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Preface

Historical background of the DeCCo project

In 1990 Logica’s Formal Methods Team performed a study for RSRE (now
QinetiQ) into how to develop a compiler for high integrity applications that
is itself of high integrity. In that study, the source language was Spark, a
subset of Ada designed for safety critical applications, and the target was
Viper, a high integrity processor. Logica’ Formal Methods Team developed
a mathematical technique for specifying a compiler and proving it correct,
and developed a small proof of concept prototype. The study is described in
[Stepney et al. 1991], and the small case study is worked up in full, including
all the proofs, in [Stepney 1993]. Experience of using the PVS tool to prove
the small case study is reported in [Stringer-Calvert et al. 1997]. Futher
developments to the method to allow separate compilation are described in
[Stepney 1998].

Engineers at AWE read about the study and realised the technique could be
used to implement a compiler for their own high integrity processor, called the
ASP (Arming System Processor). They contacted Logica, and between 1992
and 2001 Logica used these techniques to deliver a high integrity compiler,
integrated in a development and test environment, for progressively larger
subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are repro-
duced in these technical reports. These are written in the Z specification
language. The variant of Z used is that supported by the Z Specific For-
maliser tool [Formaliser|, which was used to prepare and type-check all the
DeCCo specifications. This variant is essentially the Z described in the Z
Reference Manual [Spivey 1992] augmented with a few new constructs from
ISO Standard Z [ISO-Z]. Additions to ZRM are noted as they occur in the
text.
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The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports
(this preface is common to all the reports):

I1.

I1I.

IV.

Z Specification of Pasp

The denotational semantics of the high level source language, Pasp.
The definition is split into several static semantics (such as type check-
ing) and a dynamic semantics (the meaningof executing a program).
Later smeantics are not defined for those programs where the result of
earlier semantics is error.

Z Specification of Asp, AspAL and XAspAL

The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is
AspAL extended with some cross-module instructions that are resolved
at link time. The meaning of these extra instructions is given implic-
itly by the specification of the linker and hexer. AspAL is the target of
linking a set of XAspAL modules, and also the target of compilation
of a complete Pasp program. Asp is the non-relocatable assembly lan-
guage of the chip, with AspAL’s labels replaced by absolute program
addresses. The semantics of programs with errors is not defined, be-
cause these defintions will only ever be used to define the meaning of
correct, compiled programs.

Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of
a set of XAspAL target language templates.

Z Specification of Linker and Hexer

The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program
into an Asp program located at a fixed place in memory.

Compiler Correctness Proofs

The compiler’s operational semantics are demonstrated to be equiv-
alent to the source language’s denotational semantics, by calculating
the meaning of each Pasp construct, and the corresponding meaning
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of the AspAL template, and showing them to be equivalent. Thus the
compiler transformation is meaning preserving, and hence the compiler
is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manu-
ally, following the stated guidelines.
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1 Introduction

This document captures the various correctness proofs for the DeCCo system.

First it outlines the overall proof structure, then provides detailed proofs for
the low level operator and expression constructs. In particular, the proof of
unsigned 16-bit division is derived in detail.
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2 Proof outline

2.1 Informal overview

Figure 1 shows the various components in the DeCCo system. The starting
point is a sequence of Pasp modules, that are each statically checked for
correctness.

A sequence of statically checked Pasp modules can be flattened into a Pasp
program (undergoing further cross-module static checks). Alternatively, they
can each be compiled into an XAspAL module, and the corresponding se-
quence of XAspAL modules linked into an AspAL program. The essence of
the correctness proof is to show that the Pasp program and the correspond-
ing AspAL program derived from the same sequence of Pasp modules, have
the same dynamic semantics. (An intermediate ‘equivalent AspAL program’
is used to simplify the proof. It has the same semantics as the linked AspAL
program, but a structure more similar to the flattened Pasp program.)

In addition, an AspAL program is not executable, because it still has sym-
bolic labels and data addresses. A further processing phases, hexing, takes
an AspAL program to an Asp program, with numeric labels and absolute
addressing.

Previous documents have dealt with the proof of the various language ele-
ments, and with the operators, in some detail. A previous documewnt also
sketched the linker proof. This document covers the linker proof in more
detail.

2.2 Simplified proof obligation

We want to say that the flattened Pasp and linked AspAL programs ‘do the
same thing’. Let’s assume for now that AspAL and Pasp values are the same,
and AspAL addresses are the same as Pasp locations. That is, let’s assume
the Pasp and AspAL states are identical.

So we would simply require that all programs that have a Pasp dynamic
meaning compile to an Asp program with the same dynamic meaning (same
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Figure 1: DeCCo system components
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state transition relation, or same mapping from input streams to outputs
streams):

Prog | 0 Prog € dom M p
I_
Mp 0Prog = Xp(Op 0Prog)

We actually have a sequence of modules, not a program, and an operational
(compiler) semantics for modules. These modules are flattened to make a
Pasp program, or compiled then linked to make an AspAL program. We use
this to define the Asp program that corresponds to a Pasp program.

V' M : seq Module; Prog | 0 Prog = flatten M e
Op OProg = link(Oy o M)

Combining these we have our (simplified) proof obligation

M : seq Module; Prog |
0 Prog € dom M p
A 0 Prog = flatten M
I_
Mp 0Prog = Xp(link(Op o M))

In reality, life is a little more complicated. The Pasp meaning is expresed
in terms of Pasp locations and Pasp values, whilst the AspAL meaning is
expressed in terms of AspAL addresses and AspAL byte values, and these are
different. (Also, some of the functions such as link have further arguments;
and there are two kinds of modules.)

Because Pasp and Asp have different representations of their states, we need
a way of relating these concepts, using a ‘retrieve relation’. This specifies
the relationship that we claim holds between Pasp and AspAL states. That
is, the retreive specifies the way we chose to interpret AspAL bytes as Pasp
unsigneds, etc. (This is not an entirely free choice: were we to make a
different choice, say swapping the order of high and low bytes, we would
have to change the compiler specification to respect this choice.)

We do not go into details of the particualr retrieve relations used here. The
interested reader is referred to [Stepney 1993] for more details of how to
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construct the relevant retreive relations and the full proof obligations. (The
presentation style of the proofs in this technical report are rather different
from the style in that book.)

2.3 Induction
The proof proceeds by structural induction, over the structure of the Pasp
langauge.

We use several induction hypotheses in the proof; we ensure that these are
re-established by each operation.

e Pasp and translation environments correspond initially
e Pasp and Asp states correspond initially

e Pasp expression values are on the Asp stack

2.4 Correctness of Linking

The first step in the proof is to expand the expression for aspProg, involving
the compilation functions for modules, and the linking function.

The aim is to massage the form of the linked program into one with the same
semantics, but with a structure that mirrors the flattened Pasp program
structure.

The linked modules have blocks of code corresponding to the simple declara-
tions, then routine declarations, and then simple declaration initialisations,
for each module. The main module also has some body code, at the end.

The flattened Pasp program has essentially all the simple declaratins first,
then all the routine declarations, then all the simple declaration initialisa-
tions, then the body.

The idea is to shuffle the blocks in the linked program (either in reality, or
just conceptually) into the same order as the Pasp program, without changing
the meaning of the linked program.
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Then we can ignore the module structure, and consider just the program
structure of the Pasp and corresponding AspAL programs.
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3 Correctness of utility fragments

3.1 Notation

The notation in the right hand column illustrates the state of memory, as

[A, Blaslac, bclas[Clelo, 0,5, t1, ... [£2], 3, ..., t4]5, t5, ]

where the subscripts show which registers are being described (omitted if
clear from context). The box around ¢2 indicates that the data address
register D is pointing at this memory location, which contains the value ¢2.
The subscript k6 on t0 indicates the value of ¢ (as offset from the top of the
heap). The subscript § on t4 indicates the value of § (as offset from the top
of the stack).

If two bytes are stored at d, the lo byte would be ¢4, and the hi byte ¢5. If two
bytes are store in AB, the lo byte is in B, the hi byte in A. An underscore
indicates the particular contents of that memory location is irrelevant.

The A and B registers hold bytes. Any arithmetic expression occurring in
such a regiser, for example 2 x b, is assumed to be truncated to a byte; that
is, the actual value of any such expression e is the byte e mod FF'.

The correctness proof calculates the change in memory for each instruction,
starting from the induction hypothesis state, and shows that it establishes
the correct final result.

3.2 Correctness of store byte or word

We are required to show that the value of the the byte or word in the AB
registers is stored at the memory location pointed to by D.

The code is Oy, which has two cases, depending on the size of the type:

1. the value b fits in a byte (sizeof 7 = 1),

2. the value u fits in a word (sizeof T # 1).
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Case 2
[uhz’7 Ulo]AB[- Y e P ]
abstd  [up, U AB]- - - [ Uio |y Unis - - ]
03.2

3.3 Correctness of load byte or word

We are required to show that the value of the the byte or word at D is loaded
into the AB registers.

The code is O, which has two cases, depending on the size of the type:

1. the value b fits in a byte (sizeof 7 = 1),

2. the value w fits in a word (sizeof T # 1).

Case 1

= Jasl . [b] -]
bldd [, blagl..-, o]

Case 2

[,,,]AB{...,, uhi,...]

abldd [U}u‘, Ulo]AB[' .. ,, Upsy - - ]

03.3
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3.4 Correctness of load immediate word

We are required to show that the value of the the immediate word u is loaded
into the AB registers.

The code is Oy
Case 2

- B
aldi theHiByte v |up;, |ap
bldi theLoByte u  [up;, U] A

03.4

3.5 Correctness of load immediate byte or word

We are required to show that the value of the the immediate byte or word is
loaded into the AB registers.

The code is O;,;, which has two cases, depending on the size of the type:

1. the immediate value b fits in a byte (sizeof 7= 1),

2. the immediate value v fits in a word (sizeof T # 1).

Case 1

[77 f]AB
Owi v 3.4 1 [Uni, Wolan

03.5
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4 Correctness of Operators

4.1 Unary Operator proof obligation

Induction hypothesis: initially, the argument is in the AB registers. (An
unsigned argument has its lo byte in B and its hi byte in A; a boolean, byte
or enumerated argument occupies B only.)

Obligation: the operator leaves the correct result in the A B registers. (Again,
if the result fits in a single byte, it is stored in the B register, and the contents
of the A register are ignored.)

4.2 Correctness of boolean not

The boolean value b is in the B register.

We are required to show that the final contents of B are the boolean value
= b.

[77 b]AB
bxoi 1 [, b zor 145

04.2

4.3 Correctness of byte not

The byte value b is in the B register

We are required to show that the final contents of B are the byte value — b.

[, blap
bxoi MaxByte [_,b zor FF|ap

04.3
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4.4 Correctness of byte shift left

The byte value b is in the B register

We are required to show that the final contents of B are the byte value 2% b
(truncated to fit if necessary).

[,, b]AB[f, 7] ab
ccb [, blagl-, 0as
1rb [, 2% b+ 0lap

044

4.5 Correctness of byte shift right

The byte value b is in the B register.
We are required to show that the final contents of B are the byte value bdiv2.
[ blapls Jab

ccb [, blag[-, 0as
rrb [, 0+ bdiv2|sp

0 4.5

4.6 Correctness of cast byte to boolean

The byte value b is in the B register.

We are required to show that the final contents of B are the boolean value
true, that is 0, if b is zero, or the boolean value false, that is 1, for any other
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value of b.
[7, b]AB [,, *] ab
beqi 0 [, b]agl- b = 0]uw
ncb [, blasl- b # Oas
bldi 0 [-,0]a5[-, b # 0]a
1rb [, b #0]ap
(expand) [,if b # 0 then 1 else 0]4p
0 4.6

4.7 Correctness of cast boolean to byte

The boolean value b is in the B register.

We are required to show that the final contents of B are the byte value 0 if
b is true, that is 0, or the byte value 1 if b is false, that is 1.

[*7 b]AB

Do nothing: the boolean is 0 or 1, so can be directly interpreted as the byte.
0 4.7

4.8 Correctness of cast unsigned to byte

The unsigned value u is in the AB registers.

