

The DeCCo project papers VI
Z to Prolog DCTG translation guidelines

Susan Stepney

University of York Technical Report YCS-2003-363

June 2003

Crown Copyright 2003

PERMITTED USES. This material may be accessed as downloaded onto
electronic, magnetic, optical or similar storage media provided that such
activities are for private research, study or in-house use only.

RESTRICTED USES. This material must not be copied, distributed,
published or sold without the permission of the Controller of Her Britannic
Majesty’s Stationery Office.

The DeCCo project papers VI i

Contents

 Preface 1
 Historical background of the DeCCo project 1
 The DeCCo Reports 1
 Acknowledgements 2

1. Introduction 3

2. Plain Z 4
2.1 Z and Prolog naming conventions 4
2.2 Z types 5
2.3 Z values 5
2.3.1 Given sets 6
2.3.2 Cartesian tuples 7
2.3.3 Schema bindings 7
2.3.4 Flattened schema bindings 8
2.3.5 Other values 9
2.4 Schemas 9
2.4.1 Simple Schema declarations 9
2.4.2 Predicate part 9
2.4.3 Nested schemas 10
2.4.4 Decorated Schema declarations 10
2.4.5 Theta expressions 10
2.4.6 Schema as predicate 10
2.5 Modelling Z functions 11
2.5.1 Functions as sets of pairs (DeCCo environments) 11
2.5.2 Functions as a computations (Z toolkit definitions) 11

3. DCTGs 14
3.1 Plain DCTGs 14
3.1.1 Syntax 14
3.1.2 Semantics 14
3.1.3 Prolog equivalent 15
3.1.4 Multiple semantics 16
3.2 Extensions for free types 16
3.3 Concrete Syntax and parsing 17

4. Semantic functions 18
4.1 Declaration 18
4.2 Specification 18

ii Z to Prolog DCTG translation guidelines

5. Partiality 20
5.1 Spotting partiality 20
5.1.1 Declared arguments do not match function signature 20
5.1.2 Implication, or bar part in universal quantifier 21
5.1.3 Partial arrow in the signature 21
5.2 Implementing partiality 22
5.2.1 Split into cases 22
5.2.2 Syntactically disallowed behaviour 22
5.2.3 Statically undefined behaviour 22
5.2.4 Dynamically undefined behaviour 23
5.3 Summary 24

6. Examples 25
6.1 Unary Op pred, dynamic semantics (Pasp section 6.2.4) 25
6.2 Constant, type checking (Pasp section 7.4.2) 26
6.3 Unary expression, dynamic semantics (Pasp section 7.6.4) 26
6.4 Actual parameter, type checking (Pasp section 7.3.2) 27
6.5 Variable declaration, type checking (Pasp section 9.4.2.7) 28

7. References 30

The DeCCo project papers VI 1

Preface

Historical background of the DeCCo project
In 1990 Logica’s Formal Methods Team performed a study for RSRE (now QineticQ)
into how to develop a compiler for high integrity applications that is itself of high
integrity. In that study, the source language was Spark, a subset of Ada designed for
safety critical applications, and the target was Viper, a high integrity processor.
Logica’s Formal Methods Team developed a mathematical technique for specifying a
compiler and proving it correct, and developed a small proof of concept prototype.
The study is described in [Stepney et al 1991], and the small case study is worked up
in full, including all the proofs, in [Stepney 1993]. Experience of using the PVS tool
to prove the small case study is reported in [Stringer-Calvert et al]. Futher
developments to the method to allow separate compilation are described in [Stepney
1998].

Engineers at AWE read about the study and realised the technique could be used to
implement a compiler for their own high integrity processor, called the ASP (Arming
System Processor). They contacted Logica, and between 1992 and 2001 Logica used
these techniques to deliver a high integrity compiler, integrated in a development and
test environment, for progressively larger subsets of Pascal.

The full specifications of the final version of the DeCCo compiler are reproduced in
these technical reports. These are written in the Z specification language. The variant
of Z used is that supported by the Z Specific Formaliser tool [Formaliser], which was
used to prepare and type-check all the DeCCo specifications. This variant is
essentially the Z described in the Z Reference Manual [Spivey 1992] augmented with
a few new constructs from ISO Standard Z [ISO-Z]. Additions to ZRM are noted as
they occur in the text.

The DeCCo Reports

The DeCCo Project case study is detailed in the following technical reports (this
preface is common to all the reports)

I. Z Specification of Pasp
The denotational semantics of the high level source language, Pasp. The
definition is split into several static semantics (such as type checking) and a
dynamic semantics (the meaningof executing a program). Later smeantics are
not defined for those programs where the result of earlier semantics is error.

II. Z Specification of Asp, AspAL and XAspAL
The denotational semantics of the low level target assembly languages.
XAspAL is the target of compilation of an individual Pasp module; it is AspAL
extended with some cross-module instructions that are resolved at link time.
The meaning of these extra instructions is given implicitly by the specification

2 Z to Prolog DCTG translation guidelines

of the linker and hexer. AspAL is the target of linking a set of XAspAL
modules, and also the target of compilation of a complete Pasp program. Asp is
the non-relocatable assembly language of the chip, with AspAL's labels
replaced by absolute program addresses. The semantics of programs with
errors is not defined, because these defintions will only ever be used to define
the meaning of correct, compiled programs.

III. Z Specification of Compiler Templates
The operational semantics of the Pasp source language, in the form of a set of
XAspAL target language templates.

IV. Z Specification of Linker and Hexer
The linker combines compiled XAspAL modules into a single compiled
AspAL program. The hexer converts a relocatable AspAL program into an Asp
program located at a fixed place in memory.

V. Compiler Correctness Proofs
The compiler's operational semantics are demonstrated to be equivalent to the
source language's denotational semantics, by calculating the meaning of each
Pasp construct, and the corresponding meaning of the AspAL template, and
showing them to be equivalent. Thus the compiler transformation is meaning
preserving, and hence the compiler is correct.

VI. Z to Prolog DCTG translation guidelines
The Z specifications of the Pasp semantics and compiler templates are
translated into an executable Prolog DCTG implementation of a Pasp
interpreter and Pasp-to-Asp compiler. The translation is done manually,
following the stated guidelines.

Acknowledgements

We would like to thank the client team at AWE – Dave Thomas, Wilson Ifill, Alun
Lewis, Tracy Bourne – for providing such an interesting development project to work
on. We would like to thank the rest of the development team at Logica: Tim
Wentford, John Taylor, Roger Eatwell, Kwasi Ametewee.

The DeCCo project papers VI 3

1. Introduction

This document describes the DeCCo process for mapping a Z specification of a
denotational semantics into its demonstrably equivalent Prolog implementation.

It assumes familiarity with Z [Spivey 1992][Formaliser], Prolog [Clocksin 1984], and
the way these are used to specify and implement denotational semantics [Stepney].

