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Preface 

Historical background of the DeCCo project 
In 1990 Logica’s Formal Methods Team performed a study for RSRE (now QineticQ) 
into how to develop a compiler for high integrity applications that is itself of high 
integrity.  In that study, the source language was Spark, a subset of Ada designed for 
safety critical applications, and the target was Viper, a high integrity processor.  
Logica’s Formal Methods Team developed a mathematical technique for specifying a 
compiler and proving it correct, and developed a small proof of concept prototype.  
The study is described in [Stepney et al 1991], and the small case study is worked up 
in full, including all the proofs, in [Stepney 1993].  Experience of using the PVS tool 
to prove the small case study is reported in [Stringer-Calvert et al].  Futher 
developments to the method to allow separate compilation are described in [Stepney 
1998]. 

Engineers at AWE read about the study and realised the technique could be used to 
implement a compiler for their own high integrity processor, called the ASP (Arming 
System Processor).  They contacted Logica, and between 1992 and 2001 Logica used 
these techniques to deliver a high integrity compiler, integrated in a development and 
test environment, for progressively larger subsets of Pascal.  

The full specifications of the final version of the DeCCo compiler are reproduced in 
these technical reports.  These are written in the Z specification language.  The variant 
of Z used is that supported by the Z Specific Formaliser tool [Formaliser], which was 
used to prepare and type-check all the DeCCo specifications.  This variant is 
essentially the Z described in the Z Reference Manual [Spivey 1992] augmented with 
a few new constructs from ISO Standard Z [ISO-Z].  Additions to ZRM are noted as 
they occur in the text. 

The DeCCo Reports 

The DeCCo Project case study is detailed in the following technical reports (this 
preface is common to all the reports) 

I. Z Specification of Pasp  
The denotational semantics of the high level source language, Pasp. The 
definition is split into several static semantics (such as type checking) and a 
dynamic semantics (the meaningof executing a program). Later smeantics are 
not defined for those programs where the result of earlier semantics is error.  

II. Z Specification of Asp, AspAL and XAspAL  
The denotational semantics of the low level target assembly languages. 
XAspAL is the target of compilation of an individual Pasp module; it is AspAL 
extended with some cross-module instructions that are resolved at link time. 
The meaning of these extra instructions is given implicitly by the specification 
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of the linker and hexer. AspAL is the target of linking a set of XAspAL 
modules, and also the target of compilation of a complete Pasp program. Asp is 
the non-relocatable assembly language of the chip, with AspAL's labels 
replaced by absolute program addresses. The semantics of programs with 
errors is not defined, because these defintions will only ever be used to define 
the meaning of correct, compiled programs.  

III. Z Specification of Compiler Templates  
The operational semantics of the Pasp source language, in the form of a set of 
XAspAL target language templates.  

IV. Z Specification of Linker and Hexer  
The linker combines compiled XAspAL modules into a single compiled 
AspAL program. The hexer converts a relocatable AspAL program into an Asp 
program located at a fixed place in memory.  

V. Compiler Correctness Proofs  
The compiler's operational semantics are demonstrated to be equivalent to the 
source language's denotational semantics, by calculating the meaning of each 
Pasp construct, and the corresponding meaning of the AspAL template, and 
showing them to be equivalent. Thus the compiler transformation is meaning 
preserving, and hence the compiler is correct.  

VI. Z to Prolog DCTG translation guidelines 
The Z specifications of the Pasp semantics and compiler templates are 
translated into an executable Prolog DCTG implementation of a Pasp 
interpreter and Pasp-to-Asp compiler.  The translation is done manually, 
following the stated guidelines. 

Acknowledgements 
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Lewis, Tracy Bourne – for providing such an interesting development project to work 
on.  We would like to thank the rest of the development team at Logica: Tim 
Wentford, John Taylor, Roger Eatwell, Kwasi Ametewee. 
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1. Introduction 

This document describes the DeCCo process for mapping a Z specification of a 
denotational semantics into its demonstrably equivalent Prolog implementation. 

It assumes familiarity with Z [Spivey 1992][Formaliser], Prolog [Clocksin 1984], and 
the way these are used to specify and implement denotational semantics [Stepney]. 

In this document, Z names are written in UZQFXSJUFS GPOU, and Prolog names in 
CPME UZQFXSJUFS GPOU.  Translations of small pieces of Z to corresponding Prolog 
are shown thus: 

 
; UFSN  ���  1SPMPH USBOTMBUJPO 

 

Caveat: the DeCCo specifications have been written in a “constructive” style, of the 
form Y � G	���
.  This makes them more suitable for a direct translation to Prolog.  
Most of the translation techniques described here rely on this style, and would not 
necessarily work for a general Z-to-Prolog translation system, with more general 
predicates describing the form of the functions. 
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2. Plain Z 

This section describes the conventions we use for translating plain Z (rather than the 
meaning functions) into plain Prolog (not using DCTGs).  This is the style used for 
implementing the Z toolkit functions [Spivey 1992, chapter 4], and also some of the 
intermediate expressions in the DeCCo semantic definitions. 

2.1 Z and Prolog naming conventions 
The DeCCo Z specifications are written using the following variable naming 
convention: 

• Given sets, all upper case.  For example, 7"-6&, 5:1&, 45.5 

• Schema names, initial upper case, then mixed.  For example, *G4UNU, 3FHJTUFS 

• Other names, initial lower case, then mixed.  For example, JG4UNU, CNVM.  This 
rule is broken occasionally in variable names with very localised scope, to indicate 
the variable is a set or sequence.  For example, B � "553� " � i "553. 

• Infix toolkit-like operators often have symbolic names.  For example, �, Â 

• Variables used in similar contexts have the same name, but with decorations – here 
usually dashes1.  For example, ­±U, ­±U� 

Prolog has a different naming requirement 

• Constants must start with a lower case letter.  For example, JG4UNU, CNVM 

• Variables must start with an upper case letter, or an underscore.  For example, &�, 
*G4UNU, @�C 

We have a further convention, for translating Z names to Prolog names.  (This 
convention is occasionally ignored, to disambiguate Z names that end up with the 
same Prolog translation, or for readability.) 

In the simplest case, the Prolog name is just the Z name, with the first character 
changed to be of the required capitalisation.   

A symbolic Z name is given some appropriate Prolog name, usually its spoken form.  
For example, the Z union operator d becomes the Prolog VOJPO.  Greek letters are 
also symbolic characters, heavily used as variable names in DeCCo: they can be 
translated to their spoken equivalent (for example, the variable ¬ might become 9J, ­± 
might become 3IP5BV) or to their first character (¦ might become %). 

                                                 
1 Note that the dashes on names simply serve to provide distinct variables with related names.  

We are not using dashes to indicate “after state” variables, because we are not using a 
“Delta/Xi” state-and-operations style specification. 
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A dashed Z name has a digit in the Prolog form.  For example, the Z variable C� 
becomes the Prolog variable #� (uppercased to become a variable, digit � added for 
the dash).  Similarly, the Z variable C��� becomes the Prolog variable #�. 

