a module,
then it cannot also be imported to that module, and so the call must be
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internal. Otherwise it is external.

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xCall •
∃ ξ′ : ID ; I ′ : seqX INSTR |

i = xCallξ′

∧ I ′ = 〈xLabel(xrg , ρl ξ′)〉 •
updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv)

6.4.7 Update xCallOp

An xCallOp instruction (optimised operator call) is replaces by an xrg goto
instruction to that label.

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xCallOp •
∃ l : LABEL; I ′ : seqX INSTR; LabelEnv ′ |

i = xCallOpl ∧ m ′ = m ∧ ρl ′ = ρl
∧ used ′ = used ∪ {l}
∧ I ′ = 〈xLabel(xrg , l)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv ′)

6.4.8 Update xPa

An xPa instruction is replaced by the appropriate actual parameter call in-
struction.

∀ i : X INSTR; LabelEnv ; SizeAddrs | i ∈ ran xPa •
∃ ξ′, fn : ID ; I ′ : seqX INSTR |

i = xPa(fn, ξ′)
∧ I ′ = 〈updparam(ξ, fn, ξ′)〉 •

updsngl(i , θLabelEnv , θSizeAddrs) = (I ′, θLabelEnv)

6.4.9 Update xIndirect

The remaining instructions are unchanged.
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∀ i : X INSTR; LabelEnv ; SizeAddrs |
i ∈ ran xIndirect ∪ ran indirect ∪ ran immediate •

updsngl(i , θLabelEnv , θSizeAddrs) = (〈i〉, θLabelEnv)

6.5 Update seq X INSTR

The updseq function takes a sequence of instructions and applies the updsngl
function to each instruction in order.

updseq : seqX INSTR × LabelEnv × SizeAddrs 7→
seqX INSTR × LabelEnv

∀ i : X INSTR; LabelEnv ; SizeAddrs •
updseq(〈i〉, θLabelEnv , θSizeAddrs) =

updsngl(i , θInstrLabel , θSizeAddrs)

∀ i : X INSTR; I : seqX INSTR; LabelEnv ; SizeAddrs •
∃ I ′, I ′′ : seqX INSTR; LabelEnv ′; LabelEnv ′′ |

(I ′, θLabelEnv ′) = updsngl(i , θLabelEnv , θSizeAddrs)
∧ (I ′′, θLabelEnv ′′) = updseq(I , θLabelEnv ′, θSizeAddrs) •

updseq(〈i〉a I , θLabelEnv , θSizeAddrs) = (I ′ a I ′′, θLabelEnv ′′)

6.6 Process module

The final processing required is to handle the application of updseq one mod-
ule at a time from the sequence of modules.

Before the module is processed, the input parameter LabelEnv contains:

• m, the highest label number used so far, in previous modules

• ρl , the export identifiers defined so far, mapped to their unique labels

• used , the labels used so far, in previous modules

At the end of the module processing, the output contains :
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• m ′ is the highest (unlinked) label found in the module just processed,
so m ′ + m is the new highest unique value.

• ρl ′′, the mapping of all exports so far, with any local definitions. ρl
is updated with any exports from this module. This set of exports
is found from the EnvDL linker environment, which maintains all the
imports and exports for each module. ρl ′′ is restricted to this set, and
combined with the original ρl .

• used ′, the labels used so far, in this and previous modules

processM : CompModule × ADDR × LabelEnv 7→
seqX INSTR × LabelEnv

∀CompModule; start : ADDR; LabelEnv •
∃ InstrLabel ′; ρl ′′ : EnvL |

(I ′, θLabelEnv ′) =
updseq(I , 〈| m == 0, ρl == ρl , used == used |〉,

〈| ξ == ξ, n == m, size == size, start == start |〉)
∧ ρl ′′ = ρl ∪ (dom(ρδt0 ξ B {checkOK}) C ρl ′) •

processM (θCompModule, start , θLabelEnv) =
(I ′, 〈| m == m ′ + m, ρl == ρl ′′, used == used ′ |〉)

The extension to a sequence of modules is the standard inductive definition.

processMs : seqCompModule × seqADDR × LabelEnv 7→
seqX INSTR × LabelEnv

∀LabelEnv • processMs(〈 〉, 〈 〉, θLabelEnv) = (〈 〉, θLabelEnv)

∀ cm : CompModule; M : seqCompModule; δ : ADDR;
∆ : seqADDR; LabelEnv •

∃ I ′, I ′′ : seqX INSTR; LabelEnv ′; LabelEnv ′′ |
(I ′, θLabelEnv ′) = processM (cm, δ, θLabelEnv)
∧ (I ′′, θLabelEnv ′′) = processMs(M , ∆, θLabelEnv ′) •

processMs(〈cm〉a M , 〈δ〉a ∆, θLabelEnv) =

(I ′ a I ′′, θLabelEnv ′′)
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7 Actual Linker

7.1 Optimised operators

genasp conditionally produces code for unsigned multiplication and division,
only if they are used in the program.