We are required to show that the final contents of B are the byte value
corresponding to the value of w if w is 255 or less; otherwise any result is
allowed.

[Uhiy Ulo]AB

Do nothing. The high byte is effectively truncated, because the result is
assumed to be a byte, and hence in only the B register.

0 4.8
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4.9 Correctness of cast enum to byte

The enumerated value b is in the B register.

We are required to show that the final contents of B are the byte value equal
to the enumerated value.

[77 b]AB

Do nothing: an enum is stored as a byte.

049

4.10 Correctness of increment enum

The enumerated value b is in the B register.

We are required to show that the final contents of B are the enumerated
value incremented by one, unless the enum has its highest allowed value, in
which case any result is allowed.

[ 0lanl-s Jab
ccb [ﬂ b]AB [ﬂ O]ab
buai 1 [0+ 14 0]ap

0 4.10

4.11 Correctness of decrement enum

The enumerated value b is in the B register.

We are required to show that the final contents of B are the enumerated
value decremented by one, unless the enum is zero, in which case any result
is allowed.

[7, b]AB [*7 *] ab

ccb [, blasl-, Ol
busil [, b—1+0]45
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04.11

4.12 Correctness of unsigned not

The unsigned value u is in the AB registers.

We are required to show that the final contents of AB are the unsigned value
- u.

Uy Ulo]AB
axoi MazByte [up; zor FF wy,lap
h

[
[

bxoi MaxByte [uy; zor FF, u, zor FF|ap
(simplify)|u zor FFFF]sp

0 4.12

4.13 Correctness of unsigned shift left

The unsigned value u is in the AB registers.

We are required to show that the final contents of AB are the unsigned value
2 % u (truncated to fit if necessary).

[uhi> Ulo]AB
ccb  [Uni; Wo) aB|-, O] ab
1rb  [up, 2 % up + 0] ap|o, wp div 128] 4
sca  [upi, 2 * wpolap[l, u, div 128] 4
arjb | if ¢b =1, jump to [, preserving AB
[wni, 2 % W] ap[1, ugp div 128 = 0] 4
cca  [Upi, 2 * ) a0, wp div 128 = 0] 4
(from above) [upi, 2 * 5] 450, g div 128 = 0],
(from goto 1) [upi, 2 * wp)ap[l, wp div 128 = 1] 4
(combining) [up;, 2 * w,| ap|w, div 128, 4

lra  [2% up + wg, div 128, 2 % uy)ap
(simplify)[2 * u|ap
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0 4.13

4.14 Correctness of unsigned shift right

The unsigned value u is in the AB registers.

We are required to show that the final contents of AB are the unsigned value
u div 2.

[Whis Wil AB
cca [um, Ulo]AB[ ]ab
rra [0+ up div 2, ug]ap[up mod 2, gy
scb  [up div 2, wp) ap[up mod 2, 1] 4,

arja | if ca =1, jump to [, preserving AB
[uhi div 2 ulo]AB[uhi mod 2 = 0 1]ab
ccb up; div 2, wo) 4 up; mod 2 = 0, 0] 4

[

(from above) [up; div 2, w,] ap[up mod 2 = 0, 0]
(from goto 1) [up; div 2, wg] ap[up; mod 2 = 1, 1] 4
(combining) [up; div 2, w,] 4|, up mod 2],
[
(

rrb up; div 2, 128 * (up; mod 2) + wy, div 2] 45

szmplzfy) [udiv 2]ap

04.14

4.15 Correctness of cast byte to unsigned

The byte value b is in B, with garbage in A.

We are required to show that the final contents of AB are the unsigned value

u(=b).

[7a b]AB
aldi 0 [0, )45

0 4.15
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4.16 Correctness of cast unsigned to high byte

The unsigned value u is in the AB registers.
We are required to show that the final contents of B are the byte value uy;.

[ Uiy U0 A
blda [upni, Uni|aB

0 4.16

4.17 Correctness of cast unsigned to low byte

The unsigned value u is in the AB registers.

We are required to show that the final contents of B are the byte value .

[Uni, WolaB

04.17

4.18 Binary Operator proof obligation

The general operation is uf2v.

Induction hypothesis: initially, the left argument u is on the expression eval-
uation stack with the D register pointing to ¢ location (with lo byte at d, hi
byte at 0 — 1, remembering that § increases ‘downwards’); the right argument
v is in the AB registers (an unsigned argument has its lo byte in B and its
hi byte in A; a boolean, byte or enumerated argument occupies B only).

Obligation: The operator leaves the correct result in the A B registers. (Again,
if the result fits in a single byte, it is stored in the B register, and the contents
of the A register are ignored.)
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4.19 Correctness of boolean and
The left argument boolean value a is at 4, pointed to by D. The right
argument boolean value b is in B.

We are required to show that the final contents of B are the boolean value
a AND b.

I blagl.- - [a]ls -, -]
band [, b AND a]ag[...,[a]s - -]

0 4.19

4.20 Correctness of boolean or
The left argument boolean value a is at 4, pointed to by D. The right
argument boolean value b is in B.

We are required to show that the final contents of B are the boolean value

a OR b.

[ 0]agl. - [alls— -]
bord [,b OR a]ap[....[a]s - -]

0 4.20

4.21 Correctness of byte and
The left argument byte value a is at §, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value
a AND b.

- blagl - [alls - -]
band [, b AND alapl...,[a]s, -, -]

0 4.21
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4.22 Correctness of byte or

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value
a OR b.

= blasl. - [alls - -]
bord [, b OR a|ag|...,[als -, -]

0 4.22

4.23 Correctness of byte xor

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value
a XOR b.

- 0lagl. - [alls— -]
bxod [, b XOR a|ag|....[als -, -]

0 4.23

4.24 Correctness of unsigned and

The left argument unsigned value u is at §,d — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value
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u AND .
Uhi» Vio) AB|- ‘5»“%---
band |Uni, Ul AND Ulo AB ‘67 Uhiy - - -

aand

Uhs AND Upsi 5 Vio AND ulo]AB[~ PN ul0|5,, .. ]

[
[
dpi 1 [vps, e AND ) apl. .. U10|5>7 o ]
[
(simplify)[v AND ulagl. .., wols [ unil,- - ]

04.24

4.25 Correctness of unsigned or
The left argument unsigned value u is at d, 6 — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value
u OR v.

Unis Vo] AB[- - - [ Wo || 5> Uhis - - -]
bord [vn, vie OR wiolanl. .. [Wo]s: thi, - - ]
]

[
[
dpi 1 [vpi, vy OR ulo]AB[...,ulo|5,,...
[
(

aord

vni OR pi, vie OR wio) g - - s ol g5 [ Unils - -]
simplify)[v OR ulagl. .., wols [ unil,- - ]

0 4.25

4.26 Correctness of unsigned xor

The left argument unsigned value u is at §,d — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value
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u XOR v.
Uhi» Vio) AB|- ‘5»“%---
bxod |Un;, V5o XOR Ulo AB ‘67 Upiy + -« -

axod

Uhs XOR Ups 5 Vio XOR Ulo]AB[~ cey UZO|5,, . ]

[
[
dpi 1 [vn;, vie XOR wp)apl. .. UZO|5,7 . ]
[
(simplify)[v XOR u]ap]. .., wols: [unil; - - -]

0 4.26

4.27 Correctness of unsigned equals
The left argument unsigned value v is at §, 6 — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of B are the boolean value

(u=v).

[Uni Vio][ \5, Uni

beqd [vm,vzo s Uto = o] [ Uio || 5> Una]
[
[

bldi 0 [vps, 0], v = we m‘m Uni]
ncb Uhi, 0 Ulo ulo |57uhl

xrjb 1 if vlo 7é u, then goto [

[0ni, 01, O] [ i || 5 (= V1o, uni]
[vhi, 0] [, O] [to |5 (= o), [t |
aeqd [Vhs, O] [Uhi = tpi, O] [wgo | 5(= Ulo)
cbldca [Un, 0][Uhi = Uni, Uni = Uni[tio]5(= Vo),
[

Unis Ui = Upi][Uni = tpi, O] [wio] 5(= io),
(from goto 1): [vni, O] [, ][ wo [|5(# vio), wni

= [ v = ulls, w5, uni)

1rb

0 4.27
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4.28 Correctness of unsigned greater than
The left argument unsigned value u is at 9, — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of B are the boolean value
(u > v).



22 The DeCCo project papers V: Compiler Correctness Proofs

[Uni, Vio] [ - ’5, Uni
[Vhis Vio) [, 1]7 Un]
bucd [nis Vio] [ Vo > o) [ o |, i
[
[

scb

bldi 0 Wni, O] [ V0 > o] [Uto |, U]
dpl 1 Uhi 0] [77 Vlo Z ulo][uloa]

ncb [0ni, O] V10 < i) [0, [ i ]
xryjb | if v, < w, then goto [
[oni, O] O [(vio =) o, [ i |
aeqd [0ni; O] [vni = i, O][(vio >) w0, [ uni |
zrja(l+ 1) if vy = wy; then goto(l + 1)

[V, 0110, O] [( i =) 1o, (vns 72)[ i |

)
(from gotol): [vps, ][, 1[(vie <)o, [ uni |
= [Uhm 0][ ][ulm]
with Vo < Up V Vg = Ugo N\ Upg 7é Ui
cca [ni; O][0, w0, [ upi |
with v, < U V Ve > e A Upi F Upg
aucd [ni, O] [vni > tpi, ][0, [ uni |
with v, < U V U > e A Upi F Upg
zrja(l+ 1) if vy > wy; then goto(l + 1)
[vh’i’ O] [077] [uloa]
with v, < e A pi < upi V U > e A Up < Upg
=v<u
bldi 1 [vhi» 1[0, [0, [ i ]
with v < u
[+1

(from first goto(l +1)): [vni, OJ[1, O][(vie =) tito, (Ui =)[ uni |
(from second goto(l +1)): [vai, O][1, J[uio, [ uni |

with vy, > uyy,
= [,Uhh v < ’lL] [,, f][uloa]

0 4.28



The DeCCo project papers V: Compiler Correctness Proofs 23

4.29 Correctness of unsigned greater than or equal to
The left argument unsigned value u is at 9, — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of B are the boolean value
(u>v).
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[+1

0 4.28

ccb
bucd
bldi O
dpi 1
ncb

xrib |

aeqd
zrja(l+ 1)

cca
aucd

zrja(l + 1)

bldi 1

[Uni, Vio] [ - ’5, Uni

[Vhi» Vio) - 70] a Un]

[Vhis Vio) [, V1o > Ulo]; Upg)

[0ni, O] [ vio > o] [[ io |, 1]

[0ni, O] [, vio > 0] [0, i |
[0ni, O] V10 < o] (a0 [ Ui |

if v, < uy, then goto [

[vhs O] O} [(vio >) 1o, [ uni |
[0ni; O] [vni = tni, O][(vio >) i, [ Uni ]
if vy, = wy; then goto(l+ 1)

[V, 0110, 0][(vio0 >) 1o, (vhs 72)[ i |

(from goto 1): [uns, O)[-, 1)[(vio <)o, [T ]
= [, O] [t (0]

with v, < w, V U > U A Vpp F Upy

[vhiv O] [07*”7“”07]

with v, < e V U > e A Upi F Upg

[ni, O] [vni > tpi, ][0, [ uni |

with v, < U V Ve > U A Upy 7& Uh;

if vp; > wy; then goto(l+ 1)

o1 100, [, ]
with v, < e A Upi < upg V U > e A Up < Upg
=v<u

[Uhia 1] [07*”“107]

with v < u

(from first goto(l +1): [vns, 0][1, O][(vie >) i, (vhi =) uni |
(from second goto(l +1): [vps, O][1, [wi, [ uni ]

with vy, > wuy,

= [oni, v < ullo, o, [upi ]
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4.30 Correctness of unsigned not equals
The left argument unsigned value u is at 9, — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of B are the boolean value

(u # v).
[vhw Ulo [m’g; uhz
[

(0= U)][ﬂ s wni]
[, (v =u) XOR ][, J[wio] 5, uni]
(simplify) [, (v 7 w)][s J[wol s, uni]

0 4.30

4.31 Correctness of unsigned less than

The left argument unsigned value v is at §, 6 — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of B are the boolean value
(u < v).