There are a few occasions when DeCCo uses two Z names that differ only in their 
capitalisation: 

• A lower case Z name indicates a single element, and the same name in upper case 
indicates a set or sequence of elements.  For example, B � "553� " � i "553.  
The conventional Prolog naming for lists is to add an T to the base name, so these 
two become the Prolog variables " and "T, respectively. 

• A lower case Z name indicates a free type branch, whose type is then a schema of a 
similar name.  For example JG4UNU � *G4UNU �.  Fortunately in this case the 
branch name maps to a Prolog constant, and the schema name to a Prolog variable.  
So the translation causes no ambiguity. 

2.2 Z types 
Z is based on typed set theory: the world of values is partitioned into types, and every 
value has a particular type.  Prolog is not explicitly typed, and its main data structure 
is the list.  It is fairly straightforward to translate a Z set to a Prolog list – the main 
thing that requires care is ensuring that either the Prolog list has no duplicates, or that 
the operations on it make it behave as if it has no duplicates. 

Every Z variable must be declared, and given a type.  Z types provide redundancy, 
and also stop some potentially paradoxical statements (for example, Russell’s 
paradox) from being formulated in Z.  If a Z specification passes type-checking, the 
type of each of its variables is uniquely determined. 

Prolog variables need not be declared.  They may have any “type”, fixed only once 
they have unified.  So it is not necessary to translate the Z variable declarations and 
types into Prolog.  However, a Z declaration may constrain a variable with an implicit 
predicate, as well as giving it a type: 

• Y � �  declares a variable Y to have type � (integer).  In Prolog, the corresponding 
variable 9 may be used with no corresponding declaration.   

• Y � Ø  declares a variable Y to have type � (integer) and also be constrained to be 
in the set Ø (non-negative).  It is a shorthand for the equivalent normalised 
declaration Y � � ] Y Ï Ø.  In Prolog, the corresponding variable 9 may again be 
used with no corresponding declaration, but there needs to be a translation of the 
predicate, 9 �� �. 

2.3 Z values 
Z has given sets, which introduce a type whose values have no internal structure, and 
three type constructors: power set, Cartesian product, and schema type.  It is 
necessary to decide how to model values whose types have structure, because the 
values have corresponding structure that can be manipulated (for example, a tuple, a 
value of type Cartesian product, can have its components accessed individually). 
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2.3.1 Given sets 

There is one special given set in Z:  the set of integers �.  Z integers are translated 
directly to Prolog integers.2 

Given sets occur in two forms: simple given sets, and free type definitions. 

2.3.1.1 Simple given sets 

A given set declaration introduces a new type and a corresponding new set of 
elements to the specification, where these elements have no internal structure of their 
own.  Certain elements from a given set may be named as global constants within the 
Z specification.  These global names can be transliterated to Prolog objects. 

The main given set in DeCCo is *%, modelling Pasp variable identifiers, with one 
distinguished name NBYVOTJHOFE.  This name is transliterated directly into the 
corresponding Prolog object, NBYVOTJHOFE. 

2.3.1.2 Free types 

A free type is a given set with some external structure imposed: the elements in the 
given set are partitioned, each partition corresponding to a branch of the free type 
definition.  

Simple branches, comprising just a Z name, contain a single element; constructor 
branches, comprising the name of an injective function and an argument, contain a set 
of elements.   

The simple branch names are the equivalent of global constants, and so are 
transliterated into Prolog.  DeCCo has various free types that have simple branches 
comprising a Z name, for example TLJQ or CFR.  These are just transliterated directly 
into corresponding Prolog objects, in this case, NBYVOTJHOFE, TLJQ and CFR.   

The constructor branch injection names serve to convert one Z type into (part of) 
another (larger) type.  We can tell, given an element of the larger type, which 
injection was used to construct it, that is, which one of the smaller types it came from.  
We model this in Prolog by modelling the branch constructors and their arguments as 
Prolog structures.  So, if we have the following Z free type definition of ', along with 
a predicate that an element is constructed from one particular branch of ' 

 
' ��� B ] C � / � ] D � ' u ' � 
[ � D	G�
G�
 

                                                

we convert the predicate to Prolog thus: 
 

 
2 There are rather more Z integers than Prolog ones.  However we never use them all in 

DeCCo.  We use at most � NBYVOTJHOFE �� NBYVOTJHOFE � NBYVOTJHOFE of 
them.  Provided these values never crash the Prolog system, we can implement Z integers 
naively. 
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; � D	 '� 
 '� 
 

If we have a predicate that an element is in one particular branch of ' 
 
Y � B 
Z Ï SBO C 
[ Ï SBO D 

we convert the predicate to Prolog by asserting that the corresponding Prolog variable 
unifies with the relevant structure: 

 
9 � B 
: � C	 @ 
 
; � D	 @ 
 @ 
 

2.3.2 Cartesian tuples 

A Z Cartesian tuple is an ordered collection of elements.  A Z tuple is translated into a 
Prolog list 

 
	Y
 Z
 [
  ���  <9
 :
 ;> 

ISO Standard Z (but not ZRM)  provides a notation for accessing tuple elements by 
their position in the collection.  For example, U��, or 	Y
Z
[
�� � Z 

Tuple selection is translated as selecting the nth element out of the list.  We define a 
general purpose operator for selecting the nth component of a list (Z typechecking 
ensures this is never applied to a list that does not contain at least this number of 
elements): 

 
EPU	<9] 9T>
 �
 9
� 
EPU	<@] 9T>
 /
 :
  ��  /� JT / � �
 EPU	9T
 /�
 :
� 

We use it to select say the third component thus 
 
EPU	5
 �
 ;
� 

or we can just directly access the third component of 5 by writing 5 as an explicit list 
(here assuming U is a 6-tuple). 

 
< @
 @
 ;
 @
 @
 @ > 

2.3.3 Schema bindings 

A Z schema binding is a labelled collection of elements, where the labels are schema 
component names.  ISO Standard Z (but not ZRM)  provides a notation for the 
expressing the value of a particular binding, like 

 
Ì] B �� Y
 C �� Z
 D �� [ ]Í 

Each component of a Z binding is translated into a two element Prolog list, 
<OBNF
 7BMVF>, and the whole binding to a list of these pairs:  
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Ì] B �� Y
 C �� Z
 D �� [ ]ÍÒ  ���  < <B
9>
 <C
:>
 <D
;> > 

Binding elements can be accessed by their name.  For example, 4�[, or 
Ì] B �� Y
 C �� Z
 D �� [ ]Í�C � Z   

Component selection is translated as selecting the value corresponding to the pair 
with the relevant name.  We define a general purpose operator for selecting a named 
component of a list (Z type-checking ensures this is never applied to a list that does 
not contain that name): 3 

 
EPU	<</BNF
 :>] 9T>
 /BNF
 :
� 
EPU	<@] 9T>
 /BNF
 :
 �� EPU	9T
 /BNF
 :
� 

then use it to select say the YJ component thus 
 
EPU	4
 YJ
 9
� 

Or we can just directly access the YJ component of 4 by writing 4 as an explicit list4 
(here assuming 4 is a 4-component binding, and that the YJ component is the second 
component in the list – a potentially fragile assumption). 