In this document, Z names are written in UZQFXSJUFS GPOU, and Prolog names in
CPME UZQFXSJUFS GPOU. Translations of small pieces of Z to corresponding Prolog
are shown thus:

; UFSN ��� 1SPMPH USBOTMBUJPO

Caveat: the DeCCo specifications have been written in a “constructive” style, of the
form Y � G	���
. This makes them more suitable for a direct translation to Prolog.
Most of the translation techniques described here rely on this style, and would not
necessarily work for a general Z-to-Prolog translation system, with more general
predicates describing the form of the functions.

4 Z to Prolog DCTG translation guidelines

2. Plain Z

This section describes the conventions we use for translating plain Z (rather than the
meaning functions) into plain Prolog (not using DCTGs). This is the style used for
implementing the Z toolkit functions [Spivey 1992, chapter 4], and also some of the
intermediate expressions in the DeCCo semantic definitions.

2.1 Z and Prolog naming conventions
The DeCCo Z specifications are written using the following variable naming
convention:

• Given sets, all upper case. For example, 7"-6&, 5:1&, 45.5

• Schema names, initial upper case, then mixed. For example, *G4UNU, 3FHJTUFS

• Other names, initial lower case, then mixed. For example, JG4UNU, CNVM. This
rule is broken occasionally in variable names with very localised scope, to indicate
the variable is a set or sequence. For example, B � "553� " � i "553.

• Infix toolkit-like operators often have symbolic names. For example, �, Â

• Variables used in similar contexts have the same name, but with decorations – here
usually dashes1. For example, ­±U, ­±U�

Prolog has a different naming requirement

• Constants must start with a lower case letter. For example, JG4UNU, CNVM

• Variables must start with an upper case letter, or an underscore. For example, &�,
*G4UNU, @�C

We have a further convention, for translating Z names to Prolog names. (This
convention is occasionally ignored, to disambiguate Z names that end up with the
same Prolog translation, or for readability.)

In the simplest case, the Prolog name is just the Z name, with the first character
changed to be of the required capitalisation.

A symbolic Z name is given some appropriate Prolog name, usually its spoken form.
For example, the Z union operator d becomes the Prolog VOJPO. Greek letters are
also symbolic characters, heavily used as variable names in DeCCo: they can be
translated to their spoken equivalent (for example, the variable ¬ might become 9J, ­±
might become 3IP5BV) or to their first character (¦ might become %).

1 Note that the dashes on names simply serve to provide distinct variables with related names.

We are not using dashes to indicate “after state” variables, because we are not using a
“Delta/Xi” state-and-operations style specification.

The DeCCo project papers VI 5

A dashed Z name has a digit in the Prolog form. For example, the Z variable C�
becomes the Prolog variable #� (uppercased to become a variable, digit � added for
the dash). Similarly, the Z variable C��� becomes the Prolog variable #�.

There are a few occasions when DeCCo uses two Z names that differ only in their
capitalisation:

• A lower case Z name indicates a single element, and the same name in upper case
indicates a set or sequence of elements. For example, B � "553� " � i "553.
The conventional Prolog naming for lists is to add an T to the base name, so these
two become the Prolog variables " and "T, respectively.

• A lower case Z name indicates a free type branch, whose type is then a schema of a
similar name. For example JG4UNU � *G4UNU �. Fortunately in this case the
branch name maps to a Prolog constant, and the schema name to a Prolog variable.
So the translation causes no ambiguity.

2.2 Z types
Z is based on typed set theory: the world of values is partitioned into types, and every
value has a particular type. Prolog is not explicitly typed, and its main data structure
is the list. It is fairly straightforward to translate a Z set to a Prolog list – the main
thing that requires care is ensuring that either the Prolog list has no duplicates, or that
the operations on it make it behave as if it has no duplicates.

Every Z variable must be declared, and given a type. Z types provide redundancy,
and also stop some potentially paradoxical statements (for example, Russell’s
paradox) from being formulated in Z. If a Z specification passes type-checking, the
type of each of its variables is uniquely determined.

Prolog variables need not be declared. They may have any “type”, fixed only once
they have unified. So it is not necessary to translate the Z variable declarations and
types into Prolog. However, a Z declaration may constrain a variable with an implicit
predicate, as well as giving it a type:

• Y � � declares a variable Y to have type � (integer). In Prolog, the corresponding
variable 9 may be used with no corresponding declaration.

• Y � Ø declares a variable Y to have type � (integer) and also be constrained to be
in the set Ø (non-negative). It is a shorthand for the equivalent normalised
declaration Y � �] Y Ï Ø. In Prolog, the corresponding variable 9 may again be
used with no corresponding declaration, but there needs to be a translation of the
predicate, 9 �� �.

2.3 Z values
Z has given sets, which introduce a type whose values have no internal structure, and
three type constructors: power set, Cartesian product, and schema type. It is
necessary to decide how to model values whose types have structure, because the
values have corresponding structure that can be manipulated (for example, a tuple, a
value of type Cartesian product, can have its components accessed individually).

6 Z to Prolog DCTG translation guidelines

2.3.1 Given sets

There is one special given set in Z: the set of integers �. Z integers are translated
directly to Prolog integers.2

Given sets occur in two forms: simple given sets, and free type definitions.

2.3.1.1 Simple given sets

A given set declaration introduces a new type and a corresponding new set of
elements to the specification, where these elements have no internal structure of their
own. Certain elements from a given set may be named as global constants within the
Z specification. These global names can be transliterated to Prolog objects.

The main given set in DeCCo is *%, modelling Pasp variable identifiers, with one
distinguished name NBYVOTJHOFE. This name is transliterated directly into the
corresponding Prolog object, NBYVOTJHOFE.

2.3.1.2 Free types

A free type is a given set with some external structure imposed: the elements in the
given set are partitioned, each partition corresponding to a branch of the free type
definition.

Simple branches, comprising just a Z name, contain a single element; constructor
branches, comprising the name of an injective function and an argument, contain a set
of elements.

The simple branch names are the equivalent of global constants, and so are
transliterated into Prolog. DeCCo has various free types that have simple branches
comprising a Z name, for example TLJQ or CFR. These are just transliterated directly
into corresponding Prolog objects, in this case, NBYVOTJHOFE, TLJQ and CFR.

The constructor branch injection names serve to convert one Z type into (part of)
another (larger) type. We can tell, given an element of the larger type, which
injection was used to construct it, that is, which one of the smaller types it came from.
We model this in Prolog by modelling the branch constructors and their arguments as
Prolog structures. So, if we have the following Z free type definition of ', along with
a predicate that an element is constructed from one particular branch of '

' ��� B] C � / �] D � ' u ' �
[� D	G�
G�

we convert the predicate to Prolog thus:

2 There are rather more Z integers than Prolog ones. However we never use them all in

DeCCo. We use at most � NBYVOTJHOFE �� NBYVOTJHOFE � NBYVOTJHOFE of
them. Provided these values never crash the Prolog system, we can implement Z integers
naively.