Uhi, Ulo — 7 ‘57 uhz

[
uge [ (v < u)][ o 5 uni]
not [, (v < u) XOR 1], ][l s, uni]
(simplify) [, (v > w)][-, o], tni]
0 4.31

4.32 Correctness of unsigned less than or equal to

The left argument unsigned value v is at §, 0 — 1, pointed to by D. The right
argument unsigned value v is in AB.
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We are required to show that the final contents of B are the boolean value
(u < w).

Uhi s 'Ulo m’g; uhz

[
ugt [, (v < U)][ﬂf][uzo\mum]
not [, (v < u) XOR 1][-, J[wp|s, uni]
(simplify) -, (v = w)][-, o] 5, tins]
0 4.32

4.33 Correctness of byte equals
The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
(a=0).

L blasl- - [als— -]
beqd [, blapl, b= alwl .., [a]ls -]
bldi 0 [, 0]as[-, b = alawl...,[a]ls,— -]
1rb [,,O—i-b: }AB[ @|57 7]
0 4.33

4.34 Correctness of byte less than

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
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(a < D).
[77 b]AB[ '7@‘57*""]
ccb [, b)agl 0wl - .. [a]s— - ]
bucd [,, b]AB[,,CL< b]ab["'vlz”é?ﬂ ]
bldi 0 [,0]ap[- a < blal....[a]s -, -]
1rb 0+ a<blapl-...[a]s -]
0 4.34

4.35 Correctness of byte less than or equal to
The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
(a < D).

[ blasl- - [alls— -]
scb -, 0]ag[- Yasl- - - [a]ls— - -]
bucd [,, b]AB[f,a S b]ab[-"vlz“é’*’ ]
bldi 0 [,0]ap[, a < blwl...,[alls, - -]
Irb [0+ a < blapl-...[a]s- -]
0 4.35

4.36 Correctness of byte not equals

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
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(a # D).

[ o]l a5 -]
beq [, (b= a)][-,][als,-]
not [, (b= a) XOR 1], |[al;, ]
(simplify)[-, (b # a)][-, [als, -
O 4.36

4.37 Correctness of byte greater than

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
(a>b).
[ bl I [a]ls, -]
ble [, (a < b)][-, Jlals, -]
not [, (a < b) XOR 1], |[als, -]
(simplify)[-, (a > b)][-, [als, ]

I/\“

0 4.37

4.38 Correctness of byte greater than or equal to

The left argument byte value a is at 9, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the boolean value
(a=b).
L oL ey, ]
bt [ (a < B[ laly,
not [, (a < b) XOR 1], |[al;, ]
(simplify)[-, (a = b)][-, J[als, ]
0 4.38
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4.39 Correctness of enumerated equals

See the proof for byte equals; enums are stored as bytes.

0 4.39

4.40 Correctness of enumerated not equals

See the proof for byte not equals; enums are stored as bytes.

0 4.40

4.41 Correctness of byte addition

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value a+ b.

[, 0lagl - [als— -]
ccb [, blagls, Olasl - - [a]s,—, - ]
buad [, b+ a+0Jap[, (b+ a+0)div256].[...,[a]s -]
hltcb [, 0+ alagl, 0] .. ,[a] - -]

The last instruction makes the processor halt on overflow, so if it does not
halt, the b carry register contains zero.

0 4.41

4.42 Correctness of byte subtraction

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value a — b.
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Most of the complication cmes from having b in the B register initially; the
Asp instruction would calculate b — a, so the arguments are first swapped,
using a temporary location at topop (subscript ¢0).

cola]ls ==Lyl

Jagl.
zsdro 0 [, b]ag[. .., als,— .. =l
bstd [ b]AB[~~-,a’57ﬂ~-->@|to]
zsdrs 6 [, blag[- .- ,[als - -, bly]
bldd [, alap| --,@|5wa-~ab|to]
zsdro 0 [, a]apl. .., als, 7""@|t0]
ccb [7, a]AB[ ,O}ab alaa - @|t0

busd

a—b>0=[,a—blapl,0al...[a]s- ]
a—b<0=[,a—b+256|apl, al . ..[als-,..]

hltch [ a— blaglO)....[ally .. ]

The last instruction makes the processor halt on underflow, so if it does not
halt, the b carry register contains zero.

0 4.42

4.43 Correctness of byte multiplication

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value a * b.

,blagl - [a]s— -]
aldi 0 [0,b]a[....[a]ls— -]
aumd b* a)p

nca

(b* a)ZO]AB[ @‘57 7]

(b a)i)apl(b*a)n =0,Jul...[a]s -]
(b*a)p|apl(b*a)y #0, .- [a]ls -]
B0, [ [a]l5— -]

Y
)
bxa)p,

-
[0
[(
aeqi 0 [(b*a)p
[(
[0

hi
hltca [0,b* alap[0, ]
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The last instruction makes the processor halt on overflow, so if it does not
halt, the a carry register contains zero, and the A register is zero.

0 4.43

4.44 Correctness of byte division

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.

We are required to show that the final contents of B are the byte value adivb.

Most of the complication cmes from having b in the B register initially; the
Asp instruction would calculate b div a, so the arguments are first swapped.

aldi 0
audd

070/] [ a’&u*r" @|t0]
amod b, a div blap|. .. a|(5,ﬂ---a@|to]

[ blasl- ey - ool
zsdro 0 [ab]AB["'7a’éaﬂ"-aE”tO]
bstd [, blasl -, als s lb]l)
zsdrs & [, blagl- .. [a]ls— - bl
bldd [, alap[...,[a]s -, 0],
zsdro 0 [, a]ap| -,a’(;,—»---a@ho]

[

[

The last instruction will make the processor halt if b = 0. The high byte of
the result is effectively truncated, because the result is assumed to be a byte,
and hence in only the B register.

0 4.44

4.45 Correctness of byte modulus

The left argument byte value a is at d, pointed to by D. The right argument
byte value b is in B.
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We are required to show that the final contents of B are the byte value
a mod b.

= blagl. -, [alls - -]

Idivs [amod b, a div blag]...,als - .. ]
blda [, amod b)|apl[...,als -, .. ]
0 4.45

4.46 Correctness of unsigned addition
The left argument unsigned value « is at §, 0 — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value
U+ v.

Uni» Vio) AB|- |5,uh2,...

[

ccb [Vnis vlo]AB |5, Upgy - - -]
buad [V, Vo + W + O]AB[ (Vo + wpo + 0) div 256] 4. |5, Upis - - ]
caldcb [Uhi, Vo + Uio)aB[(Vio + o) div 256, (v, + ) div 256 Jab [ - s [o |55 s - - -]
dpi 1 [hi, vio + o) an|(Vie + W) div 256, (v, + ) div 256]ab[. . Uzo\(g,, ]
auad  [vp + Up + (Vi + wp + 0) div 256, v, + wplap

(Vs 4+ upi + (Vo + W) div 256) div 256, (v, + wy,) div 256] 4

[+ o g5 [ Upi ], - - ]
hltca [v+ ulag[0, ][ .., wols, Uni, -]

The last instruction makes the processor halt on overflow, so if it does not
halt, the a carry register contains zero.

0 4.46

4.47 Correctness of unsigned subtraction

The left argument unsigned value « is at §,d — 1, with the weaker than usual
assumption, that D is initially unknown. The right argument unsigned value
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pisin AB.

We are required to show that the final contents of AB are the unsigned value

u—"9.

xsdro 0
abstd
xsdrs
abldd
xsrdo 0
ccb
busd

caldcb

dpi 1

ausd

hltca

0O 4.47

y— [ul0|§7 Uhgy - - - 77|t077]

Uhi» Vio) [ -]

Uni Vio| [ J[Wo 5, Unis - - - - =l 10
Il -]
H ]

@

[

[

[ Ui Vio] [ J[tio] 5 Unis - - [ Vio | s0 Una]
[’th,’Uzo ) |5,Uhi,---,’Uzo’t0,Uhi]
[Uniy o) [ |5, Uhis - - - 5 Vio| 40 Uhi
[Uhuulo][ ][Ulo|§7uh““'7|t07vhi]
[
[

Uniy Uio|[- O] [tio 5> Unis - - - s [Vio || 105 Vnal
Upi, (256 + g, — vy, ) mod 256][_, if u;, — v, < 0 then 1 else 0]
[ulo|5, Upzy -+ - - 7|t07 'Uhi]
[Uni, (256 + w, — vg) mod 256][if u, — v, < 0 then 1 else 0, _|]
(o s, Unis - - - ,]to, Vpi
[Uni, (256 4+ w, — vg) mod 256][if u;, — v, < 0 then 1 else 0, _]
[0 55 s - - - UlOltO’]
[(256 + up; — vpy — (if w, — v, < 0 then 1 else 0)) mod 256,
(256 + w, — vy,) mod 256]
[if A < 0then 1 else 0,_]{upls, uni, - - -, vlolto,
= [(u — v)p;, (u— v)p][if(u — v) <0 then 1 else 0, _]
[ulf)’&? Uhis - - - UZO‘tO’]

if u — v < 0 then halt

(v — v)pi, (v — U)lo][oaf][ulohy Uhis - - -y Ulo’t(ﬁ

4.48 Correctness of unsigned multiply

The left argument unsigned value u is at 0, — 1, with the weaker than usual
assumption, that D is initially unknown. The right argument unsigned value

visin AB.
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We are required to show that the final contents of AB are the unsigned value

U * .

4.48.1 Lemma: correctness of mult subroutine binopfn umul

The initial state of memory is given by the state on zCallOp (which is just

a goto).

xsdro 16
bldd
aldi O
dpi 2

aumd

dpi —16

bstd

dpi 15

bldd

dpi 1

[lhis lo) oo (0] o [tto g iy - - Vo, Vniy oy i [ Do | i
[his B[ -] [v] e [Uzo’(;,uhi,---,, 'Uhiyulo‘lgauhi:lloalhi]
s Vi) [ ][U]C[Ulo’(;,uhi,n-,, Uhi,ulo|18,uhz‘,llo,lhi]
[0, ][, J[v] ¢ [Uzo|5,um,-.-7, Uhiaulo|187uhiall07lhi]
[0, vio] [, | [v] e [tio] 55 nis - - - 5 Vio, Vhi [ Uio || 15 Ui lio, Thi
[(ugo * Vg ) div 256, (u, * v, ) mod 256][_, ][v] ¢
[Ulo\g,uhz,---,vlo,vhi,|18,Uhi,llo,lhi]

= [(ugo * vgo) div 256, (u * v) ][, _|[v]c

[Uo] 55 Unis - - - Vios Ui [ Uio || 185 Unis lios Thi
[(wo * Vo) div 256, (u * v) ][, ][v]c
[ulo‘(;? Uhiy - - - 7E]|2777

s ms sy =y =3 =5 =1 — Ulos ki Ulo| 185 Uhis Lo, Ihi
[(wo * Vo) div 256, (u * v) ][, ][v] e
[0 55 Uiy - - | (0% V)0 ||y -
s ms sy =y =3 =5 =1 — Vlos Uhi Uio| 185 Uhis Lo, Thi

[(wo * Vo) div 256, (u * v) ][, ][v]c
[ulo‘ga Uniy -+ -y (U * U)lo’g;ﬂ

—y =y —y =3 —y —3 —y — —y —y —y — Ulo, 7 ulo|187 Uy, lloa lhi]
[(wo * Vo) div 256, vpi] [, ] [v] ¢
[ul0|§7 Uhgy - -y (U * U)l0|27*7
—y =y =3 =y =5 =y —3 =y — —3 — — Ulo, 7 ulo|187 Uh lloa Zhi]