genasp : P LABEL 7→ seqX INSTR

∀ used : P LABEL •
∃ I , I ′ : seqX INSTR |

I = if binopfn umul ∈ used then OUMUL else 〈 〉
∧ I ′ = if binopfn udiv ∈ used then OUDIV else 〈 〉 •

genasp used = I a I ′

7.2 Linking

The linker takes a sequence of modules and a main module, a hardware
memory map, and the size of the operator stack, and returns the linked
sequence of instructions.
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link : (seqCompModule × CompModule)× HwMap × N 7→
seqX INSTR ×MO

∀M : seqCompModule; cm : CompModule; hw : HwMap; sizetopop : N |
LinkTypeOkay •

∃M ′ : seq1 CompModule; ats : P ADDR; F ,F ′,F ′′ : Free;
∆ : seq1 ADDR; I : seqX INSTR; LabelEnv ;
sizetopop ′ : N; I ′′, Iop : seqX INSTR;
ξ : ID ; µo : MO |

M ′ = M a 〈cm〉
∧ ats =

⋃
(ran(

⋃
(ran atsMap)))

∧ F = blockify(hw .ram \ ats)
∧ (F ′, topop) = assignTopOp(F , sizetopop)
∧ (F ′′, ∆) = assignMod(F ′, getModSize M ′)
∧ 0 6∈ {topop} ∪ ran ∆
∧ modStart = { n : domM ′ • (M ′ n).ξ 7→ ∆ n }
∧ compEnv = { n : domM ′ • (M ′ n).ξ 7→ (M ′ n).ρot }
∧ compMap = { n : domM ′ • (M ′ n).ξ 7→ (M ′ n).µo }
∧ (I , θLabelEnv) =

processMs(M ′, ∆,
〈| m == firstAvailableLabel , ρl == ∅, used == ∅ |〉)

∧ Iop = genasp used
∧ (Iop = 〈 〉 ⇒ I ′′ = 〈 〉)
∧ (Iop 6= 〈 〉 ⇒

( ∃CompModule; I ′ : seqX INSTR; LabelEnv ′ |
I = Iop •

(I ′, θLabelEnv ′) =
processM (θCompModule, 0,

〈| m == 0, ρl == ∅, used == used |〉)
∧ ( ∃ l : LABEL \ used ′ •

I ′′ = 〈xLabel(xrg , l)〉a I ′ a 〈xLabel(xli , l)〉 ) ))
∧ dom µo = dom(

⋃
(ran compMap))

∧ ( ∀ ξ : dom compMap; l : LOCN | l ∈ dom(compMap ξ) •
µo l = if ran(compMap ξ l) ⊆ ats

then compMap ξ l
else { n : dom(compMap ξ l) •

n 7→ (modStart ξ + compMap ξ l n) } ) •
link((M , cm), hw , sizetopop) = (I ′′ a I , µo)
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The actual linker can be considered in three parts.

1. LinkTypeOkay : The symbol declaration semantics, type checking se-
mantics, and ‘AT’ allocations, are checked to be satisfactory.

2. Memory locations for ‘AT’ variables, the operator stack, and each mod-
ule’s heap and stack, are assigned within the memory map. (The re-
maining sequence of free blocks is given by F ′′.)

3. If a successful memory model can be determined (no addresses equal
to zero), the processMs function is applied, to perform the linking.

4. The last two predicates give the value of the global linked memory map;
they are provided for the proof, and do not need to be implemented.

The output is the sequence of AspAL instructions produced.

The instruction processing is done in a single pass through the compiled
sequence of X INSTR. The linker starts by calling processMs , with the
sequence of start addresses for each module ∆, the value of topop, an initial
label of firstAvailableLabel (the value of firstAvailableLabel is set to allow
space for the optimised operators’ labels, so that they are unique), an initial
empty sequence of instructions, and an initial empty label map. If there are
any instructions for the unsigned operators, Iop 6= 〈 〉, a jump around them
is added to the code.
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Parent Section: AspAL Specification

8 Hexer

As detailed in the introduction section, the hexer transforms sequences of
AspAL instructions into sequences of Asp instructions. This involves the
removing of labelled instructions and replacing them with instructions us-
ing program instructions. The hexer operates by processing each AspAL
instruction individually. Each generated Asp instruction is paired with a
unique program address. This approach is used within the specification of
the hexer, and at each stage the current program address and the sequence
of processed Asp instructions is maintained.

Map == LABEL 7→ PROG ADDRESS

SubProg == seq(PROG ADDRESS × INSTR)

8.1 Semantics

The function map0 defines the mapping from labels to absolute program
addresses.

map0 : Map

The function is built up as the sequence of AspAL instructions is processed.
Whenever a label instruction is encountered the appropriate program address
is stored for the label.

The initial program address when starting a program is StartProg . Currently
this is set to 0.