The DeCCo project papers VI 7

; � D	 '�
 '�

If we have a predicate that an element is in one particular branch of '

Y � B
Z Ï SBO C
[Ï SBO D

we convert the predicate to Prolog by asserting that the corresponding Prolog variable
unifies with the relevant structure:

9 � B
: � C	 @

; � D	 @
 @

2.3.2 Cartesian tuples

A Z Cartesian tuple is an ordered collection of elements. A Z tuple is translated into a
Prolog list

	Y
 Z
 [
 ��� <9
 :
 ;>

ISO Standard Z (but not ZRM) provides a notation for accessing tuple elements by
their position in the collection. For example, U��, or 	Y
Z
[
�� � Z

Tuple selection is translated as selecting the nth element out of the list. We define a
general purpose operator for selecting the nth component of a list (Z typechecking
ensures this is never applied to a list that does not contain at least this number of
elements):

EPU	<9] 9T>
 �
 9
�
EPU	<@] 9T>
 /
 :
 �� /� JT / � �
 EPU	9T
 /�
 :
�

We use it to select say the third component thus

EPU	5
 �
 ;
�

or we can just directly access the third component of 5 by writing 5 as an explicit list
(here assuming U is a 6-tuple).

< @
 @
 ;
 @
 @
 @ >

2.3.3 Schema bindings

A Z schema binding is a labelled collection of elements, where the labels are schema
component names. ISO Standard Z (but not ZRM) provides a notation for the
expressing the value of a particular binding, like

Ì] B �� Y
 C �� Z
 D �� []Í

Each component of a Z binding is translated into a two element Prolog list,
<OBNF
 7BMVF>, and the whole binding to a list of these pairs:

8 Z to Prolog DCTG translation guidelines

Ì] B �� Y
 C �� Z
 D �� []ÍÒ ��� < <B
9>
 <C
:>
 <D
;> >

Binding elements can be accessed by their name. For example, 4�[, or
Ì] B �� Y
 C �� Z
 D �� []Í�C � Z

Component selection is translated as selecting the value corresponding to the pair
with the relevant name. We define a general purpose operator for selecting a named
component of a list (Z type-checking ensures this is never applied to a list that does
not contain that name): 3

EPU	<</BNF
 :>] 9T>
 /BNF
 :
�
EPU	<@] 9T>
 /BNF
 :
 �� EPU	9T
 /BNF
 :
�

then use it to select say the YJ component thus

EPU	4
 YJ
 9
�

Or we can just directly access the YJ component of 4 by writing 4 as an explicit list4
(here assuming 4 is a 4-component binding, and that the YJ component is the second
component in the list – a potentially fragile assumption).

< @
 <YJ
9>
 @
 @ >

2.3.4 Flattened schema bindings

Earlier versions of DeCCo did not specify the arguments to free types using schemas,
but rather using cartesian products. As the number of components in each argument
grows, the schema form is preferred, as it provides more mnemonic tags when
accessing components. More recent versions of the DeCCo Z specifications use
schemas.

However, in some cases the implementation has not yet been changed to use this more
readable schema form of the specification, and still uses the old cartesian product
form. Such an implementation corresponds to a translation from Z schema bindings
to Prolog that drops the component names:

Ì] B �� Y
 C �� Z
 D �� []Í ��� < 9
 :
 ; >

3 This definition makes it clear that tuples and schema bindings could be unified by explicitly

translating tuples as pairs labelled with numbers, as

 	Y
 Z
 [
 ��� <<�
 9>
 <�
 :>
 <�
 ;>>
Such unification might be have advantages in a general purpose translation system, but here
it would merely be slower and require more storage.

4 Indeed, if we are sure that the x component is always second, we could write

 < @
 <@
9>
 @
 @ >

The DeCCo project papers VI 9

2.3.5 Other values

All other values in Z are constructed from these: given values, sets, tuples and
bindings. We can have sets of tuples, for example (if the tuples are pairs, such a set is
called a relation). So in general we can recursively construct in Prolog any Z value
by translating its recursive construction in Z. For example, because a Z set is
translated to a Prolog list, and a Z pair to a 2-component Prolog list, then a Z relation
(set of pairs) is translated to a list of 2-component lists:

\ 	B
 Y

 	C
 Z

 	D
 [
 ^ ��� < <"
9>
 <#
:>
 <$
;> >

Occasionally we optimise the construction of particularly heavily used values, for
example, by flattening some of the list nesting.

\ 	B
 Y

 	C
 Z

 	D
 [
 ^ ��� < "
 9
 #
 :
 $
 ; >

2.4 Schemas

2.4.1 Simple Schema declarations

Consider a schema defined in Z as

4DIFNB � < Y�9� Z�:� [�; >

The Z declaration x 4DIFNB ��� automatically exposes its components. So it is
translated to the Prolog 4DIFNB � < <Y
9>
 <Z
:>
 <[
;> > to enable the same
style of access to the components. If a component is not used in the subsequent
definition, it can be translated to underscore to highlight this fact. For example,
4DIFNB � < <Y
9>
 @
 <[
;> >.

2.4.2 Predicate part

If the schema has a non-trivial predicate part (which includes the explicit predicates,
together with any implicit predicates in the declaration), this needs to be translated
too. (Most of the schemas in DeCCo simply capture abstract syntax, and so have no
non-trivial predicate part.) For example, consider

#PVOE � < MC
VC� Ø] MC � VC >

Then the Z declaration x #PVOE ��� is translated to the Prolog

#PVOE � < <MC
-C>
 <VC
6C> >

-C �� �
 6C �� �

-C � 6C

where the first Prolog predicate captures the implicit Z predicate in the declaration,
and the second captures the explicit Z predicate in the bar part of the schema.

10 Z to Prolog DCTG translation guidelines

2.4.3 Nested schemas

If a schema is defined in terms of component schemas, the resulting form is flat in Z,
and so should remain flat in Prolog. Consider

"OPUIFS4DIFNB � < B�" � 4DIFNB >

The Z declaration x "OPUIFS4DIFNB��� exposes its components with no nesting of
the structure of 4DIFNB present. So it is translated to the Prolog

"OPUIFS4DIFNB � < <B
">
 <Y
9>
 <Z
:>
 <[
;> >

to enable the same style of access to the components. A further clause of

4DIFNB � < <Y
9>
 <Z
:>
 <[
;> >

may also be added if access is required to the Schema sub-component as a whole
(usually by a theta expression). Unification ensures these two clauses refer to the
same 9, : and ;, as required by the Z meaning.

2.4.4 Decorated Schema declarations

If a decorated version of the schema is declared in Z, as say, x 4DIFNB� ���, this
needs to be translated into Prolog as 4DIFNB� � < <Y
9�>
 <Z
:�>
 <[
;�> >.
Note how the constant names remain the same; it is the variable names that are
decorated.

2.4.5 Theta expressions

As well as accessing individual components, the whole binding can be accessed in Z
using a theta expression, as Ê 4DIFNB. In Prolog, this just becomes a reference to
the variable 4DIFNB.