[(wo * Vo) div 256, v ][, _][v] ¢
[ulo‘ga Upiy - -+ (U * U)lo’2,—7

—y =y —y =3 —y —y —y —y — —y — — Uloy Uhi, |187 Upy , lloa lhi]
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aumd

dpi —15

bstd

dpi 13

bldd

aldi 0

dpi 3

aumd

dpi —16

ccb

[, ((wo * o) div 256 4wy, * vp;) mod 256][, _|[v] ¢
(U 0)p)y, -,

=y =3 =y =1 = =3 =3 =3 =5 = = Vo Vi [ Uio || 185 Ui lio, Thi
[, ((ugo * vgo) div 256 + uy, * vp; ) mod 256] [, _|[v] ¢

< (U * U)l0|27£]7
—y =3 =y = = — — — Ulo Uhi, ulo|187 Uy, lloa lhz]

[Ulo‘(;?uhia .-

[th1o 55 nis - -
—y =y —y—

- -J[- lvle
[ulo‘ga Upiy - -

—) =) =) —

[l Alvle
[“l0|57 Upszy - -

—) =) =) —

[ vl [ ] [v] e
(o s, Unis - -

)7y Ty —

[0, uo] [ J[v] e
[Ul0|5, Upzy - -

[0, vo] [, J[v] e
[wo g, Unis - -

[tio 55 Ui - -

(o5, Unis - -

Y

Y

Y

Y

o (wxv) )y,

((wgo * vgo) div 256 + 1wy, * vp; ) mod 256

—y =3 =y =y —s = —s — Ulos Uhis Ulo | 187 Uhi,s lloa lhi]

o (1w 0) 1]y, (o * vgp) div 256 + 1w, * vh;) mod 256,

—y ==y =) —y—) =y —) 7 Upi, Ulo | 187 Whi, lloa Zhi]

(U % V) 10]y, (g * Vo) div 256 4 g, * vy;) mod 256,
—y =y =)=y —y—) =) —) 7 Uhs s ulo|187 Uy, llo; lhi]

S (U 0)10], (o * V) div 256 + 1, * vh;) mod 256,

—y =)=y —y—y—)—)—) 7 Uhiy Ulo ‘ 189 Upi Zloa lhi]

o (U 0)50], (e * vg) div 256 + 1, * vy;) mod 256,
s myms s 23— s = =3 =1 = = Vlos Uhis Yo |15 Uni | lios i)

[(upi * vgp) div 256, (up; * vy, ) mod 256][_, ][v]¢

S (U 0)10], (o * vg) div 256 + 1, * vh;) mod 256,

—ymymy —y =y =y =y =y = = — Vlos Uhis Uzohg,, los Ui

[(upi * vg,) div 256, (up; * vy, ) mod 256][_, _][v]¢

S (wkv) )y,

((uo * o) div 256 + 1wy, * vp;) mod 256

—y =y —y =3 —y —y —y —y — — — — Uloy Uhi, Ulo | 187 Uhyg ll07 lhz]
[(upi * vg,) div 256, (up; * vy, ) mod 256][_, 0][v] ¢

[Ulo|§7 Upiy - -

o (U)o,

((uo * o) div 256 + g, * vp; ) mod 256

—y =y —y =3 —y —y —y —y — — — — Uloy Uhi, Ulo | 187 Uhyg llo; lhz]

Y

Y

I
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buad

bstd

dpi —1

cldd

dpi 18

abldd

zag

0 4.48.1

[(upi * vgo) div 256, (up; * vy,) mod 256

+ ((uo * o) div 256 + 1wy, * vp; ) mod 256]

-, 0l[v] e
(o g, Unis -, (U 0)10]g,| (o * V1) div 256 + 1, * vh;) mod 256
ey ey my my —y =y =3 =3 =3 = — Vloy Uhi> Uio | 185 Uhis lio Ihi
= [, (ux 0)p[-, O] [v] o [wiol 5, wnis - - -, (w* 0) 0]y =,
Ly —s sy =3 =3 = = Vlos Uhis Wio |18+ Uhi» Lo, Ihil

[ (ux v)wi] [ 0][v]
[Wio 55 Unis - - (U % V) g0y, | (1w V)p; |,
s sy =y =3 =5 3 — Vlos Vhi Ulo| 185 Uhis lios Thi
[ (ux v)pi] [ 0][v] ¢
[Wio sy Unis - | (W V) 1oly |, (w0 V),
s ms s sy =y =3 =5 3 — Vlos Vhi> Ulo| 185 Uhis lios Thi
[(w* v)pi, (u* v)p] [, 0][u* v]eo
[Wio 55 Unis - - | (W V)10l |, (w0 % 0,

—y =y =y —y = —y =y = — — — — Vloy Uhi, ul0|187 Uy lloa lhi]
[(w % v)ps, (0% v)io] [, O] [ % v] o
[Ul0|§7 Uhgy - -+ (U * U)lo|27 (U * v)hi;

—y =y —y =3 —y —y —y —y — —y — — Uloy Uhi), ulo|187 Uhyg 7 lhi]
(i lio) [ O] [ % ] ¢
[ul0|§7 Uhgy -y (U * U)l0|27 (U * v)hia

—5 =y —y = =3 —3 =y — — — — — Vloy Uhis Ulo | 187 Uhi,s 7 lhi]

goto 1

Y
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4.48.2 Correctness of unsigned multiply using lemma

Uhis Vio) [ -] [-] o tho |55 Ui

[
cldab [Vhs, Vo) [ ) (V] [ wio | 5, ni]
xsdrs [Unis Vo] [, ,][v]c[|5, Ups)
abldd [wnis wol [, [v] o [ o |55 uni]
xsdro 18 [uni, ol [, -] [v] ¢ [0l 55 Uiy - - - s =l185 -]
abstd [nis wol[- | [v] e [tiol 5, Unis - - - 5[0 || 155 tni]
dpi —2 [niy o] [ J[v]) ¢ [ttio] 5 iy - - - s (=3 = Wio |1 Una]
cstd [Vhi, Vo) [ -] [V] o[ wio |, Whis - - - [ Vto |, Vni Ulo |15, Uni)
zll 1 [hi, Do) [, <[] e[ wio) 55 Whis - - - [ Vio |, Vhi Ulo| 15, Uni)
dpi 4 [niy Bio) [, <1 [V] [0l 55 Ui - - - Vios Unis Wiol g, Unis (=7 -]
abstd (i ho s (0] o [tos iy - - - Vo, iy oy i [ o | Ui
zCallOp umul(see lemma)
xli |
iy lo)[=, O] [u * v] &
[Wo sy Unis - -, (U % V) ioy, (U * V),

sy —y —y =3 =5 3 — Vlos Vhi» Ulo |1 th',, Ipi]
abldc [u * v][-, 0][u * v]¢

[0l 55 Unis - -, (W% V) 1oy, (w* V)p,

—y—y =y =3 —y —y —y — —y —y — — Ulo, Uhi, Ulo|1g, Uhi,, lhi]

0 4.48.2
0 4.48

4.49 Correctness of unsigned division
The left argument unsigned value u is at d,d — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value
u div v.
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4.49.1 Introduction

We convert the simplified, but high level, algorithm of appendix B to an Asp
algorithm.

We want to calculate u div v, where, on call, uy, u; are stored at t0, t1, and
T2, Uy at t3,t4. After the call, the result (g ¢2) is in [a, b]. (The current
implementation includes an optimisation for binary operators, by including
the code for each operator only once, and using a ‘function call’ to access it.
That standard optimisation is not included here.)

The Asp unsigned multiplication instruction, (immediate, using a supplied
value z, or indirect, assuming the data address register D is pointing to
location addr which stores byte ), multiplies the b register by z, adds the
contents of a, and treats the result as a 16-bit value:

[a, b] == [(a+ b *z)div 256, (@ + b * z) mod 256]

The Asp unsigned division instruction, (immediate, using a supplied value
x, or indirect, assuming the data address register D is pointing to location
addr which stores byte ), divides the 2-byte number [a, b] by z, returning
the single byte remainder and single byte quotient:

[a, b] :=[(a * 256 + b) mod z, (a * 256 + b) div z]

This enables us to perform the two divisions in the simplified algorithm.
Translation into Asp is straightforward, if tedious.

We use the following memory allocation in scratch space:

topop +6 | q1,v; +1,d
topop +5 | ¢
topop +4 | v
topop + 3 | v2
topop + 2 | up
topop + 1 | wy
topop + 0 | uy

Although the instruction zsdro n, to set the data register D to topop + n,
would make the algorithm easier to read, we instead use dpi n to move D by
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n where possible. zsdro is linked and hexed into two instructions, dxi and
dix, whereas dpi is a single instruction.

4.49.2 The algorithm binopfn udiv
As noted earlier, on call, u,,u; are stored at t0,t1, and vy, 7, at t3,t4.
The return label is stored at ¢7,t8 (but is elided in the following proof, for

brevity). So the initial state of memory is

[*7 *] [*7 *] [ﬂ%ﬂlaﬂ anﬂlaﬂ - l27 ll]

start zli |

xsdro 4 -, e, uy, -, 52,, b, 1]
aldd (01, [, ][, @1, -, Ua,| U1 |, -, ]
aeqi 0 (01, J[71 = 0, ][ws, w1, _, U2, | U1 |, -, ]
nca [_1,,] [61 7é O,,][ﬂg,ﬂl,,, 72, 51 ,,,,]

[ I

zrja(l +1) i

[

v, # 0 then goto main

1, [0, J[@a, w1, -, 727(: 0),--]

=

vy = 0, use single byte division
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main

dpi —3 [T, -
bldd [y, ][0, ] [Ua,
aldi 0 [0
dpi 2 0
audd [@; mod Uy, wp di
dpi 3 7
bstd 7
dpi —6  [rem, ¢;][0, ] [ Uy, _, U2, 01(=0),_, ¢]
bldd [rem, Us)[0, _] [,ﬂl,,, V2, 71(=0), -, ¢1
dpi 3 [rem, Us) [0, _|[w2, U, , ,01(=0), -, ¢1]
audd [(rem x 256 4 o) mod Ty, (rem * 256 + Uy) div Ty
[0,,“ﬂ2,ﬂ1, —| V2 7w1<_ 0)7 7g1]

= [, ][0, ][, U1, ,, 71(=0),-, ¢
dpi 3 - ][0, J[W2, W1, -, V2, V1 (= 0), a]
aldd (@1, @10, ][@s, W1, —, Ta, U1 (= 0), ~ @]

zrgs(l + 8) goto end

zli(l+1) 0 <oy, use full algorithm

(from goto main): [y, ][, [uz, U1, -, V2,0 < ,,,,]
auci 128 [y, J[128 < Uy, [Ty, Wy, -, T2, 0 < | V1 | -, ]
zrja(l +2) if 128 < v then goto zero

[51,,] [0,,][ﬂ2,ﬂ17,, Vs, 0 < < 128, _, 7]

71 < 128, normalise
calculate d = 256 div (77 + 1)
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auai 1

dpi 2
astd
aldi 1
bldi 0
audd

bstd

dpi —6
bldd
aldi 0
dpi 6
aumd

dpi —6
bstd
dpi 1
bldd
dpi 5
aumd

dpi —5
abstd

(U1 + 1+ 0) mod 256, _][(D + 1 + 0) div 256, ]
[ﬂg,ﬂl,,, Vg, 0 < < 128, _, 7]
= [7, + 1,,] [0,,] [Ty, Ty, —, T2,0 < <128,_,]

256 mod vy + 1), 256 div (7; + 1)][0,,]

(U, U1, —, U2, 0 < U1 < 128,_,|T1 + 1]
= [,, d][O,,][ﬂg,ﬂl,,,ig,O <wvp <128, |vp+1 ]
-, d][0, [w2, Ty, -, T2,0 < 7, < 128,_,|d]

normalise v := u * d

o * d) div 256, (U * d) mod 256][0, _]
[ﬂg,ﬂl,,, Ua,0 <71 < 128,7,
(T * d) div 256, u][0, [T, Ty, —, T2, 0 < Ty < 128,_,[d]

S
S|

—

2 % d) div 256, us)[0,

5 % d) div 256, uj[(), %
o * d) div 256, u5][0, _]
J[0,]
J[0,]