 
< @
 <YJ
9>
 @
 @ > 

2.3.4 Flattened schema bindings 

Earlier versions of DeCCo did not specify the arguments to free types using schemas, 
but rather using cartesian products.  As the number of components in each argument 
grows, the schema form is preferred, as it provides more mnemonic tags when 
accessing components.  More recent versions of the DeCCo Z specifications use 
schemas. 

However, in some cases the implementation has not yet been changed to use this more 
readable schema form of the specification, and still uses the old cartesian product 
form.  Such an implementation corresponds to a translation from Z schema bindings 
to Prolog that drops the component names: 

 
Ì] B �� Y
 C �� Z
 D �� [ ]Í  ���  < 9
 :
 ; > 

                                                 
3 This definition makes it clear that tuples and schema bindings could be unified by explicitly 

translating tuples as pairs labelled with numbers, as 

  	Y
 Z
 [
  ���   <<�
 9>
 <�
 :>
 <�
 ;>> 
Such unification might be have advantages in a general purpose translation system, but here 
it would merely be slower and require more storage. 

4 Indeed, if we are sure that the x component is always second, we could write 

  < @
 <@
9>
 @
 @ > 
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2.3.5 Other values 

All other values in Z are constructed from these: given values, sets, tuples and 
bindings.  We can have sets of tuples, for example (if the tuples are pairs, such a set is 
called a relation).  So in general we can recursively construct in Prolog any Z value 
by translating its recursive construction in Z.  For example, because a Z set is 
translated to a Prolog list, and a Z pair to a 2-component Prolog list, then a Z relation 
(set of pairs) is translated to a list of 2-component lists:  

 
\ 	B
 Y

 	C
 Z

 	D
 [
 ^  ���  < <"
9>
 <#
:>
 <$
;> > 

Occasionally we optimise the construction of particularly heavily used values, for 
example, by flattening some of the list nesting.   

 
\ 	B
 Y

 	C
 Z

 	D
 [
 ^  ���  < "
 9
 #
 :
 $
 ; > 

2.4 Schemas 

2.4.1 Simple Schema declarations 

Consider a schema defined in Z as 
 
4DIFNB � < Y�9� Z�:� [�; > 

The Z declaration x 4DIFNB ��� automatically exposes its components.  So it is 
translated to the Prolog 4DIFNB � < <Y
9>
 <Z
:>
 <[
;> > to enable the same 
style of access to the components.  If a component is not used in the subsequent 
definition, it can be translated to underscore to highlight this fact.  For example, 
4DIFNB � < <Y
9>
 @
 <[
;> >.   

2.4.2 Predicate part 

If the schema has a non-trivial predicate part (which includes the explicit predicates, 
together with any implicit predicates in the declaration), this needs to be translated 
too.  (Most of the schemas in DeCCo simply capture abstract syntax, and so have no 
non-trivial predicate part.)  For example, consider 

 
#PVOE � < MC
VC� Ø ] MC � VC > 

Then the Z declaration x #PVOE ��� is translated to the Prolog  
 
#PVOE � < <MC
-C>
 <VC
6C> >
 
-C �� �
 6C �� �
 
-C � 6C 

where the first Prolog predicate captures the implicit Z predicate in the declaration, 
and the second captures the explicit Z predicate in the bar part of the schema.  
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2.4.3 Nested schemas 

If a schema is defined in terms of component schemas, the resulting form is flat in Z, 
and so should remain flat in Prolog.  Consider 

 
"OPUIFS4DIFNB � < B�" � 4DIFNB > 

The Z declaration x "OPUIFS4DIFNB��� exposes its components with no nesting of 
the structure of 4DIFNB present.  So it is translated to the Prolog 

 
"OPUIFS4DIFNB � < <B
">
 <Y
9>
 <Z
:>
 <[
;> >  

to enable the same style of access to the components.  A further clause of  
 
4DIFNB � < <Y
9>
 <Z
:>
 <[
;> >  

may also be added if access is required to the Schema sub-component as a whole 
(usually by a theta expression).  Unification ensures these two clauses refer to the 
same 9, : and ;, as required by the Z meaning. 

2.4.4 Decorated Schema declarations 

If a decorated version of the schema is declared in Z, as say, x 4DIFNB� ���, this 
needs to be translated into Prolog as 4DIFNB� � < <Y
9�>
 <Z
:�>
 <[
;�> >.  
Note how the constant names remain the same; it is the variable names that are 
decorated. 

2.4.5 Theta expressions 

As well as accessing individual components, the whole binding can be accessed in Z 
using a theta expression,  as  Ê 4DIFNB.  In Prolog, this just becomes a reference to 
the variable 4DIFNB. 

2.4.6 Schema as predicate 

It is possible in Z to use a schema reference as a predicate.  For example in the 
quantifier w .PEVMF ] .PEVMF%FDM0LBZ | ��� the schema .PEVMF%FDM0LBZ is 
being used as a predicate.  Z type rules ensure that any variables used in this predicate 
are in scope.  So this can be translated into Prolog just by translating its predicate part 
(which, as ever, includes the explicit predicates together with any implicit predicates 
in the declaration). 
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2.5 Modelling Z functions 

2.5.1 Functions as sets of pairs (DeCCo environments) 

Technically, a function in Z is merely a relation (a set of pairs of values) with a 
uniqueness property5.  DeCCo uses functions to model environments (mappings from 
names to semantic values), and the semantic equations describe how these 
environments are built up and accessed.  Hence translating these Z environment 
functions (explicit sets of pairs) to Prolog lists of 2-element lists is appropriate. 

 
\B {o Y
 C {o Z
 D {o [^  ���  <<B
 9>
 <C
 :>
 <D
 ;>> 

2.5.2 Functions as a computations (Z toolkit definitions) 

Sometimes an explicit representation of a function as a set of pairs is not the most 
efficient way to model it in Prolog: we may wish to capture the computation 
represented by the function, along with the ability to apply the function to an 
argument, in which case we translate the computation, as discussed in the next 
section. 

The Z mathematical toolkit [Spivey 1992, chapter 4] provides a collection of utility 
functions that are much used in Z specifications, including the DeCCo specifications.  
The ones that are used in DeCCo are translated into the relevant Prolog clauses that 
perform the computation they specify. 

Consider domain restriction, defined in Z as  
 
¶®<9
:>®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®� 
� @ � @ � i 9 u 	9 rko :
 qko 	9 rko :
 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w B� i 9� S� 9 rko : | 
�   B � S 

                                                

�    � \ Y� 9� Z� : ] Y Ï B z 	Y
Z
 Ï S | Y {o Z ^ 
¡¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥º 

2.5.2.1 A recursive rewriting 

As it stands, this is not in a useful form to translate directly into Prolog.  An 
equivalent recursive form, explaining the effect of restricting to an empty set, a 
singleton set, and a union of sets, is more useful6. 