2.4.6 Schema as predicate

It is possible in Z to use a schema reference as a predicate. For example in the
quantifier w .PEVMF] .PEVMF%FDM0LBZ | ��� the schema .PEVMF%FDM0LBZ is
being used as a predicate. Z type rules ensure that any variables used in this predicate
are in scope. So this can be translated into Prolog just by translating its predicate part
(which, as ever, includes the explicit predicates together with any implicit predicates
in the declaration).

The DeCCo project papers VI 11

2.5 Modelling Z functions

2.5.1 Functions as sets of pairs (DeCCo environments)

Technically, a function in Z is merely a relation (a set of pairs of values) with a
uniqueness property5. DeCCo uses functions to model environments (mappings from
names to semantic values), and the semantic equations describe how these
environments are built up and accessed. Hence translating these Z environment
functions (explicit sets of pairs) to Prolog lists of 2-element lists is appropriate.

\B {o Y
 C {o Z
 D {o [^ ��� <<B
 9>
 <C
 :>
 <D
 ;>>

2.5.2 Functions as a computations (Z toolkit definitions)

Sometimes an explicit representation of a function as a set of pairs is not the most
efficient way to model it in Prolog: we may wish to capture the computation
represented by the function, along with the ability to apply the function to an
argument, in which case we translate the computation, as discussed in the next
section.

The Z mathematical toolkit [Spivey 1992, chapter 4] provides a collection of utility
functions that are much used in Z specifications, including the DeCCo specifications.
The ones that are used in DeCCo are translated into the relevant Prolog clauses that
perform the computation they specify.

Consider domain restriction, defined in Z as

¶®<9
:>®®®�
� @ � @ � i 9 u 	9 rko :
 qko 	9 rko :

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w B� i 9� S� 9 rko : |
� B � S

� � \ Y� 9� Z� :] Y Ï B z 	Y
Z
 Ï S | Y {o Z ^
¡¥¥¥º

2.5.2.1 A recursive rewriting

As it stands, this is not in a useful form to translate directly into Prolog. An
equivalent recursive form, explaining the effect of restricting to an empty set, a
singleton set, and a union of sets, is more useful6.

5 This uniqueness property is a semantic property, and so violations are not checkable by Z

typecheckers such as fuzz or Formaliser. In the constructive style of specification used for
DeCCo, the functionality property is usually obvious, because the function is constructed
using override. Occasionally functionality has to be further justified.

6 There are various things about this definition that make it not equivalent to the previous
one. It is equivalent only if S is functional, so that Z is unique, and if B is finite, so that
stripping elements out of B one at a time eventually terminates, and if the element Y is not

12 Z to Prolog DCTG translation guidelines

¶®<9
:>®®®�
� @ � @ � � 9 u 	9 qlo :
 qko 	9 qlo :

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w S� 9 qlo : | Î � S � Î
� w Y� 9� S� 9 qlo : |
� \Y^ � S � JG Y Ï EPN S UIFO \Y {o S Y^ FMTF Î
� w Y� 9� B� � 9� S� 9 qlo : |
� 	\Y^ d B
 � S � \Y^ � S d B � S
¡¥¥¥º

This “readily translatable form” is suitable to be translated directly into Prolog. A Z
function from several arguments to a result has the form in Prolog of

GVO	"SH�
 "SH�
 ��� "SHO
 3FT
 �� ���

In this case the general form is

EPN3FT	"
 3
 3FT
 �� ���

For each case of the arguments, the left hand side matches the pattern of arguments,
and the right hand side, defining 3FT, is a translation of the body of the quantifier. So

w S� 9 qlo : | Î � S � Î

has an empty B and a general S, and so translates to

EPN3FT	"
 3
 3FT
 �� " � <>
 3FT � <>�

which can be abbreviated to

EPN3FT	<>
 3
 <>
�

Applying this to each of the three cases, we get the full translation (where JO and
VOJPO are translations of Z’s membership and set union respectively) as

EPN3FT	<>
 3
 <>
�

EPN3FT	<9>
 3
 3FT
 ��
 	 JO	<9
:>
 3

 �� 3FT � <<9
:>>
 � 3FT � <>

�

EPN3FT	<9]">
 3
 3FT
 ��
 EPN3FT	<9>
 3
 3�

 EPN3FT	"
 3
 3�

 VOJPO	3�
 3�
 3FT
�

�

left in the remaining B. Let us assume in this example that this is the case, as it is the case in
the DeCCo application.

The DeCCo project papers VI 13

In general, we do not explicitly give the recursive Z form of the toolkit operators,
because the unwinding pattern is obvious. And we make sure that the DeCCo
specification is written in such a “readily translatable form” initially.

2.5.2.2 Accumulator optimisation

Although the above is a correct translation of the Z function, it is rather inefficient,
especially if the set B is large, because of the O(�B) unions of separate elements.
There is a standard Prolog optimisation for this kind of operation, that uses an
intermediate accumulator variable, storing the partial “answer so far” [Sterling,
section 7.5]. When the recursion reaches the base case, the accumulated “answer so
far” is the result of the complete call.

We also take the opportunity to merge the singleton and general case of the recursive
definition, giving the source Z form as:

¶®<9
:>®®®�
� @ � @ � � 9 u 	9 qlo :
 qko 	9 qlo :

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w S� 9 qlo : | Î � S � Î
� w Y� 9� B� � 9� S� 9 qlo : |
� 	\Y^ d B
 � S �
� 	JG Y Ï EPN S UIFO \Y {o S Y^ FMTF Î
 d B � S
¡¥¥¥º

A Z function from several arguments to a result in Prolog, with an accumulator, has a
form of

GVO	"SH�
 "SH�
 ��� "SHO
 3FT�
 3FT
 �� ���

and is initially called with an empty accumulator:

GVO	"SH�
 "SH�
 ��� "SHO
 <>
 3FT
�

In this case the general form is

EPN3FT	"
 3
 3FT0
 3FT
 �� ���

The full translation is

EPN3FT	<>
 3
 <>
 3FT
�

EPN3FT	<9]9T>
 3
 3FT0
 3FT
 ���
 	 JO	<9
:>
 3

 �� BEE	3FT0
 <9
:>
 3FT�

 � 3FT� � 3FT0

 EPN3FT	9T
 3
 3FT�
 3FT
�

And we could define the previous domain restriction as

EPN3FT	"
 3
 3FT
 �� EPN3FT	"
 3
 <>
 3FT
�

We do this on occasion without explicitly stating that we are using an accumulator.

14 Z to Prolog DCTG translation guidelines

3. DCTGs

To ease the mapping process, the Prolog implementation uses DCTGs (Definite
Clause Translation Grammars), allowing it to have a structure closer to the Z. See
[Abramson 1989, chapter 9], [Stepney, section 3.3].