(@] @1, 7,0 <7, < 128, d]
[

Ug |, U1, -, U, 0 < Ty < 128, _, d]
[un, | T |, -, T2, 0 < 1 < 128, _, d]
2% d) div 256, ][0, [uz, |1 |, -, T2, 0 < 7y < 128,_, d]
2 d) div 256, 1[0, J[un, Ty, T2,0 < Ty < 128,_,[d]]
Uy * d) div 256 + Ty * d) div 256,

((Tg * d) div 256 + Wy * d) mod 256]

[0, J[un, Ty, T2,0 < Ty < 128,_,[d]]

— [ug, w][0, ][z, T, —, T2, 0 < Ty < 128,_,[d]
[0, 1 ][0, [, [ W |, -, 72,0 < 7y < 128, _, d]
[ ,ul][ g, [ur], uo, D, 0 < 9y <128, _, d]

normalise v : =T % d

gl 2 g 2 g

/\
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Zero

div

dpi 2
bldd
aldi O
dpi 3
aumd

dpi —3
bstd
dpi 1
bldd
dpi 2
aumd

dpi —2
bstd
zrgs(l + 3)

oli(l+2)

dpi —2
aldi O
astd

zli(l + 3)

d) div 256, (U5 * d) mod 256][0, _]
[u27 Uy, 7“[’07627 0< U1 < 128777
[(Ty * d) div 256, 1] [0, ][z, uy, ug, T2, 0 < 7 < 128,_,[d]

(T2 * d) div 256, 1][0, ] [uz, u1, uo,[V2],0 < 7y < 128,_, | d]]
(T2 * d) div 256, 1][0, ] [uz, w1, uo,[12],0 < Ty < 128,_,[d]
[(Ta * d) div 256, 1] [0, [un, 11, 1o, 12,0 < < 128, | d]
[(Ty % d) div 256, 7,][0, |[ug, w1, ug, 1,0 < < 128, _, d]
[(Ty % d) div 256, 71][0, J[ua, ur, g, 12,0 < T3 < 128,_,[d]]
[((Ty % d) div 256 + T, * d) div 256,

((Ty * d) div 256 + T, * d) mod 256]
[0, J[un, ur, g, 12,0 < Ty < 128, _,[d]]
— [0, 01][0, J[ua, uy, g, 12,0 < Ty < 128,_,[d]]
[0, v1][0, _J[ug, w1, ug, 12,0 < < 128, _,d]
[0, 01][0, J[uz, ur, uo, va, [ V1], -, d]

goto div

128 < 0y, just set uy to 0
(from goto zero): [v1,_|[1,_|[u2, U1, —, V2, 128 < ,,, ]

= [1}1,,][17,][?//2, Uy, — V2, 128 S 7 ) 7]

[Ul,,][l,,][UQ, Uy, =3 V2, 128 S ’Ul,,,,]
[07*][1’ ][ y, U1, =3, V2, 128 < U1, -, ]
[07*][17 ][u27u17@ Vg, 128 < U1, — ]
calculate ¢

(from goto div): [0, n1}[0, J[uz, ur, uo, va, [v1 ], -, d]
= [07*] [*7 J[Ug, Uy, U, V2, V1, — f]



The DeCCo project papers V: Compiler Correctness Proofs 43

xsdro 2 0, ][, J[uz, wr,[ug ], va, v1, -, ]

[0, -
aldd F&o, }[, g, w, [ ug], vo, w1, ]
-

dpl 2 Up, [ ][UQ,Ul,UO,UQ,7 - ]
aeqd [, J[uo = v, J[uz, ur, uo, vo, [ V1], -, ]

zrja(l +4) if uyg = v then goto maxq

[U/Oaf] [077”“2’ Uy, Uo, U277 — 7]

calculate ¢ = (ug * 256 + uy) div vy ( < 256)

dpl -3 [UO, HO u277u0711271]1777*]

bldd [U(),Ul][ ][u%au()uv%vlv*?*]
dpl 3 [7“[’07 ][ ][UQ,Ul,IL(),’UQ,, - ]
audd [

u
(ug * 256 + uy ) mod vy, (ug * 256 + uy) div vy]
[07*“u27 Uy, Uo, 7}277 - *]
= [, ][0, [ua, w1, wo, 02’7777]
zrgs(l +5) goto rem
maxq  xli(l+4) set ¢ to 255
(from goto maxq): [ug,-|[1, |[ug, ur, uo, va,[ 01 [(= uo), -, ]
bldi 255 [ug,255][1, J[ug, ur, ug, v, 01 |(= up), -, ]
[3] = [u0> (A]Hlv*][u%ulvu[)?v?’7*’*]

rem zli(l 4 5)
(from goto rem): [, ¢][0, J[ug, w1, uo, va,[ 01 ], -, -]
= [77 2]][7,7][102, Uy, Uo, 1)2,,,,,]
dpi 1 [77 (AJ] [77 *Hu% Uy, Ug, V2, V1, = *]
bstd I, ][ [ue, w1, ug, vo, vl,, ]

calculate v/ = g *x v
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dpi —2
aldi O
aumd

bstd
dpi 1
bldd
dpi 1
aumd

dpi —3
cca
aucd

zrja(l +7)

aeqd
nca

zrja(l + 6)

dpi —1
ccb
bucd

xrjb(l +7)

beqd
ncb

xrjb(l + 6)

[77 QH ,HUQ,Ul,’LLU,, Ul)@?*]
[07 g][ 77][“27”17“077 Ul)@ﬂf]
[(vg * @) div 256, (vs * ¢) mod 256][, ]

[u27 Uy, ana U1, (_/\17*]
= [(vg * ¢) div 256, vy][-, |[uz, ur, uo, [ v2 |

<
i

L -
|

Vg * (AJ) div 256 UQH HU’Qu Uz, u077 0, Z]?*

+ ) div 256, v [, | [uz, w1, uo, v3, [ 01} q,-]

* Q) le 256 1” ; HU Uy, Ug, U 577@77]
Il -]

[UQa Uy, Uo, U27
(1)2 % q) div 256 + v % ¢) div 256,
((v2 * @) div 256 4 v1 * ¢) mod 256]
[,, f][u27 Uy, Uo, ,U2,> U1>7 7]

= [’Ué, U{Hﬂ *HU’% Uy, Uo, Ué, Ulua 7]

test rem = u — v’ <0, test u < v’

[7)67 Uﬂ[ﬂ 7][2/,2, U177 ’057 0, E]a*]

[U(l)v Uﬂ[o,,”uz, u177 Uév Uy, (Alaf]

[0(37 U{HUO < vé?*””?? Ulaa U2,v V1,4 (_AZ7*]

if ugp < v} then goto qtoobig

[U(l)v U{][O Hu% Ul,(Z U(S)? Ué? U1,y a?*]
[%ﬂh“ = U, ][UQ,Ul,(Z Ué)’véﬂ}l’@v*]
[vg, v1][vg # o, [ue, U17<Z 9); Vas U1, G, -
if v # wuo then goto qokay

It
(s
(w2
(s
((

[7)0,7)1][ Hu?vul?( ) 17@7*]
[UO’UIHO> Huvi uU(_ U) U1, @v ]
(v, v1][0, 0] [ua, [ ur ], uo (= p), vz,vhq, -
[%a vl][o u < vl][u%auo( ) UZ7U1> @,,]

if u; < v] then goto qtoobig

(v, v1][0, 0] [ua, [ur J(= v1), uo(= vg), v, v1, 4, -]

[v9, v1][0, vp = w][up, [ur [(= v}), wo(= vg), v3, 01, G, ]
[7)07 1)1][0, Ul # ul][u27(2 1)1), UO(: U(/]), Uév v, &77]
if v{ # u; then goto qokay

[vg, 01110, O] [uz, [w1 (= 1), wo(= wg), v5, 01, 4, ]
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dpi 2 [0, 01][0, 0] [z, us (= ©}), wo(= 5), | w3, w1, 4, ]
aldd [05, 0{][0, 0] [, s (= v}), wo(= 5), | w3, w1, 4, ]
dpi =3  [ug, 9]0, O][[ ], wa (= v1), wo(= v5), v3, 01, G, ]
aucd [Ué, vﬂ[UQ < Uév O] [7 Ul(: ’U{), UU(: Ué)? Ué? U1, @7]

zrja(l +7) if up < v} then goto qtoobig

[Uév Uﬂ[o? 0] [(Z Ué)? ul(: U{)v UO(: ,U(/))7 ,057 U, 6]’*]

qokay  zli(l+6) set [a,b] to [0, ]

(from U(/) 7é UO): [%7 U{][lvf][u% u17(> U(/))a 1)5, U1, C.Alaf]

(from w1 7 w): [ug, 1[0, Uluz, [ur](> vr), wo(= vp), v3, 01, G, -]
[4] = [*7 Uﬂ[ﬂ 7][?//2, U1, Uo, Ué’ U, %7]

asdro 5 [, vi][, J[ug, wi, wo, v3, v1,[ ¢, ]
bldd - gl s, w, o, 03, 01, q], -]
aldi 0 [0, g][, J[uz, w1, uo, v5, v, q], ]

zrgs(l + 8) goto end

qtoobig zli(l+7) set [a,b] to [0, § — 1]
(from uy < v/ test):
[v(lb ’U{][L,HUQ, U1’(< Ué)v vé, Uy, (}77]
(from u; < v] test):
[v(lﬁ ,U{][Ov 1][U2,(< U{)v UO<: ,U(/))7 ,057 UL, EI’*]
(from uy < v} test):
[%7 U{][l, O] (< Ué>’ ul(: U{), u0<: U{))? Ué? U1, @,,]
[5] = [*7 U{][,,,][UQ,ul,UU,Ué,Ul,@(: q+ 1)7*]

xsdro b o1, w2, wa, ug, v, v1,| G (= g+ 1),-]
bldd -, )= g, ur, uo, v, v, @|(= g + 1), ]
ccb [7, @][*70”7“0271617“077}577}17 (: Q+1)7*]
aldi 0O [0, q][-, O][ug, u1, ug, v, v1,| ¢|(= q¢ + 1), ]
busi 1 0,§—1—0],if §—1—0<0then ¢ —1— 0+ 256 else 0

[
[u27 Uy, Up, ,Uéa ,017(: q + 1)77]
[6] = [07 Q][ﬂo][u%ulauo’véavla(: q—l—l),,]
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end zli(l 4 8)
(from single byte goto end):
(@1, @] [0, ] [@, U1, -, 02, 01(= 0), -, [ @1 ]
(from gOtO end): [07 Q] [*7 *HUQu Uy, Uo, 1}57 1)17@, *]
= [Qh QQ]L? 7] [77 —y =y =y =y =y — l27 ll]
cldab [qla QQ] [77 f] [Q]C[fv —y—y—y—y—y — l?a ll]
xsdro 7 [QD 92] [77 7] [Q]CL: — ===y =y —) a ll]
abldd [lla ZQ] [77 - [Q]C[ﬂ —y ==y =3 —y =) 7 Zl]
xag goto [
1. 73 < 128 = (77 + 1) mod 256 = 77 + 1
71 <128 = (U7 + 1) div256 =0
2. Lemma3 = 1 < 256
3. ug =1 = q =255
4. u>v' = rem >0
rem > 0= q=gq
S u<v=rem<0rem<0=qg+1=q
6. ¢q>0=qg—1>0
0 4.49.2

This template is approximately 200 instructions long.

4.49.3 The division algorithm

On call, the second argument v is in the a, b registers, and the first argument
u is on the stack memory at §. On return, u div v is in the a, b registers.