 
5 This uniqueness property is a semantic property, and so violations are not checkable by Z 

typecheckers such as fuzz or Formaliser.  In the constructive style of specification used for 
DeCCo, the functionality property is usually obvious, because the function is constructed 
using override.  Occasionally functionality has to be further justified. 

6 There are various things about this definition that make it not equivalent to the previous 
one.  It is equivalent only if S is functional, so that Z is unique, and if B is finite, so that 
stripping elements out of B one at a time eventually terminates, and if the element Y is not 
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¶®<9
:>®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®� 
� @ � @ � � 9 u 	9 qlo :
 qko 	9 qlo :
 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w S� 9 qlo : | Î � S � Î 
� w Y� 9� S� 9 qlo : | 
�   \Y^ � S � JG Y Ï EPN S UIFO \Y {o S Y^ FMTF Î 
� w Y� 9� B� � 9� S� 9 qlo : | 
�   	\Y^ d B
 � S � \Y^ � S d B � S 
¡¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥º 

This “readily translatable form” is suitable to be translated directly into Prolog.  A Z 
function from several arguments to a result has the form in Prolog of 

 
GVO	"SH�
 "SH�
 ��� "SHO
 3FT
 �� ��� 

In this case the general form is 
 
EPN3FT	"
 3
 3FT
 �� ��� 

For each case of the arguments, the left hand side matches the pattern of arguments, 
and the right hand side, defining 3FT, is a translation of the body of the quantifier.  So 

 
w S� 9 qlo : | Î � S � Î 

has an empty B and a general S, and so translates to 
 
EPN3FT	"
 3
 3FT
 �� " � <>
 3FT � <>� 

which can be abbreviated to 
 
EPN3FT	<>
 3
 <>
� 

Applying this to each of the three cases, we get the full translation (where JO and 
VOJPO are translations of Z’s membership and set union respectively) as 

 
EPN3FT	<>
 3
 <>
� 
 
EPN3FT	<9>
 3
 3FT
 �� 
  	  JO	<9
:>
 3
 
  �� 3FT � <<9
:>> 
  �  3FT � <> 
  
� 
 
EPN3FT	<9]">
 3
 3FT
 �� 
  EPN3FT	<9>
 3
 3�

 
  EPN3FT	"
 3
 3�
 
  VOJPO	3�
 3�
 3FT
�  

� 

                                                                                                                                            
left in the remaining B.  Let us assume in this example that this is the case, as it is the case in 
the DeCCo application. 
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In general, we do not explicitly give the recursive Z form of the toolkit operators, 
because the unwinding pattern is obvious.  And we make sure that the DeCCo 
specification is written in such a “readily translatable form” initially. 

2.5.2.2 Accumulator optimisation 

Although the above is a correct translation of the Z function, it is rather inefficient, 
especially if the set B is large, because of the O(�B) unions of separate elements.  
There is a standard Prolog optimisation for this kind of operation, that uses an 
intermediate accumulator variable, storing the partial “answer so far” [Sterling, 
section 7.5].  When the recursion reaches the base case, the accumulated “answer so 
far” is the result of the complete call. 

We also take the opportunity to merge the singleton and general case of the recursive 
definition, giving the source Z form as: 

 
¶®<9
:>®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®� 
� @ � @ � � 9 u 	9 qlo :
 qko 	9 qlo :
 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w S� 9 qlo : | Î � S � Î 
� w Y� 9� B� � 9� S� 9 qlo : | 
�   	\Y^ d B
 � S �  
�     	JG Y Ï EPN S UIFO \Y {o S Y^ FMTF Î
 d B � S 
¡¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥º 

A Z function from several arguments to a result in Prolog, with an accumulator, has a 
form of 

 
GVO	"SH�
 "SH�
 ��� "SHO
 3FT�
 3FT
 �� ��� 

and is initially called with an empty accumulator: 
 
GVO	"SH�
 "SH�
 ��� "SHO
 <>
 3FT
� 

In this case the general form is 
 
EPN3FT	"
 3
 3FT0
 3FT
 �� ��� 

The full translation is 
 
EPN3FT	<>
 3
 <>
 3FT
� 
 
EPN3FT	<9]9T>
 3
 3FT0
 3FT
 ���  
  	  JO	<9
:>
 3
 
  �� BEE	3FT0
 <9
:>
 3FT�
 
  �  3FT� � 3FT0 
  

 
  EPN3FT	9T
 3
 3FT�
 3FT
�  

And we could define the previous domain restriction as 
 
EPN3FT	"
 3
 3FT
 �� EPN3FT	"
 3
 <>
 3FT
� 

We do this on occasion without explicitly stating that we are using an accumulator. 
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3. DCTGs 

To ease the mapping process, the Prolog implementation uses DCTGs (Definite 
Clause Translation Grammars), allowing it to have a structure closer to the Z.  See 
[Abramson 1989, chapter 9], [Stepney, section 3.3]. 

3.1 Plain DCTGs 
The general discussion and implementation in given in [Abramson 1989], with an 
example in the DeCCo context in [Stepney].  Essentially, a few new operators are 
defined in Prolog to allow syntax and semantic definitions to be structured thusly: 

 
TZOUBY 
��� 
	TFNBOUJDT�

 
	TFNBOUJDT/
� 

3.1.1 Syntax 

The syntactic portion defines how a production is constructed from non-terminal sub-
productions and from terminal tokens.  The various non-terminal constructs are 
labelled with derivation trees that are then referenced in the semantic portions.  For 
example, an IF statement might have syntax portion like 

 
DNE ��� U*'
 FYQS??&
 U5)&/
 DNE??$U
 U&-4&
 DNE??$F 

where ::= and ^^ are DCTG operators, the Prolog variables &, $U and $F hold the 
derivation subtrees for the non-terminals, and the constants tIF, tTHEN, and tELSE 
represent tokens.  

3.1.2 Semantics 

The derivation trees introduced in the syntax part can be referenced in the semantics.  
For example, the dynamic semantics, that defines the state transitions, derived from a 
Z specification like 

 
� .$ � $.% qlo 4UBUF qlo 4UBUF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w F � &913� DU
 DF� $.%� T � 4UBUF | 
�   x W � 7"-6& � T� � 4UBUF ]  
�       W � .& F T 
�       z T� � JG W � USVF UIFO .$ DU T FMTF .$ DF T | 
�     .$ JG4UNU	F
 DU
 DF
 T � T� 
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7might look like 
 
N	4
 4�
 ��� 
  & ?? N	4
 7

 
  	 7 � USVF
 
    $U ?? N	4
 4�
 
  � 
    7 � GBMTF
 
    $F ?? N	4
 4�
 
  
 

where ::- is a DCTG operator.  This has the effect of evaluating the dynamic 
semantics of the expression & (as identified in the syntax) in the current state 4 to give 
a resulting value 7.  Depending on the value of 7, the final state 4� is determined by 
evaluating the dynamic semantics of command $U or of $F (similarly identified in the 
syntax). 

Notice that there are several meaning functions in the typed Z, MC for commands, ME 
for expressions, and so on, but only one in the untyped Prolog, m.  Prolog unification 
ensures the correct m is evaluated. 