3.1 Plain DCTGs
The general discussion and implementation in given in [Abramson 1989], with an
example in the DeCCo context in [Stepney]. Essentially, a few new operators are
defined in Prolog to allow syntax and semantic definitions to be structured thusly:

TZOUBY
���
	TFNBOUJDT�

	TFNBOUJDT/
�

3.1.1 Syntax

The syntactic portion defines how a production is constructed from non-terminal sub-
productions and from terminal tokens. The various non-terminal constructs are
labelled with derivation trees that are then referenced in the semantic portions. For
example, an IF statement might have syntax portion like

DNE ��� U*'
 FYQS??&
 U5)&/
 DNE??$U
 U&-4&
 DNE??$F

where ::= and ^^ are DCTG operators, the Prolog variables &, $U and $F hold the
derivation subtrees for the non-terminals, and the constants tIF, tTHEN, and tELSE
represent tokens.

3.1.2 Semantics

The derivation trees introduced in the syntax part can be referenced in the semantics.
For example, the dynamic semantics, that defines the state transitions, derived from a
Z specification like

� .$ � $.% qlo 4UBUF qlo 4UBUF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w F � &913� DU
 DF� $.%� T � 4UBUF |
� x W � 7"-6& � T� � 4UBUF]
� W � .& F T
� z T� � JG W � USVF UIFO .$ DU T FMTF .$ DF T |
� .$ JG4UNU	F
 DU
 DF
 T � T�

The DeCCo project papers VI 15

7might look like

N	4
 4�
 ���
 & ?? N	4
 7

 	 7 � USVF

 $U ?? N	4
 4�

 �
 7 � GBMTF

 $F ?? N	4
 4�

where ::- is a DCTG operator. This has the effect of evaluating the dynamic
semantics of the expression & (as identified in the syntax) in the current state 4 to give
a resulting value 7. Depending on the value of 7, the final state 4� is determined by
evaluating the dynamic semantics of command $U or of $F (similarly identified in the
syntax).

Notice that there are several meaning functions in the typed Z, MC for commands, ME
for expressions, and so on, but only one in the untyped Prolog, m. Prolog unification
ensures the correct m is evaluated.

3.1.3 Prolog equivalent

The Prolog corresponding to this DCTG is

DNE	 OPEF	 DNE
 < &
 $U
 $F >

 < N	4
 4�
 ���
 & ?? N	4
 7

 	 7 � USVF
 $U ?? N	4
 4�

 � 7 � GBMTF
 $F ?? N	4
 4�

 >

 %�
 %
 ��
 FYQS	 &
 %�
 %�

 DNE	 $U
 %�
 %�

 DNE	 $F
 %�
 %
�

This shows how the effect of the DCTG is to send calls to the subtrees, as expected,
and to add some intermediate “accumulator” variables.

7 This Z specification might more naturally be written as

� .$ � $.% qlo 4UBUF qlo 4UBUF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w F � &913� DU
 DF� $.%� T � 4UBUF |
� .$ JG4UNU	F
 DU
 DF
 T
� � JG .& F T � USVF UIFO .$ DU T FMTF .$ DF T

but here we have written it in the “unwound” style, to correspond more closely with the
Prolog implementation.

16 Z to Prolog DCTG translation guidelines

3.1.4 Multiple semantics

Other semantics can be evaluated using the same trees. For example, the operational
semantics, where the “meaning” is simply the list of assembly language instructions
produced by the compiler, derived from a Z specification like

� 0$ � $.% qlo TFR */453
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w F � &913� DU
 DF� $.% |
� x F*T
 DU*T
 DF*T � TFR */453]
� F*T � 0& F
� z DU*T � 0$ DU
� z DF*T � 0$ DF |
� 0$ JG4UNU	F
 DU
 DF

� � F*T Ö Ì KNQ M� Í Ö DU*T Ö Ì HPUP M�
 MBC M� Í
� Ö DF*T Ö Ì MBC M� Í

8might look like

DPNQJMF	*T
 ���
 & ?? P	&*T

 $U ?? P	$U*T

 $F ?? P	$F*T

 *T � <&*T
 KNQ	-�

 $U*T
 HPUP	-�

 MBC	-�

 $F*T
 MBC	-�
>

The expression & and commands $U or of $F are again those identified in the syntax.

3.2 Extensions for free types
The Z specification makes heavy use of free types to define its abstract syntactic
categories. The extended DCTG colon notation is used to capture this in Prolog. To
capture a syntactic free type like

45.5 ��� ���] JG4UNU � &913 u 45.5 u 45.5 �] ���

the DCTG colon operator is used thus:

T5.5 ��� ���
T5.5 ��� JG4UNU	&�F913
 4�
4��T5.5

T5.5 ��� ���

8 Again, this Z specification might be more naturally written as

� 0$ � $.% qlo TFR */453
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w F � &913� DU
 DF� $.% |
� 0$ JG4UNU	F
 DU
 DF
 �
� 0& F Ö Ì KNQ M� Í Ö 0$ DU Ö Ì HPUP M�
 MBC M� Í
� Ö 0$ DF Ö Ì MBC M� Í

but here we have written it in the “unwound” style.

The DeCCo project papers VI 17

Then, if the Prolog term JG4UNU	&
 4�
 4�
 is used somewhere in the body of a
definition, the variable & unifies to the expression tree, and the variables 4� and 4�
unify to the relevant statement trees.

For example, we have the Z specification for the dynamic semantics of the byte
multiplication operator as

7"-6& ��� ���] WCZUF � #:5& �] WCPPM � #00-&"/ �] ���
#*/01 ��� ���] CNVM] ���

� .#0 � #*/@01 qko 7"-6& u 7"-6& qlo 7"-6&
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w C
D � #:5& |
� .#0 CNVM 	WCZUF C
 WCZUF D
 � WCZUF 	C � D

with the Prolog implementation:

W"-6& ��� WCZUF	7�C:5&

W"-6& ��� WCPPM	7�C00-&"/

C*/01 ��� CNVM

C*/@01 ��� U#.6-
���
N	#
 $
 #3FT
 ��� �
 WCZUF	#

 WCZUF	$

 #3FT JT # � $

 WCZUF	#3FT
�

3.3 Concrete Syntax and parsing
Concrete syntax includes terminal tokens, and uses the DCTG ?? notation to attach
trees to non-terminals. Abstract syntax has no concrete “punctuation”, and uses free
type structures with the colon notation. The parser gives the link between the two, as
a list of facts linking the two forms, as

BCT$POD	 BCTUSBDU GPSN
 DPODSFUF GPSN
�

For example

BCT$POD 	 JG4UNU	&�F913
 4�
4��T5.5

 	 U*'
 F913??&
 U5)&/
 T5.5??4�
 U&-4&
 T5.5??4�

�

The abstract syntax form, rather than the concrete syntax form, is used in the DeCCo
implementation of the DCTG.

18 Z to Prolog DCTG translation guidelines

4. Semantic functions

4.1 Declaration
The DeCCo semantic functions are specified as Z mappings from an abstract syntactic
construct to its semantic value. In general each function has a Z declaration like

� . � 4 qlo 9 qlo : ��� qlo ;

where . is the name of the function, 4 is the abstract syntax category, and 9, :, … ;
are the appropriate semantic values.