The DeCCo project papers V: Compiler Correctness Proofs 47

[01, D2 J[H o[l 5wl

xsdro 3
abstd
xsdrs 0
abldd
xsdro (
abstd
xll 1
xsdro 7
abstd
xCallOp udiv
xli |

abldc

0 4.49.3
0 4.49

[, ]l JHelwals v, oo o =
(U1, Do) [, [ e [@alg, Tr, - oy ,51]
[71772][777][7]0[|5aﬂ17-~~,77—77,72771]
@, W) [, I ol Bl T - 02, W]
[u1, U]l JH e [tls, U, - - - =3, - - 0271
[, )l A ey T, - B2 | T, -, 02, 0]
Iy, b Jeltls, @, .| U2 | T, - T, 7]
[

[

cl
C[ﬂ2|57a17 e aﬂ27ﬂ1a7752751a7777574
cl

E2|57ﬂla s aﬁ%ﬂlaﬂvbilaﬂﬂa Zl]

7 | 7 ) e T )
[Q17 QQ] [*7 *] [Q] C [*7 — =y =y =y —— 7 Zl]

4.50 Correctness of unsigned modulus

The left argument unsigned value u is at 9, — 1, pointed to by D. The right
argument unsigned value v is in AB.

We are required to show that the final contents of AB are the unsigned value

u mod v.

Lemmas:

1. 4.49 : If on entry to Idiv, memory is [vy;, Up)] [W]5, up;], then on
exit it is [(u div v)p, (uw d1V 0)10) [ ) [0 5, uhz]

2. 4.48 : If on entry to Imul, memory is [va;, Uio|[-, | [Wo|s, tni], then on
exit it is [(u * v)pi, (w % v)10)[— -] [wo| s, Unil-
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3. 4.47 : If on entry to Iminus, memory is [vn;, Vi) [, —|[Wo |5, Uni], then on
exit it is [(u — v)pi, (v — v)1o) [, ][0 5, Unil-
Uhi s UZO] ;7] [7, — ul0|57 uhi}

[
zsdrs(0 + 2) VUhi, Vio) |- ) [=3 = Uio 5> Uni]

[
[
abstd [Onis Vio][= ([ Vio |, Unis tio] 5 Una]
[
[
[

Opo udiv § (u div v) g, (u div )] [ -] [Vies Vnis ol s, Uni
Opo umul(d + 2)[(v * (u div v))pi, (v * (w div )] [, [ Vies Vni,s o5, Uni)
Opo uminus 6 [(u— v * (uwdiv v))p, (v — v * (v div v))el[-, ]

[vl07 Uhi ulo|57 uhi]
= [(vmod v);, (v mod v) ][, -] [Vie, Vhi, Uio| 5, Uni]

0 4.50

4.51 Correctness of cast byte to enumerated

The byte value b is in the B register.

We are required to show that the final contents of B are the enumerated
value equal to the byte value.

[*7 b]AB

Do nothing: an enum is stored as a byte.

0 4.51

4.52 Correctness of join bytes to unsigned

The left argument hi byte value a is at 0, pointed to by D. The right
argument lo byte value b is in B.

We are required to show that the final contents of B are the unsigned value
atb.

= blasl. - [alls - -]
aldd [a,blapl....[a]s -]
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0 4.52

04
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5 Correctness of Expressions

5.1 Expression proof obligation

Obligation: the evaluation of the expression leaves the correct result in the
AB registers.

5.2 Correctness of literal constant

We are required to show that the value of the literal constant is left in the
AB registers.

[77*]AB

Oiri K
K== [Un, Uo|AB
kK=b= [,, b]AB

05.2.

5.3 Correctness of Value Reference

There are four subcases where a name may be encountered as a value refer-
ence (other kinds of names, such as function names, cannot occur here, due
to static semantics checks).

5.3.1 Correctness of Value Reference — named constant

We are required to show that the value corresponding to the literal constant
is left in the AB registers.

If the constant is imported:

[,, f]AB
xConst &
linker = O,,; reduces to 5.2
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If the constant is local, the value of the constant is looked up in the environ-
ment, and this value is used with the code for a literal constant, 5.2.

05.3.1

5.3.2 Correctness of Value Reference — enumerated value

We are required to show that the value corresponding to the enumeration is
left in the AB registers.

b is the appropriate value, looked up in the environment.

[77 f]AB
bldi b [, blan

05.3.2

5.3.3 Correctness of Value Reference — enumerated type

We are required to show that the value corresponding to the size of the
enumerated type is left in the AB registers.

b is the appropriate value, calculated from a value looked up in the environ-
ment.

bldi b [, blap

05.3.3

5.3.4 Correctness of Value Reference — variable

We are required to show that the value of the variable is left in the AB
registers.

We assume the induction hypothesis
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1. Oyy (proved in section 5.7) : the result of evaluating the array indexes
is to leave the data address of the relevant element in AB.
[a ] ["aul0|d7uhi7-"]
I (hyp 1)
[ ] [ ulo|dauhu---]
daldab [d]ap \d, Upgy - - |
O~ [U}m Uzo AB |d, Upgy - - -
05.3.4
05.3
5.4 Correctness of Unary expression

We are required to show that the value of the unary expression ¥ e is left in
the AB registers.

We assume the induction hypotheses

1.

05.4.

Opg (proved in section 5) : the result of evaluating the subexpression is
left in AB: that on exit from code block I memory is

[€]an
Oupo (proved in section 4.1) : the result of evaluating the operator is
left in AB: that if on entry to code block I’ memory is

[€]as
then on exit is is

[\If E]AB
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5.5 Correctness of Binary expression

We are required to show that the value of the binary expression € 2 € is left
in the AB registers.

We assume the induction hypotheses

1. Og (proved in section 5) : the result of evaluating the left subexpression
is left in AB: that on exit from code block /1 memory is

[€]as

2. Og (proved in section 5) : the result of evaluating the right subexpres-
sion is left in AB: that on exit from code block /2 memory is
€]

3. Opo (proved in section 4.18) : the result of evaluating the operator is
left in AB: that if on entry to code block I3 memory is

[EI]AB[. .. 7|5;5hi; .. ]

then on exit is is

€ Q €ap

[ﬂf}AB
115 (hyp 1)

lelal - sm ol ]
zsdrs 6 [elapl- - oo =g = - - )
abstd  [e|an[- -, —[€w0]ls: €nis - -]
12515 (hyp 2)

(€' - 77|5+2>77 €los €his - - -]
zsdrs 6 [€']agl- -+ = [ €0 ]ls €nis - -]
I3 (hyp 3)

le Q€lapl .. o2 €lolss €his - -]

05.5.
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5.6 Correctness of Function Call

We are required to show that the return value of the function call is left in
the AB registers.

We assume the induction hypotheses

1. Oyp+ (proved in section 5.10) : the result of evaluating the actual
parameters is to store their values at the correct formal parameter
locations

2. zCall (proved in section 8.3) : the result of calling the function is
to save the return label passed in C, evaluate the function (variable
initialisations and body stamtement) and store the result in C, load
the return label, and jump to it.

Jas

-

P (hyp 1)
[, ] ap[parameters stored ..., _, _, |5, _,...]

ol U [l'] ap[parameters stored...,_,_, |5, _, .. ]

cldab  [I'|ap[l'|¢[parameters stored...,_,_, _|5,—,.. ]

zCall ¢ (hyp 2)
[, -] ap[l'| c[parameters stored ..., I',...,_,_, _|5,-, .. ]
[, -JaB|f]c[parameters stored ..., I, ..., _|5,-,..]
(") aB|f] c[parameters stored ..., I',...,_,_, _|s,—, .. ]
goto I’

U [ZI]AB[f]C["‘777777|5777"']
abldc [f]AB[f]C['"7*777*|5777"']

0 5.6

5.7 Correctness of variable location, Oy,

We are required to show that the the result of evaluating the array indexes
is to leave the data address of the relevant element in AB.
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We assume the induction hypotheses

1. Op« (proved in section 5.8) : the result of evaluating the array indexes
is to leave the relevant index offset in AB.

2. Opgaaar (proved in section 5.11) : the result of evaluating laddr is to
leave the start address of the array variable in AB.

Jasl-- o 2lso ]

B
1E (hyp 1)
[(byte or unsigned) index offset]4p][. .., |5 .. ]
Ioff1  [unsigned index offset]ap[...,_|5 -, .. ]
Ioff2  [address offset|ap[..., |5, .. ]
zsdrs §  [address offset]AB[ o =ls -

abstd  [address offset] 4] |5, adoff ;s - - |

Iaddr  (hyp 2)
start address]AB[ . adoffio|s, adoffyi, . . ]

[
zsdrs 0 [start address|ap]. |5, adoffni, - - -
[

upluss  [start address + offset]AB[. .., adoffio|s, adoﬁhi, o

0 5.7

5.8 Correctness of index offset, Op-

Given a sequence of array expressions [i]. .. [i,] for array subranges [a;..5]

.. [an..by], we want to calculate the index offset, and show it is equal to
the Pasp offset calculated by locationOffset, that is, to show it calculates
Yi(ne; x (e; — Ib)) = X,7,.

We assume the induction hypotheses
1. Opp (proved in section 5.9) : Given an expression €, and compile-time

constants lb and ne, the template results in nex (e —b) = 7 in the AB
registers.
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2. Opg« (proved in section 5.8) : We assume that Opg- E leaves ¥;(ne;*(e;—
Ib;)) = ¥,Z; in the AB registers, in order to prove that Opg«(E ™ (e))
leaves ne x (¢ — Ib) + X;(ne; * (e; — Ib;)) = Z + XZ; in the AB registers.

3. uplus (proved in section 4.46) : If on entry to Iplus, memory is
[Vhi, Vio) [, -] [tio 5, Uns], then on exit it is
[(w + V)i, (u + )0 [ Jwto] 55 uni].
base case: single dimension

The base case is the first hypothesis above, proved elsewhere.

inductive step : Assuming E, we prove the case for E ™ (e).

L dasl oo oo
IE; (hyp 2)

EL]apl- s -]
zsdrs & [EZi|agl. - =1lsr— - - -]
Osr (EZ)aBl | (BiZi)io |l (ZiZi)has - - ]

leso (hyp 1)
[ AB[- .. 77|5+2777 (ZiIi)lo|5a (Ziz—i)hia .. ]

xsdrs o [I AB[. .. ,,|5+2,,, (Zizi)lo |5, (E,—L)hi, .. ]
[plus [I + ZiL]AB[. .. 7*‘5+2’*’ (ZiL)lOL;, (Eiz—i)hia .. ]

0 5.8

5.9 Correctness of single index, Qg

Given an expression €, and compile-time constants [b and ne, we are required
to show that the template results in ne * (e — [b) in the AB registers.

We assume the induction hypotheses

1. Op (proved in section 5) : the result of evaluating the expression e is
left in AB: that on exit from code block Je memory is

€lan
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2. uminus (proved in section 4.47) : If on entry to Iminus, memory is
[Vhi, Vio)[=s -] [Wio] 55 uns], then on exit it is [(u—2v)pi, (u—20) 1] [, -] [0 |5, Unil-

3. 4.48 : If on entry to Imul, memory is [vh;, Ui, -] [tls, tni], then on
exit it 18 [(w * v)pi, (w % 0) ) [o ] [wo s, wnil-

case 1: ne=1

[ﬂ*}AB[' 7*’57*7 ]
les (hyp 1)

HAB[---,J(;’*’ }
zsdrs 6 [elapl- - =lsr— - -
O, [€]AB[.--,|5,€M,...]
Opri 16 [Ib]ag[- - [€10 55 €nis - - ]
Iminus  (hyp 2)

[E— lb]AB[“-yelo’(;;Ghia'--]

[777]143[- .- 77|577a . ]
Ie (n =1 code) :[e — b]ag|. -, €wls, €ni, - - -]

zsdrs & [e — Ib]ag[- ., [€10] 5 €nis - -]
O, le = Wb)apl-..,|(e=10)i||s, (€ = )iy - . ]
Oiri ne [nelapl...,[(e=1b)i |5 (€ = 1)ps, .. ]

[
Imul (hyp 3)
(nex (e — )| ap[...,(e—1b)ls (€ = b)n;, .. ]

05.9

5.10 Correctness of actual parameters, O 4p-

We are required to show that the the result of evaluating the actual param-
eters is to leave their values in the correct formal parameter locations.

We assume the induction hypotheses
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1. Op (proved in section 5) : the result of evaluating I is to leave the
value of the value paramter in AB.

2. Opgaaar (proved in section 5.11) : the result of evaluating I is to leave
the start address of the reference parameter in AB.