3.1.3 Prolog equivalent 

The Prolog corresponding to this DCTG is 
 
DNE	 OPEF	 DNE
 < &
 $U
 $F >
 
             < N	4
 4�
 ��� 
                 & ?? N	4
 7

 
                	 7 � USVF
 $U ?? N	4
 4�
 
                � 7 � GBMTF
 $F ?? N	4
 4�
 
 > 

 
     %�
 % 
 �� 
  FYQS	 &
 %�
 %� 

 
  DNE	 $U
 %�
 %� 

 
  DNE	 $F
 %�
 % 
� 

                                                

            

This shows how the effect of the DCTG is to send calls to the subtrees, as expected, 
and to add some intermediate “accumulator” variables. 

 
7 This Z specification might more naturally be written as 

 
� .$ � $.% qlo 4UBUF qlo 4UBUF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w F � &913� DU
 DF� $.%� T � 4UBUF | 
�   .$ JG4UNU	F
 DU
 DF
 T  
�     � JG .& F T � USVF UIFO .$ DU T FMTF .$ DF T 

but here we have written it in the “unwound” style, to correspond more closely with the 
Prolog implementation. 
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3.1.4 Multiple semantics 

Other semantics can be evaluated using the same trees.  For example, the operational 
semantics, where the “meaning” is simply the list of assembly language instructions 
produced by the compiler, derived from a Z specification like 

 
� 0$ � $.% qlo TFR */453 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w F � &913� DU
 DF� $.% | 
�   x F*T 
 DU*T
 DF*T � TFR */453 ]  
�       F*T � 0& F  
�       z DU*T � 0$ DU 
�       z DF*T � 0$ DF | 
�     0$ JG4UNU	F
 DU
 DF
 
�       � F*T Ö Ì KNQ M� Í Ö DU*T Ö Ì HPUP M�
 MBC M� Í  
�         Ö DF*T Ö Ì MBC M� Í 

8might look like 
 
DPNQJMF	*T
 ��� 
  & ?? P	&*T

 
  $U ?? P	$U*T

 
  $F ?? P	$F*T

 
  *T � <&*T
 KNQ	-�

 $U*T
 HPUP	-�

 MBC	-�

 $F*T
 MBC	-�
> 

The expression & and commands $U or of $F are again those identified in the syntax. 

3.2 Extensions for free types 
The Z specification makes heavy use of free types to define its abstract syntactic 
categories.  The extended DCTG colon notation is used to capture this in Prolog.  To 
capture a syntactic free type like 

 
45.5 ��� ��� ] JG4UNU � &913 u 45.5 u 45.5 � ] ��� 

the DCTG colon operator is used thus: 
 
T5.5 ��� ��� 
T5.5 ��� JG4UNU	&�F913
 4�
4��T5.5
 
T5.5 ��� ��� 

                                                 
8 Again, this Z specification might be more naturally written as 

 
� 0$ � $.% qlo TFR */453 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w F � &913� DU
 DF� $.% | 
�   0$ JG4UNU	F
 DU
 DF
 �  
�      0& F Ö Ì KNQ M� Í Ö 0$ DU Ö Ì HPUP M�
 MBC M� Í  
�      Ö 0$ DF Ö Ì MBC M� Í 

but here we have written it in the “unwound” style. 
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Then, if the Prolog term JG4UNU	&
 4�
 4�
 is used somewhere in the body of a 
definition, the variable & unifies to the expression tree, and the variables 4� and 4� 
unify to the relevant statement trees. 

For example, we have the Z specification for the dynamic semantics of the byte 
multiplication operator as 

 
7"-6& ��� ��� ] WCZUF � #:5& � ] WCPPM � #00-&"/ � ] ��� 
#*/01 ��� ��� ] CNVM ] ��� 
 
� .#0 � #*/@01 qko 7"-6& u 7"-6& qlo 7"-6& 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w C
D � #:5& | 
�   .#0 CNVM 	WCZUF C
 WCZUF D
 � WCZUF 	C � D
 

with the Prolog implementation: 
 
W"-6& ��� WCZUF	7�C:5&
 
W"-6& ��� WCPPM	7�C00-&"/
 
C*/01 ��� CNVM 
 
C*/@01 ��� U#.6- 
��� 
N	#
 $
 #3FT
 ��� � 
  WCZUF	#

  
  WCZUF	$

 
  #3FT JT # � $
  
  WCZUF	#3FT
� 

3.3 Concrete Syntax and parsing 
Concrete syntax includes terminal tokens, and uses the DCTG ?? notation to attach 
trees to non-terminals.  Abstract syntax has no concrete “punctuation”, and uses free 
type structures with the colon notation.  The parser gives the link between the two, as 
a list of facts linking the two forms, as 

 
BCT$POD	 BCTUSBDU GPSN
 DPODSFUF GPSN 
� 

For example 
 
BCT$POD 	 JG4UNU	&�F913
 4�
4��T5.5
 
 
          	 U*'
 F913??&
 U5)&/
 T5.5??4�
 U&-4&
 T5.5??4�
 
� 

The abstract syntax form, rather than the concrete syntax form, is used in the DeCCo 
implementation of the DCTG. 
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4. Semantic functions 

4.1 Declaration 
The DeCCo semantic functions are specified as Z mappings from an abstract syntactic 
construct to its semantic value.  In general each function has a Z declaration like 

 
� . � 4 qlo 9 qlo : ��� qlo ; 

where . is the name of the function, 4 is the abstract syntax category, and 9, :, … ; 
are the appropriate semantic values.   

4.2 Specification 
The function .T is specified in a uniform manner, with a universal quantification over 
each of its curried arguments.  If the arguments are not schema types, its specification 
is something like: 

 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w T��4� � T��4� � Y�9 � Z�: | 
�   .T G	T�
 T�
 Y Z � TPNF FYQS 

If the arguments are schema types, its specification is essentially: 
 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w 4 � 9 � : | 
�   .T Ê4 Ê9 Ê: � TPNF FYQS 

(Mixtures of the two kinds of arguments may be used.) 

In practice, temporary variables are often introduced by existential quantification to 
“unwind” nested definitions, to show how the semantics of the whole is constructed 
from the semantics of the sub-expressions.  For example, consider 

 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w T��4� � T��4� � Y�9 � Z�: | 
�   x Z�
Z���: � [�; ] 
�       Z� � .B T� Y Z 
�       z Z�� � .B T� Y Z� 
�       z [ � H	Z�
 Z��
 | 
�     .T G	T�
 T�
 Y Z � [ 

Remember that the first argument of a Z meaning function, here s1, s2 and f(s1,s2), 
is the syntactic argument, so corresponds to a DCTG derivation tree, whereas the 
remaining arguments, here x, y, y’, y’’ and z, are semantic arguments, so correspond 
to ordinary Prolog variables.  So, in Prolog, this becomes 
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T ��� G	5SFF��T�
 5SFF��T�
 
��� 
N	9
 :
 ;
 ���  
  5SFF� ?? N	9
 :
 :�

  
  5SFF� ?? N	9
 :�
 :�

  
  H	:�
 :�
 ;
� 

There are several things to note: 

• declarations: Prolog does not declare its variables, so the quantifiers have 
disappeared.  The universally quantified arguments become the arguments (and 
result) to the Prolog meaning function.  The existentially quantified temporaries 
become intermediate values in the Prolog computation.  The Prolog may have yet 
further intermediate values to unwind some of the nested Z expressions. 