4.2 Specification
The function .T is specified in a uniform manner, with a universal quantification over
each of its curried arguments. If the arguments are not schema types, its specification
is something like:

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w T��4� � T��4� � Y�9 � Z�: |
� .T G	T�
 T�
 Y Z � TPNF FYQS

If the arguments are schema types, its specification is essentially:

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w 4 � 9 � : |
� .T Ê4 Ê9 Ê: � TPNF FYQS

(Mixtures of the two kinds of arguments may be used.)

In practice, temporary variables are often introduced by existential quantification to
“unwind” nested definitions, to show how the semantics of the whole is constructed
from the semantics of the sub-expressions. For example, consider

¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w T��4� � T��4� � Y�9 � Z�: |
� x Z�
Z���: � [�;]
� Z� � .B T� Y Z
� z Z�� � .B T� Y Z�
� z [� H	Z�
 Z��
 |
� .T G	T�
 T�
 Y Z � [

Remember that the first argument of a Z meaning function, here s1, s2 and f(s1,s2),
is the syntactic argument, so corresponds to a DCTG derivation tree, whereas the
remaining arguments, here x, y, y’, y’’ and z, are semantic arguments, so correspond
to ordinary Prolog variables. So, in Prolog, this becomes

The DeCCo project papers VI 19

T ��� G	5SFF��T�
 5SFF��T�

���
N	9
 :
 ;
 ���
 5SFF� ?? N	9
 :
 :�

 5SFF� ?? N	9
 :�
 :�

 H	:�
 :�
 ;
�

There are several things to note:

• declarations: Prolog does not declare its variables, so the quantifiers have
disappeared. The universally quantified arguments become the arguments (and
result) to the Prolog meaning function. The existentially quantified temporaries
become intermediate values in the Prolog computation. The Prolog may have yet
further intermediate values to unwind some of the nested Z expressions.

• ordinary functions: are translated in the same way as toolkit functions.

• meaning functions and syntax: meaning functions use a special DCTG syntax to
separate out the syntactic and semantic arguments.

20 Z to Prolog DCTG translation guidelines

5. Partiality

Some of the meaning function specifications are partial; that is, they do not define a
result for every possible combination of their arguments. This is indicated by the use
of a partial function arrow from syntactic to semantic values: NG � 4:/ qlo 4FN�

There are several reasons for this partiality, with correspondingly different treatments
in the implementation. Each stage of the processing (parsing, symbol checking, type
checking,…) reduces the space of programs passed to the next stage. Each stage need
be total only for programs passed to it (except for dynamic run-time checks). Rather
than clutter the specification by stating the explicit domain on which each stage is
total within each meaning function (which is simply those programs that have passed
the previous stages), the various meaning functions are written as partial on the
domain of all programs.

First we describe how to see where the partiality occurs in the specification, then
describe the various cases, and how they are handled in the implementation. The only
interesting form of partiality corresponds to a dynamic (run-time) error, such as
division by zero, or array bounds error, with a corresponding dynamic check in the
Pasp interpreter.

5.1 Spotting partiality
There are various ways to spot a partial definition in the specification.

5.1.1 Declared arguments do not match function signature

A definition may be partial if the declared arguments do not match exactly the
function signature, and the expression defining the particular meaning function has a
special case in its argument list.

This happens everywhere for the syntactic argument, where the definition is broken
down into cases over the structure of the syntactic category. For example, consider
the case of symbol declaration semantics of expressions. A total definition would
look like:

� 5& � &913 qko &OW5 qlo &YQS5ZQF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w F � &913� ­± � &OW5 |
� 5& F ­± � ���

Notice how the arguments to the quantifier are the same types as in the meaning
function signature. However, the definition for constant expressions looks like

The DeCCo project papers VI 21

� 5& � &913 qlo &OW5 qlo &YQS5ZQF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w ª � 7"-6&� ­± � &OW5 |
� 5& 	DPOTUBOU ª
 ­± � ���

The general expression argument is replaced by the particular branch being defined.
There is a separate definition for each branch, which, taken together, cover all of
&913. So each individual definition is partial, but their conjunction is total.

The Z could be rewritten equivalently as

� 5& � &913 qlo &OW5 qlo &YQS5ZQF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w § � &913� ­± � &OW5] § Ï SBO DPOTUBOU |
� x ª � 7"-6&] § � DPOTUBOU ª |
� 5& § ­± � ���

So we see that the actual argument being more restricted than the formal argument is
in fact a special case of our next case: a bar part.

5.1.2 Implication, or bar part in universal quantifier

A definition may be partial if there is an implication, or (equivalently) a bar part in a
universal quantifier, putting constraints on the allowed values of expressions. For
example, consider the case of type checking semantics of actual parameters.

� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$,
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w § � &913� 'PSNBM5ZQF� ­± � &OW5] D � WBM z " � Î |
� ���

The bar part is what concerns us here. D � WBM constrains the actual parameter to be
a call-by-value parameter. There is an accompanying definition to cover the D � SFG
case. " � Î constrains the call-by-value parameter to have no attributes. This is
another constraint that is true from context: symbol declaration type checking would
have failed if there were attributes; this function is only ever called if symbol
declaration checking succeeds.

5.1.3 Partial arrow in the signature

A definition may be partial if there is a partial arrow in the signature of the meaning
function.

The symbol declaration semantics is (nearly) always total, because it must be
applicable to any input program. (It is not always total in presentation, because it is
total only on all concrete programs, which cover a space slightly smaller than the
space of abstract programs.)

The later semantics are all partial, because they are defined only for programs that
have passed the earlier semantics. The actual domain is not always made explicit, for
simplicity. For example, that the argument to a function application is in the domain

22 Z to Prolog DCTG translation guidelines

of the function is not always stated explicitly: it is so because a previous semantics
ensured it.

5.2 Implementing partiality
If a specification is partial, defined only for some inputs, what is to be done for inputs
not specified? That depends on the reason for partiality.

5.2.1 Split into cases

Apparent partiality that is merely present to split the specification into cases is not an
issue, because the cases taken together form a specification total on that category.
The predicates partition the cases.

The partiality predicate indicating the case split is implemented in both the Pasp
interpreter and in the compiler, as it serves to distinguish the disjoint cases. The
disjunction of all these predicates gives true, and so there is there are no further case
to consider.

That the predicates do indeed partition the cases is clear from inspection of the
specification.

5.2.2 Syntactically disallowed behaviour

Some specifications are partial because the abstract syntax is wider than the concrete
syntax. The partiality restricts the specification to the case of valid concrete syntax.
For example, when importing a variable, the concrete syntax requires that variable to
be read only, whereas the abstract syntax allows arbitrary attributes. The meaning
function considers only the valid concrete cases:

� %*. � *.1035@%&$- qlo 45"$, qlo &OW%5SBDF qlo &OW%5SBDF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w 7BS%FDM� # � 45"$,� ­¦U � &OW%5SBDF]
� " � ÌSFBE0OMZÍ z 7 � ÌÍ |
� ���

The partiality predicate need not be implemented, because it is always true, and so
there is no further case to consider. However, there is no harm in implementing it
(apart from a trivial performance penalty), in order to make the demonstrability
arguments clearer.