StartProg == 0
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8.2 Hexing AspAL instructions

Converting xIndirect instruction: the indirect absolute goto label instruction
converts into the corresponding Asp instruction pab.

hex : X INSTR 7→
Map × PROG ADDRESS × SubProg 7→

Map × PROG ADDRESS × SubProg

∀m : Map; π : PROG ADDRESS ; S : SubProg •
hex (xIndirect xag)(m, π, S ) =

(m, π + 1, S a 〈(π, asp indirect pab)〉)

Converting xData instructions: these set the data register and the a and b
registers to particular values. Conversion involves setting the appropriate
registers with the low and high bytes of the supplied address.

hex : X INSTR 7→
Map × PROG ADDRESS × SubProg 7→

Map × PROG ADDRESS × SubProg

∀ δ : DATA ADDRESS ; m : Map; π : PROG ADDRESS ; S : SubProg •
hex (xData(xsdr , δ))(m, π, S ) =

(m, π + 2, S
a 〈(π, both immediate(dix, hiByte δ))〉
a 〈(π + 1, both immediate(dxi, loByte δ))〉)

∧ hex (xData(xlada, δ))(m, π, S ) =
(m, π + 2, S

a 〈(π, both immediate(aldi, hiByte δ))〉
a 〈(π + 1, both immediate(bldi, loByte δ))〉)

Converting xLabel instructions: In each case (except the label declaration
instruction xli) this involves using the program address corresponding to
the label, found from the global map0. This address is used to perform the
required operation using Asp instructions. xli does not convert to Asp code
itself; it updates the map.
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hex : X INSTR 7→
Map × PROG ADDRESS × SubProg 7→

Map × PROG ADDRESS × SubProg

∀ l : LABEL; m : Map; π : PROG ADDRESS ; S : SubProg •
∃ δ : DATA ADDRESS | δ = map0 l •

hex (xLabel(xrja, l))(m, π, S ) =
(m, π + 1, S

a 〈(π, asp immediate(cappi, δ − π))〉)
∧ hex (xLabel(xrjb, l))(m, π, S ) =

(m, π + 1, S
a 〈(π, asp immediate (cbppi, δ − π))〉)

∧ hex (xLabel(xrjal , l))(m, π, S ) =

(m, π + 5, S a 〈(π, both indirect nca)〉
a 〈(π + 1, asp immediate(cappi, 4))〉
a 〈(π + 2, both immediate(aldi, hiByte δ))〉
a 〈(π + 3, both immediate(bldi, loByte δ))〉
a 〈(π + 4, asp indirect pab)〉)

∧ hex (xLabel(xrjbl , l))(m, π, S ) =

(m, π + 5, S a 〈(π, both indirect ncb)〉
a 〈(π + 1, asp immediate(cbppi, 4))〉
a 〈(π + 2, both immediate(aldi, hiByte δ))〉
a 〈(π + 3, both immediate(bldi, loByte δ))〉
a 〈(π + 4, asp indirect pab)〉)

∧ hex (xLabel(xrg , l))(m, π, S ) =
(m, π + 3, S

a 〈(π, both immediate(aldi, hiByte δ))〉
a 〈(π + 1, both immediate(bldi, loByte δ))〉
a 〈(π + 2, asp indirect pab)〉)

∧ hex (xLabel(xrgs , l))(m, π, S ) =
(m, π + 1, S

a 〈(π, asp immediate(ppi, δ − π))〉)
∧ hex (xLabel(xll , l))(m, π, S ) =

(m, π + 2, S
a 〈(π, both immediate(aldi, hiByte δ))〉
a 〈(π + 1, both immediate(bldi, loByte δ))〉)

∀ l : LABEL; m : Map; π : PROG ADDRESS ; S : SubProg •
hex (xLabel(xli , l))(m, π, S ) = (m ∪ {l 7→ π}, π, S )
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8.3 Hexing common instructions

This deals with the common Asp and AspAL instructions.

hex : X INSTR 7→
Map × PROG ADDRESS × SubProg 7→

Map × PROG ADDRESS × SubProg

∀ i : IMMED INSTR × BYTE ; m : Map; π : PROG ADDRESS ;
S : SubProg •

hex (immediate i)(m, π, S ) =

(m, π + 1, S a 〈(π, both immediate i)〉)
∀ i : INDIRECT INSTR; m : Map; π : PROG ADDRESS ;

S : SubProg •
hex (indirect i)(m, π, S ) =

(m, π + 1, S a 〈(π, both indirect i)〉)

8.4 Multiple instruction processing

The hexS function handles sequences of AspAL instructions. This calls the
hex function for each instruction and supplies the output to the next call.

hexS : seqX INSTR 7→
Map × PROG ADDRESS × SubProg 7→

Map × PROG ADDRESS × SubProg

∀m : Map; π : PROG ADDRESS ; S : SubProg •
hexS 〈 〉(m, π, S ) = (m, π, S )

∀ I : seqX INSTR; i : X INSTR; m : Map;
π : PROG ADDRESS ; S : SubProg •

hexS (〈i〉a I )(m, π, S ) = hexS I (hex i (m, π, S ))

8.5 Hexer implementation

The hexer operates by calling the hexS function with an initial empty map,
the starting program address, and the initial empty Asp sequence. The
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generated pairs of program addresses and Asp instructions is the output.
(Note that this definition also sets the value of map0.)

hexer : seq1 X INSTR → SubProg

∀ I : seq1 X INSTR •
∃π : PROG ADDRESS ; S : SubProg |

(map0, π, S ) = hexS I (∅, StartProg , 〈 〉) •
hexer I = S
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