• ordinary functions: are translated in the same way as toolkit functions. 

• meaning functions and syntax: meaning functions use a special DCTG syntax to 
separate out the syntactic and semantic arguments. 
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5. Partiality 

Some of the meaning function specifications are partial; that is, they do not define a 
result for every possible combination of their arguments.  This is indicated by the use 
of a partial function arrow from syntactic to semantic values: NG � 4:/ qlo 4FN�  

There are several reasons for this partiality, with correspondingly different treatments 
in the implementation.  Each stage of the processing (parsing, symbol checking, type 
checking,…) reduces the space of programs passed to the next stage.  Each stage need 
be total only for programs passed to it (except for dynamic run-time checks).  Rather 
than clutter the specification by stating the explicit domain on which each stage is 
total within each meaning function (which is simply those programs that have passed 
the previous stages), the various meaning functions are written as partial on the 
domain of all programs. 

First we describe how to see where the partiality occurs in the specification, then 
describe the various cases, and how they are handled in the implementation.  The only 
interesting form of partiality corresponds to a dynamic (run-time) error, such as 
division by zero, or array bounds error, with a corresponding dynamic check in the 
Pasp interpreter. 

5.1 Spotting partiality 
There are various ways to spot a partial definition in the specification. 

5.1.1 Declared arguments do not match function signature 

A definition may be partial if the declared arguments do not match exactly the 
function signature, and the expression defining the particular meaning function has a 
special case in its argument list.   

This happens everywhere for the syntactic argument, where the definition is broken 
down into cases over the structure of the syntactic category.  For example, consider 
the case of symbol declaration semantics of expressions.  A total definition would 
look like: 

 
� 5& � &913 qko &OW5 qlo &YQS5ZQF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w F � &913� ­± � &OW5 | 
�   5& F ­± � ��� 

Notice how the arguments to the quantifier are the same types as in the meaning 
function signature.  However, the definition for constant expressions looks like 
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� 5& � &913 qlo &OW5 qlo &YQS5ZQF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w ª � 7"-6&� ­± � &OW5 | 
�   5& 	DPOTUBOU ª
 ­± � ��� 

The general expression argument is replaced by the particular branch being defined.  
There is a separate definition for each branch, which, taken together, cover all of 
&913.  So each individual definition is partial, but their conjunction is total. 

The Z could be rewritten equivalently as 
 
� 5& � &913 qlo &OW5 qlo &YQS5ZQF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w § � &913� ­± � &OW5 ] § Ï SBO DPOTUBOU | 
�   x ª � 7"-6& ] § � DPOTUBOU ª | 
�     5& § ­± � ��� 

So we see that the actual argument being more restricted than the formal argument is 
in fact a special case of our next case: a bar part. 

5.1.2 Implication, or bar part in universal quantifier 

A definition may be partial if there is an implication, or (equivalently) a bar part in a 
universal quantifier, putting constraints on the allowed values of expressions.  For 
example, consider the case of type checking semantics of actual parameters. 

 
� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$, 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w § � &913� 'PSNBM5ZQF� ­± � &OW5 ] D � WBM z " � Î | 
�   ��� 

The bar part is what concerns us here.  D � WBM constrains the actual parameter to be 
a call-by-value parameter.  There is an accompanying definition to cover the D � SFG 
case. " � Î constrains the call-by-value parameter to have no attributes.  This is 
another constraint that is true from context: symbol declaration type checking would 
have failed if there were attributes; this function is only ever called if symbol 
declaration checking succeeds. 

5.1.3 Partial arrow in the signature 

A definition may be partial if there is a partial arrow in the signature of the meaning 
function.   

The symbol declaration semantics is (nearly) always total, because it must be 
applicable to any input program.  (It is not always total in presentation, because it is 
total only on all concrete programs, which cover a space slightly smaller than the 
space of abstract programs.)   

The later semantics are all partial, because they are defined only for programs that 
have passed the earlier semantics.  The actual domain is not always made explicit, for 
simplicity.  For example, that the argument to a function application is in the domain 
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of the function is not always stated explicitly: it is so because a previous semantics 
ensured it. 

5.2 Implementing partiality 
If a specification is partial, defined only for some inputs, what is to be done for inputs 
not specified?  That depends on the reason for partiality. 

5.2.1 Split into cases 

Apparent partiality that is merely present to split the specification into cases is not an 
issue, because the cases taken together form a specification total on that category.  
The predicates partition the cases. 

The partiality predicate indicating the case split is implemented in both the Pasp 
interpreter and in the compiler, as it serves to distinguish the disjoint cases.  The 
disjunction of all these predicates gives true, and so there is there are no further case 
to consider. 

That the predicates do indeed partition the cases is clear from inspection of the 
specification. 

5.2.2 Syntactically disallowed behaviour 

Some specifications are partial because the abstract syntax is wider than the concrete 
syntax.  The partiality restricts the specification to the case of valid concrete syntax.  
For example, when importing a variable, the concrete syntax requires that variable to 
be read only, whereas the abstract syntax allows arbitrary attributes.  The meaning 
function considers only the valid concrete cases: 

 
� %*. � *.1035@%&$- qlo 45"$, qlo &OW%5SBDF qlo &OW%5SBDF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w 7BS%FDM� # � 45"$,� ­¦U � &OW%5SBDF ] 
�       " � ÌSFBE0OMZÍ z 7 � ÌÍ | 
�   ��� 

The partiality predicate need not be implemented, because it is always true, and so 
there is no further case to consider.  However, there is no harm in implementing it 
(apart from a trivial performance penalty), in order to make the demonstrability 
arguments clearer. 

That the partiality predicate is indeed true can be determined by inspecting the 
relevant constraint in the syntax specification. 

5.2.3 Statically undefined behaviour 

All semantics later than the first are partial, because they are called only in the context 
of having successfully passed earlier tests.  Most of these conditions are implicit 
(because it would merely be repeating the earlier semantics to make them explicit – 
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which would defeat the whole purpose of separating out the checks into separate 
passes).   

Consider 
 
� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$, 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w § � &913� 'PSNBM5ZQF� ­± � &OW5 | 
�   5"1 	GPSNBM5ZQF Ê 'PSNBM5ZQF
 ­± � ��� 

Here the argument list is partial, because the *%5:1& must be a 'PSNBM5ZQF.  There 
are no other definitions covering the other cases of *%5:1&.  This is known to be the 
only possible case by context: this function is only ever called from a context where 
the expression being checked is an actual parameter expression, and hence will have 
the stated *%5:1&.   

If the conditions are implicit, there is no partiality predicate to implement.  Since the 
implicit condition is true, there are no further cases to consider. 