That the partiality predicate is indeed true can be determined by inspecting the
relevant constraint in the syntax specification.

5.2.3 Statically undefined behaviour

All semantics later than the first are partial, because they are called only in the context
of having successfully passed earlier tests. Most of these conditions are implicit
(because it would merely be repeating the earlier semantics to make them explicit –

The DeCCo project papers VI 23

which would defeat the whole purpose of separating out the checks into separate
passes).

Consider

� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$,
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w § � &913� 'PSNBM5ZQF� ­± � &OW5 |
� 5"1 	GPSNBM5ZQF Ê 'PSNBM5ZQF
 ­± � ���

Here the argument list is partial, because the *%5:1& must be a 'PSNBM5ZQF. There
are no other definitions covering the other cases of *%5:1&. This is known to be the
only possible case by context: this function is only ever called from a context where
the expression being checked is an actual parameter expression, and hence will have
the stated *%5:1&.

If the conditions are implicit, there is no partiality predicate to implement. Since the
implicit condition is true, there are no further cases to consider.

That the implicit condition is indeed true can be determined by inspecting the relevant
earlier static semantics specifications, and seeing that they fail to check in the cases
where the condition would be false.

5.2.4 Dynamically undefined behaviour

An implication, or bar part in a universal quantifier, can introduce true partiality:
cases where there is no definition of what happens in some cases, and where the
function may indeed be called in those cases. These correspond to dynamic (run-
time) conditions, because the values in the partiality predicate can be determined only
at run-time.

For example, the specification of the dynamic semantics of the binary operator CEJW
is

� .#0 � #*/@01 qko 7"-6& u 7"-6& qlo 7"-6&
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w C
D � #:5&] D � � |
� .#0 CEJW 	WCZUF C
 WCZUF D
 � WCZUF 	C EJW D

This is the entire specification for this operator, and so it does not say what happens in
the case when D is zero. Any implementation in the case when D is zero is allowed by
such a specification. The interpreter traps the case, and issues an error message. So
the Prolog implementation is:

24 Z to Prolog DCTG translation guidelines

C*/@01 ��� U#%*7
���
EZO#0	#
 $
 #3FT
 ��� �
 WCZUF	#

 WCZUF	$

 	 $ � �
 � EZOBNJD&SSPS	CEJW
 [FSP

 #3FT JT # �� $

 WCZUF	#3FT
�

The compiled code, on the other hand, has no check for zero. (The executing code
will actually halt.)

The cases where there are such dynamic checks in the interpreter are:

• underflow and overflow in arithmetic operations

• divide by zero in arithmetic operations

• subrange checking (on function return, assignment)

• array bounds accessing

5.3 Summary
• Explicit dynamic partiality predicate. The predicate is implemented in the Pasp

interpreter, guarding the implementation of the specified behaviour. The negation
of the predicate, which indicates a run-time error, is implemented in the interpreter,
guarding the execution of an error report. There is no implementation of the
predicate or its negation in the compiler. All such cases are explicitly flagged in
the specification commentary.

• Explicit syntactic or static partiality predicate. The guard indicates a condition
trapped by a previous syntactic or semantic pass, which is true in this pass. The
redundant predicate need not be implemented, but may be, to aid demonstrability
arguments. Because it is true, there is no further case to consider.

• Implicit partiality predicate. There is nothing explicit to implement. Because it
is true, there is no further case to consider.

• Case partiality predicates. The predicates are implemented in the Pasp
interpreter and the compiler, to distinguish the cases they guard. They disjoin to
true, so there is no further case to consider.

The DeCCo project papers VI 25

6. Examples

6.1 Unary Op pred, dynamic semantics (Pasp §6.2.4)
Demonstrates the translation of a dynamic check partial predicate in the dynamic but
not in the operational semantics.

The Z specification of the dynamic semantics of the unary operator unsgnToByte is

� .60 � 6/:@01 qko 7"-6& qko 7"-6&
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w O � 6/4*(/&%] O Ï #:5& |
� .60 VOTHO5P#ZUF 	WVOTHO O
 � WCZUF O

The Prolog implementation is (remember, there is no need for the syntactic argument
in the argument list of the meaning function: that is handled by the DCTG).

V/:@01 ��� VOTHO5P#ZUF
���
N	/
 3FT#
 ��� �
 WVOTHO	/

 	 / � ���
 � EZOBNJD&SSPS	VOTHO5P#ZUF
 PWFSGMPX

3FT# JT /

WCZUF	3FT#
�

The Z constraint O Ï #:5&, equivalent to � Ô O � ���, has been optimised to
neglect the unnecessary lower bound check. The test is performed as soon as
possible, because in some cases (for example, division by zero) the Prolog would be
unhappy if the calculation were performed.

The operational semantics of the unary operator unsgnToByte is specified as

� 060 � 6/:@01 qko -"#&- qko -"#&- u TFR 9@*/453
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w M � -"#&- |
� 060 VOTHO5P#ZUF M � 	M
 Ì Í

The operational semantics has been totalised, corresponding to a particular
implementation decision about the partiality in the dynamic Pasp spec: overflow
truncates.

The Prolog implementation is

P	-BCFM
 	-BCFM
 9*T

 ��
 9*T � < <> >�

Notes:

26 Z to Prolog DCTG translation guidelines

1. The expected -BCFM3FT � -BCFM clause has been optimised away.

2. The 9*T clause is not optimised away, because the full implementation has an extra
comment "instruction".

3. The full implementation is split between two separate Prolog clauses, with the
syntactic VOTHO5P#ZUF occurring explicitly in the second, because of an
implementation decision. The second of these operational semantics clauses, for
the case of operators, is defined in a separate file, to modularise certain common
instructions. The VOTHO5P#ZUF tag acts as a link between these files.

6.2 Constant, type checking (Pasp §7.4.2)
The Z specification for type checking a constant is

� 5& � &913 qlo &OW5 qlo &YQS5ZQF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w ª � 7"-6&� ­± � &OW5 |
� 5& 	DPOTUBOU ª
 ­± � Ì] ± �� DPOTU5ZQF ª
 " �� Î]Í

The corresponding Prolog translation is

F913 ��� DPOTUBOU	,�W"-6&

���
UZQF&	@
 &YQS5ZQF3FT
 ��� �
 , ?? DPOTU5ZQF	5BV

 &YQS5ZQF3FT � < <UBV
5BV>
 <B
<>> >�

Notes:

1. The Z meaning function 5& translates to the one argument, one result predicate
UZQF& in Prolog, because the syntactic argument is handled by the DCTG.

2. Because the argument ­± is not used, it is translated into a Prolog underscore.

3. The Z function DPOTU5ZQF � 7"-6& qko 5:1& is treated as a semantic function
(it takes a syntactic argument). So in Prolog its single argument, ,, is passed by
the DCTG, and it has a single result.