3. zPa : the linker determines the correct formal parameter address, «

TS O

I (hyp 1 or 2)

[Wasl-- s —la -]
zPa  (hyp 3)

Wlasl- - =y -
Oy T [U]AB[---7|Q,UM,---]

This shows that a single parameter is correctly stored; the case for multiple
parameters simply iterates along the parameter list.

0 5.10

5.11 Correctness of location of identifier, Og,q4,
There are four cases, each very simple:

1. indirect formal parameters : update the D register from the contents
of the relevant memory location (which location found from the envi-
ronment)

2. ‘AT’ variables : update the D register with the absolute address

3. ordinary declared variables : update the D register with the address of
the variable (found from the environment) relative to the heap

4. declared imported variables : the linker fixes up the correct location

0 5.11

05
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6 Correctness of Statements

6.1 Statement proof obligation
Induction hypothesis: the Pasp and compilation environments correspond
beforehand, as do the Pasp and Asp states.

Obligation: the Pasp and Asp states correspond afterwards. That is, execut-
ing the template results in the corresponding change to the Asp state.

6.2 Correctness of Skip

We are required to show that the execution of the skip template has no effect.

The skip template is a single nop instruction, which is the identity, as re-
quired. (Note that this does have the effect of a delay in practice. But
timing effects are outside the scope of the Pasp specification.)

0 6.2

6.3 Correctness of Assignment

We are required to show that the execution of the assignment template has
the effect of storing the value of the expression in the correct variable location.

We assume the induction hypotheses

1. Oyy (proved in section 5.7) : the result of evaluating the array indexes
is to leave the data address of the relevant element, «, in AB.

2. Op (proved in section 5) : the result of evaluating the expression € is
left in AB: that on exit from code block I memory is

[€lap
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[ Y O YT S
Tloc (hyp 1)
[ aBl - lgr o]y ms - -]
zsdrh &' [aag. . =ilgr - —lar = - -]
abstd  [aas[- [0 lys Qnis - s g
I (hyp 2)
l€laBl -, Qolgrs Qhis ooy gy —s - -]
cldab  [e|laglelc] -, Qolys Qniy - oo s—| =y - - -]
zsdrh 6" [elaslelel [ ]lys Qhis sl = - -]
abldd [a]aplelcl- [ lss Qhis -5 Ly - -]
daldab [a]agle]c|. -, Qolgs Qhiy - o=l = - - ]
abldc  [elaplelcl - oly, Qhis o =1l = - -
O, 7 [E]AB[(—:]C[...,ozlo|6,,ozhz-,...,]a,ehi,...]
0 6.3

6.4 Correctness of If

We are required to show that the execution of the if template has the effect of
performing the first statement if the expression evaluates to true, otherwise
of performing the second statement.

We assume the induction hypotheses

1. Op (proved in section 5) : the result of evaluating the (boolean) ex-
pression € is left in AB: that on exit from code block IF memory is

[€lan

2. Og v/ (proved in section 6) : the result of evaluating the statement ~'
is to leave memory updated appropriately.

3. Og 7 (proved in section 6) : the result of evaluating the statement ~ is
to leave memory updated appropriately.
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IE (hyp 1)
[E]AB[- . ]
rrb [, Jag[-, €(true or false)]al. - ]

argbl 12 if € = true then goto 12
[ Jaslo, falsela. . ]

r (hyp 2)
[, _|ap[e = false A state for 7]

xrg 13 goto 13

[2

(from goto 12)[-, | aB[-, truelq|. - ]
1 (hyp 3)

[, -] ap[e = true A state for 7]

[3
(from above)|-, _|aple = true A 7]
(from goto 13)[-, _Jap[e = false N +]
(simplify)[-, | ap[if € then v else 7]

06.4

6.5 Correctness of Case
We are required to show that the execution of the case template has the
effect of performing the equivalent Pasp case staement.

This is clearly the case, since the operation template is defined using the
same translation as is the Pasp dynamic semantics.

0 6.5

6.6 Correctness of Loop

We are required to show that the execution of the loop template has the effect
of performing the body statement repeatedly while the expression evaluates
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to true.
We assume the induction hypotheses

1. Og (proved in section 5) : the result of evaluating the (boolean) ex-
pression € is left in AB: that on exit from code block [F memory is

l€]an

2. Og v (proved in section 6) : the result of evaluating the statement - is
to leave memory updated appropriately.

[ Jasl ]

(from abovel|_, _| 45 [state for 7]
(from goto 1)[_,_| ap[state for 4™
(

[

IE hyp 1)

€las["]
rrb [, _ag[-, €(true or false)]qp[y"]
ncb [, —Jag[, — €(true or false)]q ("]
xrgbl IS if — € = true then goto 1S

[ Jaslo € = truela[v"]
IS (hyp 2)

-

_|aple = true A state for 4]

xrg | goto 1

IS
(from goto IS)[-, _Jap|-, € = false]qwp[y™]
(simplify)[-, -| ag[while € do 7]

0 6.6

6.7 Correctness of Procedure Call

We are required to show that on return from the procedure call, the state
corresponds to the execution of the body statement ~.

We assume the induction hypotheses
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1. Ogp« (proved in section 5.10) :

0 6.7

06

the result of evaluating the actual

parameters is to store their values at the correct formal parameter
locations

. zCall (proved in section 8.3) :

the result of calling the procedure is

to save the return label, evaluate the variable initialisations and body
statement, then load the return label, and jump to it.

l/

xll
cldab
zCall &

Jas

-

(hyp 1)

[, ] ap[parameters stored. ..}, _, |5, _, .. ]
[I'] 45 [parameters stored . . .

[l aB[l'| ¢c[parameters stored .. .]ots]

(hyp 2)

[, -] aB[l'| c[parameters stored ..., [, .. ]
[, -] ap[parameters stored ..., !’ state for 7]
[I'] 45 [parameters stored . . l ,state for 7]
goto I’

[l ap|parameters stored. .., I, state for 7]
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7 Correctness of Simple Declarations

7.1 Simple Declaration proof obligation

The proof obligation for the simple declaration part of the Prog is that
they correctly update the corresponding compiler environments appropri-
ately (and state in the case of initialisation).

If the environments match beforehand (induction hypothesis), then the after
Pasp environment updated with the simple declarations matches the after
compiler environment updated with the compiled simple declarations. (Here
we use R, to represent the environment retreive relation.)

pt, pt' - EnuMTrace; pot, pot’ : EnvOTrace; po, o’ : MO;
ASD : seq SIMPLE_DECL; B : STACK |
R, pt = pot A pt' = Mgp~ ASD B pt
A (pot’, pwo') = Ogp- ASD B (pot, po)
I_
R, pt' = pot’

It suffices to show the case of a single simple declaration. So

pt, pt’ - EnuMTrace; pot,pot’ : EnvOTrace; po, o’ : MO;
d: SIMPLE_DECL; B : STACK |
R, pt = pot A\ pt' = Mgp § B pt
A (pot’, o) = Osp 6 B (pot, po)
I_
R, pt' = pot’

We break this into the three SD cases
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7.2 Constant declaration

pt, pt' : EnuMTrace; pot,pot’ : EnvOTrace; po : MO,
ConstDecl; B : STACK |
R, pt = pot
A pt' = update(pt, B, { — cval})
A pot’ = update(pot, B, {{ — opEzport k})
l_
R, pt' = pot’

Substitute for pt’, pot’; simplify

pt, pt’ : EnuMTrace; pot,pot’ : EnvOTrace; po : MO,
ConstDecl; B : STACK

l_

const™ (lookup (&, (last B), prt0))).v = K

This is precisely the property the type checking semantics 7y¢ establishes.
0 7.2

7.3 Type definition

pt, pt’ - EnuMTrace; pot,pot’ : EnvOTrace; o, o’ : MO,
0 : TYPE_DEF; B: STACK |
R, pt = pot A pt' = pt

A (pot', po') = (pot, jro)
l_
R, pt' = pot’

This is trivially true.

o773

7.4 Variable declaration

We are required to show that variable declaration updates the environment
apprpriately.
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This essentially reduces to showing that the correct number of locations are
allocated to the variable; this follows directly from newVarAddr using the
same allocate function as does the Pasp definition.

074

7.5 Correctness of variable declaration, Ogp-
Follows directly from the correctness of the three individual cases: constant,
type definition, and variable.

075

7.6 Correctness of variable initialisation, Ogp;-
We are required to show that simple declaration initialisations update the
state apprpriately.

The only case where anything interesting happens is for variable initialisa-
tions, Oyy. There are four cases.

We assume the induction hypothesis

1. Ogggar (proved in section 5.11) : the result of evaluating Iloc is to leave
the start address, «, of the (array or simple) variable in AB.

e Case 1: #V = 0; no initialisation.
No code is generated in this case.

O

e Case 2: #V =1 A #L = 1; simple variable initialisation.

We are required to show the value is stored in the variable’s location.
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[77*]143[' 7*‘047*? ]
Iloc (hypl)
(& aslooslim ]
daldab [a]ap[ . .=, - -]
Olﬂ' vl [Ul]AB[...,E]’a,,,...]
OST T/ [Ul]AB['“aLla'Ulhi?-u]

|

e Case 3: #V =1 A #L > 1, block array initialisation. We are required
to show the value is stored in each element of the array.

T O I

ITloc (hypl)

Y P
daldab () aBl - g mrmsms ey msms e
Oy vl V1 ABL o =l s ey e ]

[
(repeat #L — 1 times)

O, ' [Ul]AB[...,|a,v1hi,,,,,...,,,,,...]

dpi sizeof T’ wllagl o, o1y, V1ni == oy -
(end repeat)
['Ul]AB[- cey U110|a7 Ulhi; ’l}llo7 Ulhiy e[y - ]

Oy ' [Wi]agl .., v1p|,, v1n, v1, V1, ... ,, vlp, ..
O

e Case 4: #V > 1 A #L > 1; array initialisation. We are required to
show the values are stored in corresponding elements of the array.
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LJaBl ool
Tloc (hypl)
Y ] P R
daldab [a] 4 [..,Eﬂa, U
(repeat #L — 1 times)
O vl [Ul]AB[...,E]|a, gy sy e
Oy 7 [v1]ap[. |Oé,vlh27 -
dpi sizeof 7' [vl]AB[ ., vllo|a, CATT = N
(end repeat)
(Wn—1)aBl- - 01|, 1k, V250, V20, oy = = - - ]
Ori vn [vn]agl. - v1|,, v1ni, V200, V24, s = = - -
O 7 [on]aBl- -+, V110l V1ni V200, 020, - - - [ VTG |, VNG, - -
076

o7

]
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8 Correctness of Routine Declarations

The proof obligation for the routine declaration part of the Prog is that they
update the corresponding environments appropriately.

8.1 Routine Declaration proof obligation

If the environments match beforehand (induction hypothesis), then the after
Pasp environment updated with the routine declarations matches the after
compiler environment updated with the compiled routine declarations.

8.2 Correctness of Procedure declaration

We are required to show that the effect of declaring the procedure is to
leave the environment appropriately. This includes showing that the effect
of calling the procedure is to save the return label passed in C', evaluate the
body (variable initialisations and statement), load the return label, and jump
to it.

We assume the induction hypotheses

1. Opyp~ I (proved in section 8.4) : the result of evaluating the formal
parameters is to leave the environment updated appropriately.

2. Op (B (proved in section 8.5) : the result of evaluating the body [ is to
leave memory updated appropriately.

The correctness of the change to the environment is given by induction hy-
pothesis 1. The correctness of the code is as follows:
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zProc(§,1) (linker provides correct label to be jumped to)
-, Jap[l'] c[parameters. .., |5 - .. ]
zsdrh & -, Jap[l'| c|[parameters. .., =5, - - ]
cstd L Janll)clparameters .., [ 1, [, by -]
1 (hyp 2)
-, Jap|-]c[parameters... I |, I, ..., state for 7]
zsdrh & [, |ag[-] c[parameters stored . .. ,]M, I, ..., state for 7]
abldd ('] ap|-] c[parameters stored . .. ,|h5, I, ..., state for 7]
zag goto I’
0 8.2

8.3 Correctness of Function declaration

We are required to show that the effect of declaring the function is to leave
the environment appropriately. This includes showing that the effect of call-
ing the function is to save the return label passed in C, evaluate the body
(variable initialisations and stamtement), load the return label, and jump to
it.