That the implicit condition is indeed true can be determined by inspecting the relevant 
earlier static semantics specifications, and seeing that they fail to check in the cases 
where the condition would be false. 

5.2.4 Dynamically undefined behaviour 

An implication, or bar part in a universal quantifier, can introduce true partiality: 
cases where there is no definition of what happens in some cases, and where the 
function may indeed be called in those cases.  These correspond to dynamic (run-
time) conditions, because the values in the partiality predicate can be determined only 
at run-time. 

For example, the specification of the dynamic semantics of the binary operator CEJW 
is  

 
� .#0 � #*/@01 qko 7"-6& u 7"-6& qlo 7"-6& 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w C
D � #:5& ] D � � | 
�   .#0 CEJW 	WCZUF C
 WCZUF D
 � WCZUF 	C EJW D
 

This is the entire specification for this operator, and so it does not say what happens in 
the case when D is zero.  Any implementation in the case when D is zero is allowed by 
such a specification.  The interpreter traps the case, and issues an error message.  So 
the Prolog implementation is: 
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C*/@01 ��� U#%*7 
��� 
EZO#0	#
 $
 #3FT
 ��� � 
  WCZUF	#

  
  WCZUF	$

  
  	  $ � � 
  �  EZOBNJD&SSPS	CEJW
 [FSP
 
  

 
  #3FT JT # �� $
  
  WCZUF	#3FT
� 

The compiled code, on the other hand, has no check for zero.  (The executing code 
will actually halt.) 

The cases where there are such dynamic checks in the interpreter are: 

• underflow and overflow in arithmetic operations 

• divide by zero in arithmetic operations 

• subrange checking (on function return, assignment) 

• array bounds accessing 

5.3 Summary 
• Explicit dynamic partiality predicate.  The predicate is implemented in the Pasp 

interpreter, guarding the implementation of the specified behaviour.  The negation 
of the predicate, which indicates a run-time error, is implemented in the interpreter, 
guarding the execution of an error report.  There is no implementation of the 
predicate or its negation in the compiler.  All such cases are explicitly flagged in 
the specification commentary. 

• Explicit syntactic or static partiality predicate.  The guard indicates a condition 
trapped by a previous syntactic or semantic pass, which is true in this pass.  The 
redundant predicate need not be implemented, but may be, to aid demonstrability 
arguments.  Because it is true, there is no further case to consider. 

• Implicit partiality predicate.  There is nothing explicit to implement.  Because it 
is true, there is no further case to consider. 

• Case partiality predicates.  The predicates are implemented in the Pasp 
interpreter and the compiler, to distinguish the cases they guard.  They disjoin to 
true, so there is no further case to consider. 
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6. Examples 

6.1 Unary Op pred, dynamic semantics (Pasp §6.2.4) 
Demonstrates the translation of a dynamic check partial predicate in the dynamic but 
not in the operational semantics. 

The Z specification  of the dynamic semantics of the unary operator unsgnToByte is  
 
� .60 � 6/:@01 qko 7"-6& qko 7"-6& 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w O � 6/4*(/&% ] O Ï #:5& | 
�   .60 VOTHO5P#ZUF 	WVOTHO O
 � WCZUF O 

The Prolog implementation is (remember, there is no need for the syntactic argument 
in the argument list of the meaning function: that is handled by the DCTG). 

 
V/:@01 ��� VOTHO5P#ZUF 
��� 
N	/
 3FT#
 ��� � 
  WVOTHO	/

  
  	  / � ��� 
  �  EZOBNJD&SSPS	VOTHO5P#ZUF
 PWFSGMPX
 
  

 
3FT# JT /
 
WCZUF	3FT#
� 

The Z constraint O Ï #:5&, equivalent to � Ô O � ���, has been optimised to 
neglect the unnecessary lower bound check.  The test is performed as soon as 
possible, because in some cases (for example, division by zero) the Prolog would be 
unhappy if the calculation were performed. 

The operational semantics of the unary operator unsgnToByte is specified as 
 
� 060 � 6/:@01 qko -"#&- qko -"#&- u TFR 9@*/453 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w M � -"#&- | 
�   060 VOTHO5P#ZUF M � 	M
 Ì Í
 

The operational semantics has been totalised, corresponding to a particular 
implementation decision about the partiality in the dynamic Pasp spec: overflow 
truncates. 

The Prolog implementation is 
 
P	-BCFM
 	-BCFM
 9*T

 ��  
  9*T � < <> >� 

Notes: 
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1. The expected -BCFM3FT � -BCFM clause has been optimised away. 

2. The 9*T clause is not optimised away, because the full implementation has an extra 
comment "instruction". 

3. The full implementation is split between two separate Prolog clauses, with the 
syntactic VOTHO5P#ZUF occurring explicitly in the second, because of an 
implementation decision.  The second of these operational semantics clauses, for 
the case of operators, is defined in a separate file, to modularise certain common 
instructions.  The VOTHO5P#ZUF tag acts as a link between these files. 

6.2 Constant, type checking (Pasp §7.4.2) 
The Z specification for type checking a constant is 

 
� 5& � &913 qlo &OW5 qlo &YQS5ZQF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w ª � 7"-6&� ­± � &OW5 | 
�   5& 	DPOTUBOU ª
 ­± � Ì] ± �� DPOTU5ZQF ª
 " �� Î ]Í 

The corresponding Prolog translation is 
 
F913 ��� DPOTUBOU	,�W"-6&
 
��� 
UZQF&	@
 &YQS5ZQF3FT
 ��� � 
  , ?? DPOTU5ZQF	5BV

 
  &YQS5ZQF3FT � < <UBV
5BV>
 <B
<>> >� 

Notes: 

1. The Z meaning function 5& translates to the one argument, one result predicate 
UZQF& in Prolog, because the syntactic argument is handled by the DCTG. 

2. Because the argument ­± is not used, it is translated into a Prolog underscore. 

3. The Z function DPOTU5ZQF � 7"-6& qko 5:1& is treated as a semantic function 
(it takes a syntactic argument).  So in Prolog its single argument, ,, is passed by 
the DCTG, and it has a single result. 

6.3 Unary expression, dynamic semantics (Pasp §7.6.4) 
The Z specification is 

 
� .& � &913 qlo 45"$, qlo &OW.5SBDF qlo 4UBUF qko &YQS7BMVF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w 6OZ&YQS� # � 45"$,� ­U � &OW.5SBDF� ° � 4UBUF | 
�   x &YQS7BMVF�� &YQS7BMVF�� ]  
�       Ê &YQS7BMVF� � .FBO& § # ­U ° 
�       z Ê 4UBUF�� � Ê 4UBUF� 
�       z W�� � .FBO6OZPQ � W� | 
�     .FBO& 	VOZ&YQS Ê 6OZ&YQS
 # ­U ° � Ê &YQS7BMVF�� 

So the corresponding Prolog translation is 
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F913 ��� VOZ&YQS	0Q�V/:@01
 &�F913
 
��� 
NFBO&	#
 3IP5
 4JHNB
 &YQS7BM3FT
 ��� � 
  &YQS7BMVF� � < <TJHNB
4JHNB�>
 <W
7�> >
 
  &YQS7BMVF� � < <TJHNB
4JHNB�>
 <W
7�> >
 
  & ?? NFBO&	#
 3IP5
 4JHNB
 &YQS7BMVF�

 
  4JHNB� � 4JHNB�
 
  0Q ?? NFBO6OZ0Q	7�
 7�

 
  &YQS7BM3FT � &YQS7BMVF�� 

Notes: 

1. The Z schema declaration &YQS7BMVF� translates to the Prolog &YQS7BMVF� � 
< <TJHNB
4JHNB�>
 <W
7�> >, which exposes the schema components for later 
use. 

2. The meaning function result Ê &YQS7BMVF� translates to &YQS7BMVF� 

3. Calculation of the meaning of the sub-expression gives the result &YQS7BMVF�, 
which in turn gives 4JHNB� and 7�. 

6.4 Actual parameter, type checking (Pasp §7.3.2) 
The Z specification for the D � WBM case is 

 
� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$, 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w § � &913� 'PSNBM5ZQF� ­± � &OW5 ] D � WBM z " � Î | 
�   x &YQS5ZQF� ] Ê &YQS5ZQF� � 5ZQF& § ­± | 
�     5"1 § 	GPSNBM1BSBN Ê 'PSNBM5ZQF
 ­± 
�      � JG ±� � ± z XSJUF0OMZ È "� 
�        UIFO DIFDL0, FMTF DIFDL5ZQF8SPOH 
� w § � &913� 'PSNBM5ZQF� ­± � &OW5 ] D � SFG | 
�   ��� 

The corresponding Prolog translation is 
 
B$56"- ��� BDUVBM1BSBN	&�F913
 
��� 
UZQF"1	*EU
 &OW5
 $3FT
 ��� � 
  *EU � GPSNBM1BSBN	'PSNBM5ZQF

 
  'PSNBM5ZQF � < @
 <D
$>
 <B
">
 <UBV
5BV>
 @
 @>
 
  	  $ � WBM
 " � <>
 
  �� &YQS5ZQF� � < <UBV
5BV�<
 <B
"�> >
 
     & ?? UZQF&	&OW5
 &YQS5ZQF�

 
     	  5BV� � 5BV
 OPU.FNCFS	XSJUF0OMZ
 "�
 
     �� $3FT � DIFDL0L 
     �  $3FT � DIFDL5ZQF8SPOH 
     

 
  � 
    �$ � SFG DBTF ���� 
  
 

Notes: 

1. The non-syntactic parameter *EU is partial here, so we need to construct it 
explicitly in the Prolog. 
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6.5 Variable declaration, type checking (Pasp §9.4.2.7) 
Demonstrates using theta bindings of parts of declared schema. 

The Z specification is 
 
� 5ZQF7 � 7BS%FDM qlo 45"$, qlo &OW55SBDF qko &OW55SBDF 
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ 
� w 7BS%FDM� # � 45"$,� ­±U � &OW55SBDF | 
�   x 7BS5ZQF�� D
D� � $)&$,� JEU � *%5:1& ] 
�         	D�
Ê 4VCSBOHF5ZQF�
 � 55 ± # ­±U 
�         z Ê "SSBZ5ZQF� � 543T 43 # ­±U 
�         z D � 5* 	Ê 7BS%FDM
 Ê 4VCSBOHF/�
 OVN&MUT 43�
 
�         z "� � SBO " 
�         z JEU � JG 5"T " �� D �� D� � DIFDL0, 
�                 UIFO WBSJBCMF Ê 7BS5ZQF� 
�                 FMTF WBSJBCMF Ì] " �� Î
 43 �� ÌÍ
 ±B �� ±B�
 
�                          MC �� �
 VC �� �
 ± �� UZQF8SPOH ]Í | 
�     57 Ê 7BS%FDM # ­±U � VQEBUF 	­±U
#
\¬ {o JEU^
 
 

The corresponding Prolog translation is 
 
W"3%&$- ��� WBS%FDM	*�J%
 "�TFR"553
 43�TFR46#3
 5�U:1&
 
        47�TFR7"-6&
 
��� 
UZQF7	#
 3IP5BV5
 3IP5BV53FT
 ��� � 
 
  7BS5ZQF� � < <B
"�>
 <TS
43�>
 <UBVB
5BV"�>
 
     <MC
-#�>
 <VC
6#�>
 <UBV
5BV�>>
 
  4VCSBOHF/� � < <MC
-#�>
 <VC
6#�> >
 
  4VCSBOHF5ZQF� � < <MC
-#�>
 <VC
6#�>
 <UBV
5BV�> >
 
  "SSBZ5ZQF� � < <TS
43�>
 <UBVB
5BV"�> >
 
 
  5 ?? UZQF5	#
 3IP5BV5
 <$�
 4VCSBOHF5ZQF�>

 
  43 ?? UZQF43T	#
 3IP5BV5
 "SSBZ5ZQF�

 
  OVN&MUT	43�
 /

 UZQF*'MBU	<*
 "
 43
 5
 47>
 4VCSBOHF/�
 /
 $

 
  " ?? GMBU	"4FR

 SBOHF	"4FR
 "�

 
  " ?? 5ZQF"T	$�

 
  	  QFTT	<$�
 $
 $�>
 DIFDL0,
 
  �� *EU � WBSJBCMF	7BS5ZQF�
 
  �  *EU � WBSJBCMF	< <B
<>>
 <TS
<>>
 <UBVB
5BV"�>
 
                            <MC
�>
 <VC
�>
 <UBV
UZQF8SPOH> > 
  

 
  * ?? GMBU	*E
 
  VQEBUF	3IP5BV5
 #
 <*E
*EU>
 3IP5BV53FT
 

Notes: 

1. The Z declaration 7BS5ZQF� translates to the Prolog 7BS5ZQF� � 
<<B
"�>
 <TS
43�>
 <UBVB
5BV"�>
 <MC
-#�>
 <VC
6#�>
 <UBV
5BV�>>, 
which flattened form exposes the all schema components for later use.   

2. The component sub-schemas, 4VCSBOHF/�, 4VCSBOHF5ZQF�, and "SSBZ5ZQF�, 
used to define 7BS5ZQF� are also introduced in the Prolog, so that they can be 
used to translate various theta terms later. 
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3. The expression involving OVN&MUT is unwound to O � OVN&MUT 43�, in order to 
be translated. 

4. The use of 5ZQF* on the full syntactic argument is a rare usage.  Usually meaning 
expressions are called on subcomponents of the syntax tree.  The DCTG 
formulation does not directly support such usage.  So 5ZQF* is translated to a call 
to the ordinary Prolog predicate UZQF*'MBU, which itself has the translation of the 
Z.  Then this clause can make use of the same UZQF*'MBU. 

5. Before we can find the range of the sequence of the attributes " we need to extract 
the underlying sequence from within its DCTG superstructure, which is what 
"??GMBU	"TFR
 does.  Similarly for * and *E. 
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