We assume the induction hypothesis

1. Oppyp~ I (proved in section 8.4) : the result of evaluating the formal
parameters is to leave the environment updated appropriately.

2. Op (B (proved in section 8.5) : the result of evaluating the body [ is to
leave memory updated appropriately, including the return result stored
in the heap variable at d.

The correctness of the change to the environment is given by induction hy-
pothesis 1, plus the declaration of a new variable address at 0’ relative to the
heap, for the return value. The correctness of the code is as follows:
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xzProc(§, 1)

xsdrh &'
cstd
I

xsdrh
cstd

xsdrh &
abldd
zag

0 8.3

O8

—

(hyp s)

_, |ap[-]c|[parameters.. . .

_, Jap[-]c|[parameters.. . .
g|v]c[parameters. . .

_,_Jaglv]¢|parameters. ..

_ T T T
d
N
=

U'| ag[v] c[parameters. . .

_,Jag[l'| c[parameters. ..

_,_Jas[l'| c[parameters. ..

_,_Jag[l'| c[parameters. ..

linker provides correct label to be jumped to)

r g ]
ﬂE]|h67*> .- ]

77|h5777 .

s=lngr =

Angr ool g B - ]

77}10’}“57 Uhiy -
00 g Vi -
7‘h57 UVio, - -

8.4 Correctness of Formal Parameters, Opyp-

/ /
o ll0|h5’7 llm T
/ /

) Zlo|h6” llo’ e

/ /
" llo’h&? llav e

/ /
7Ul0|h57 Uhiy -« - 7|h§’ llo’ .
/ /
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We are required to show that the result of evaluating the formal parameters
is to leave the environment updated appropriately.

A reference parameter, ¢ = ref, is allocated a new variable address with type
indirectAddr, to hold the reference. A value parameter, ¢ # ref, is allocated
a new varaible address suitable for its type. A sequence of parameters are
each individually allocated their space.

084

8.5 Correctness of body, Op

We are required to show that the effect of evaluating the body (variable
initialisations and stamtement), is to leave the environment and memory
updated appropriately.
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We assume the induction hypotheses
1. Ogp~ A (proved in section 7.5) : the result of evaluating the local decla-
rations is to leave the environment and memory updated appropriately.

2. Ogpr A (proved in section 7.6) : the result of initialising the local
declarations is to leave the memory updated appropriately.

3. Og v (proved in section 6) : the result of evaluating the statement is

to leave the memory updated appropriately.

The template is simply the concatenation of these three effects, as required.
0 8.5

08
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9 Correctness of Prog

Having a simplified expression for the linked modules, we next expand out
the definition of M p, which leads to a proof of correctness of Prog in the
following steps:

e simple declarations

e procedure and function declarations

e simple declaration initialisation

e main body
Pasp declarations change the Pasp environment pt; the corresponding Asp
environement po is built up and held by the compiler.

We show that these declaration environments correspond. Then we show that
the initialisation and body code executions correspond under the induction
hypothesis that the environments correspond.
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A Knuth’s unsigned division algorithm

A.1 Introduction

This section explains the derivation of the unsigned division template, based
on the algorithm given in Knuth, Seminumerical Algorithms, pp 257-8.

A.2 General algorithm

We wish to form the unsigned integer division quotient ¢ = u div v, where u
is the m + n digit, base b, number (u; ... ty4,)p (hence the most significant
byte is u;), and v is the n digit, base b, number (v ...v,),. When v # 0,
the algorithm is:

D1 d:= bdiv (v + 1);
(Ugug - . U ) = (Ug « o U ) *
(V1. vn) = (v ... vy) * d;

D2 5 :=0;

D3 ¢ :=if u; = v; then b — 1 else (u; * b+ ujyq) div v;;
if0 < (vyxb+ )% q— ((uj* b+ ujp1) * b+ ujyo)
then ¢ .= ¢ — 1;
if0 < (vyxb+w2)*q— ((ujxb+ujpq1)*xb+uyo) then ¢ := g—1;

D4 (uj...Ujyn) = (U ... Ujsp) — q % (V... 0);
1f<uj . uj+n> <0
then (u; ... ujpy,) = (4 ... uj1n) + 0" B = true
else B := false;

D5 ¢; = q;
if B then goto D6 else goto DT;

D6 g := ¢ — 1;
(U o W) = (U . Ujrgy) + (001 .. U ignore carry
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D7 j:=j5+1,;
if 5 < m then goto D3;

A.3 Two byte algorithm
A.3.1 Specialised

We can specialise this algorithm for DeCCo’s 2-byte integers: we have m = 0;
n=2; b=256; u= (ujup)as6; v = (V1a)a56. When vy # 0, we know that ¢
is a single byte, and the algorithm specialises to:

D1 d := 256 div (v; + 1);
(upug ug) := (uyug) * d;
(v ) == (v 1o) * d;

D3 ¢ :=if up = v; then 255 else (uy * 256 + u; ) div vy;
tmp := (v va) * ¢ — (Uguy Up)
if tmp > 0
then if tmp — (vy15) > 0
then ¢ := ¢ — 2; else ¢ :== ¢ — 1;

D4 if(uouluQ> — g% <’l)11)2> < 0Othen q:=q—1;

A.3.2 Simplified

We can now see the wood for the trees. We know that, if ¢ = u div v, then
u = q* v+ rem, where 0 < rem < b. Knuth’s arguments give us that ¢ is
never too small, and may be too big by at most 2. Exhaustive testing of the
two-byte algorithm shows that it is out by at most one in this case.
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So the full division algorithm can be written as:

if v; = 0 then use single byte division else

if v < 128

then d := 256 div (v, + 1); assert 2 < d <128
(ugugug) == (ugup) * d;
(nva) = (v112) * d; assert 128 <

else vy := 0;

q := if ug = v; then 255 else (up * 256 + uy) div v;;  assert ¢ < 255

rem = (Uguitp) — q * (V1 V)
if rem < 0 then ¢ := ¢ —1;

A.3.3 Division by a single byte

If v; = 0, the simpler algorithm for division by the single byte v, is:

¢ = wq div wo;
rem = u; mod vy
¢z 1= (rem % 256 + ug) div vy
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B Correctness of specialised div algorithm

Here we show that our specialisation of Knuth’s div algorithm, with the
added assumption that ¢ is too big by at most one, is correct.

B.1 Recasting in Z

The initial values to be divided are u and ¥. These are scaled by a factor
of d to make v, large enough. A first guess at the result, ¢, is made. It is
adjusted if necessary, and the final result is gq.

__Decl
w,v,v: WORD,
u: N
d,q,q,uy, uy, U, V1, v, 0 : BYTE

= Tdiv256 £ 0

= 256 div (7, + 1)

= (up %256 + uy ) * 256 + up = d % w
= x206+ 1, =dx*xv

q = min{255, (ug * 256 + uy) div vy }
g=udivo

< 2 a <

Declt qg= (ifu— ¢gxv <0then ¢ — 1 else q)

B.2 Lemma 1: ¢ is never too small
Declt-q < g

Proof of lemma 1 is given in Knuth

O
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B.3 Lemma 2: d is a single byte

Decl - d <128

Proof of lemma 2
d =256 div (7, + 1)v; # 0
d is the largest it can be when 7, is the smallest, when 7; = 1. So

A" =256div2 =128

B.4 Lemma 3: v is a single byte

Decl = v < 256

Proof of lemma 3

v = (T d) div 256 = ((256 % Ty + T3) * (256 div (71 + 1))) div 256

This is a maximum when the remainders are zero, and v, is a maximum,

253.

Ulmax
256 % Ty + 255
N T+ 1

= 256 —

v+ 1
< 256
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B.5 Lemma 4: g is at most one too big
DeclF128< v, = q¢—q¢<1

Knuth proves that ¢ — ¢ < 2 in general, for multibyte division. We prove a
stronger result for our two byte division.

Proof of lemma 4

Form the definition of div, we have that the following constraint on the
remainder p:

adiv b= %

0<p<b

We introduce a suitable p and p, such that

u_
g=udivy = P
v
0<p<uw
N . U—UQ—,6
=(u—u)div(v— 1) =
q=( 2) ( 2) v — v
0<p<v—1,
Subtracting, we get
q—q
u—UW—p uU—p
v — v
_B_u*vg—v(ug—I—ﬁ)
v v — Uy

This difference is largest when p is the largest it can be, and when p is the
smallest it can be. Hence

“ U* Vg — UV * Uy
g—qg<1-—

VUV — Uy
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We now require that ¢ — ¢ < 2, and derive a constraint on v;. So we require

U* Vg — VU * Uy

<1

UV — U2
Substituting for v and v, and simplifying

256 * Uy * Uy + Uy * Uy — U * Vg <1
v1(256 * vy + 1) -

Rearranging
0 < 256 % vZ + vy * vy + U * v — Uy * Uy — 256 * U * Uy

This inequality is hardest to achieve when the positive terms are the largest
they can be, and the negative terms are the smallest. Since uy and v, depend
together of the value of d, we leave these for now, and put in the largest
possible value of u;, which is 255 (because u; is a BYTE) and the smallest
possible value of uy, which is zero.

0 < 256 % 07 + vy * vy — 255 * vy — 256 * ug * vy
Rearranging

0 < 256 % v7 — (255 — vy + 256 * Uuy) vy

Lemma 3 gives us that v; < 256, so the subtracted term is always positive
(or zero), and so the inequality is hardest to achieve when the subtracted
term is large.

The largest possible values of uy and v, depend on the scaling factor d. We
have

up < (255 % d) div 256 = d — 1
vy < 256 — d

So substituting in the largest values for uy and vy, parameterised by d, gives:

0 < 256 % v2 — (255 — vy + 256 % (d — 1))(256 — d)
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Rearranging

0 < 256 * v + 256 * d? — (256 + 1 + vy) * d + 256(1 + v;)

The right hand side has a minimum w.r.t. d when
2% 256 % d — (2562 + 1+ v;) =0

when

1+’Ul
2 % 256

d=128+

The fractional part is always less than one. Also, by lemma 2 d < 128. So
the inequality is hardest to satisfy when d = 128. Substituting this value for
d gives:

0 < 256 % vf — 128(255 — v + 256 * 127)
Rearranging
0 < 256 % vf + 128 x vy — 128(256 x 128 — 1)

Equality occurs when

—128 + \/1282 + 4 % 256 x 128(256 * 128 — 1)
v =
2 % 256

Since vy is a BYTE, and so cannot be negative, equality occurs when
vy = 127.75. ..

Clearly, from the shape of the quadratic in vy, the inequality holds for all v,
larger than this. So we have derived the required constraint on vy:

128> =q¢g—q<1
O
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B.6 Lemma 5: v is big enough

Decl =128 < vy

Proof of lemma 5

v=TUxd

256 * vy + vy = (256 * Uy + Va) * d

256 * v + v = 256(T1 * d 4 (Uz * d) div 256) + (U * d) mod 256
vy = Tp *x d + (T x d) div 256

The r.h.s is smallest when 7, = 0.

v > U xd

vy > Uy * (256 div (77 + 1))
256 —p
71+ 1

v > Vg ok

The r.h.s is smallest when the remainder is larges, p < vy + 1.

256*71
v+ 1

mn >

The r.h.s. is monotonic increasing with a minimum at v; = 1 (remember,
77 > 0). Hence

v > 127
v > 128
O

B.7 Proof of algorithm

Lemmas 1, 4 and 5 give us

Decl-F0<g—q¢<1
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where ¢ is our estimate, and ¢ is the correct result. Even with scaling by d,
we have

g=udivvy =udivov
So we know the remainder
rem=u—qg*xv>0

If the remainder similarly calculated for ¢ is negative, then we know ¢ is one
too big, otherwise we know it is correct. So

q=(ifu—g*v<0then g —1else q)
O
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