6.3 Unary expression, dynamic semantics (Pasp §7.6.4)
The Z specification is

� .& � &913 qlo 45"$, qlo &OW.5SBDF qlo 4UBUF qko &YQS7BMVF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w 6OZ&YQS� # � 45"$,� ­U � &OW.5SBDF� ° � 4UBUF |
� x &YQS7BMVF�� &YQS7BMVF��]
� Ê &YQS7BMVF� � .FBO& § # ­U °
� z Ê 4UBUF�� � Ê 4UBUF�
� z W�� � .FBO6OZPQ � W� |
� .FBO& 	VOZ&YQS Ê 6OZ&YQS
 # ­U ° � Ê &YQS7BMVF��

So the corresponding Prolog translation is

The DeCCo project papers VI 27

F913 ��� VOZ&YQS	0Q�V/:@01
 &�F913

���
NFBO&	#
 3IP5
 4JHNB
 &YQS7BM3FT
 ��� �
 &YQS7BMVF� � < <TJHNB
4JHNB�>
 <W
7�> >

 &YQS7BMVF� � < <TJHNB
4JHNB�>
 <W
7�> >

 & ?? NFBO&	#
 3IP5
 4JHNB
 &YQS7BMVF�

 4JHNB� � 4JHNB�

 0Q ?? NFBO6OZ0Q	7�
 7�

 &YQS7BM3FT � &YQS7BMVF��

Notes:

1. The Z schema declaration &YQS7BMVF� translates to the Prolog &YQS7BMVF� �
< <TJHNB
4JHNB�>
 <W
7�> >, which exposes the schema components for later
use.

2. The meaning function result Ê &YQS7BMVF� translates to &YQS7BMVF�

3. Calculation of the meaning of the sub-expression gives the result &YQS7BMVF�,
which in turn gives 4JHNB� and 7�.

6.4 Actual parameter, type checking (Pasp §7.3.2)
The Z specification for the D � WBM case is

� 5"1 � &913 qlo *%5:1& qlo &OW5 qlo $)&$,
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w § � &913� 'PSNBM5ZQF� ­± � &OW5] D � WBM z " � Î |
� x &YQS5ZQF�] Ê &YQS5ZQF� � 5ZQF& § ­± |
� 5"1 § 	GPSNBM1BSBN Ê 'PSNBM5ZQF
 ­±
� � JG ±� � ± z XSJUF0OMZ È "�
� UIFO DIFDL0, FMTF DIFDL5ZQF8SPOH
� w § � &913� 'PSNBM5ZQF� ­± � &OW5] D � SFG |
� ���

The corresponding Prolog translation is

B$56"- ��� BDUVBM1BSBN	&�F913

���
UZQF"1	*EU
 &OW5
 $3FT
 ��� �
 *EU � GPSNBM1BSBN	'PSNBM5ZQF

 'PSNBM5ZQF � < @
 <D
$>
 <B
">
 <UBV
5BV>
 @
 @>

 	 $ � WBM
 " � <>

 �� &YQS5ZQF� � < <UBV
5BV�<
 <B
"�> >

 & ?? UZQF&	&OW5
 &YQS5ZQF�

 	 5BV� � 5BV
 OPU.FNCFS	XSJUF0OMZ
 "�

 �� $3FT � DIFDL0L
 � $3FT � DIFDL5ZQF8SPOH

 �
 �$ � SFG DBTF ����

Notes:

1. The non-syntactic parameter *EU is partial here, so we need to construct it
explicitly in the Prolog.

28 Z to Prolog DCTG translation guidelines

6.5 Variable declaration, type checking (Pasp §9.4.2.7)
Demonstrates using theta bindings of parts of declared schema.

The Z specification is

� 5ZQF7 � 7BS%FDM qlo 45"$, qlo &OW55SBDF qko &OW55SBDF
¤¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
� w 7BS%FDM� # � 45"$,� ­±U � &OW55SBDF |
� x 7BS5ZQF�� D
D� � $)&$,� JEU � *%5:1&]
� 	D�
Ê 4VCSBOHF5ZQF�
 � 55 ± # ­±U
� z Ê "SSBZ5ZQF� � 543T 43 # ­±U
� z D � 5* 	Ê 7BS%FDM
 Ê 4VCSBOHF/�
 OVN&MUT 43�

� z "� � SBO "
� z JEU � JG 5"T " �� D �� D� � DIFDL0,
� UIFO WBSJBCMF Ê 7BS5ZQF�
� FMTF WBSJBCMF Ì] " �� Î
 43 �� ÌÍ
 ±B �� ±B�

� MC �� �
 VC �� �
 ± �� UZQF8SPOH]Í |
� 57 Ê 7BS%FDM # ­±U � VQEBUF 	­±U
#
\¬ {o JEU^

The corresponding Prolog translation is

W"3%&$- ��� WBS%FDM	*�J%
 "�TFR"553
 43�TFR46#3
 5�U:1&

 47�TFR7"-6&

���
UZQF7	#
 3IP5BV5
 3IP5BV53FT
 ��� �

 7BS5ZQF� � < <B
"�>
 <TS
43�>
 <UBVB
5BV"�>

 <MC
-#�>
 <VC
6#�>
 <UBV
5BV�>>

 4VCSBOHF/� � < <MC
-#�>
 <VC
6#�> >

 4VCSBOHF5ZQF� � < <MC
-#�>
 <VC
6#�>
 <UBV
5BV�> >

 "SSBZ5ZQF� � < <TS
43�>
 <UBVB
5BV"�> >

 5 ?? UZQF5	#
 3IP5BV5
 <$�
 4VCSBOHF5ZQF�>

 43 ?? UZQF43T	#
 3IP5BV5
 "SSBZ5ZQF�

 OVN&MUT	43�
 /

 UZQF*'MBU	<*
 "
 43
 5
 47>
 4VCSBOHF/�
 /
 $

 " ?? GMBU	"4FR

 SBOHF	"4FR
 "�

 " ?? 5ZQF"T	$�

 	 QFTT	<$�
 $
 $�>
 DIFDL0,

 �� *EU � WBSJBCMF	7BS5ZQF�

 � *EU � WBSJBCMF	< <B
<>>
 <TS
<>>
 <UBVB
5BV"�>

 <MC
�>
 <VC
�>
 <UBV
UZQF8SPOH> >

 * ?? GMBU	*E

 VQEBUF	3IP5BV5
 #
 <*E
*EU>
 3IP5BV53FT

Notes:

1. The Z declaration 7BS5ZQF� translates to the Prolog 7BS5ZQF� �
<<B
"�>
 <TS
43�>
 <UBVB
5BV"�>
 <MC
-#�>
 <VC
6#�>
 <UBV
5BV�>>,
which flattened form exposes the all schema components for later use.

2. The component sub-schemas, 4VCSBOHF/�, 4VCSBOHF5ZQF�, and "SSBZ5ZQF�,
used to define 7BS5ZQF� are also introduced in the Prolog, so that they can be
used to translate various theta terms later.

The DeCCo project papers VI 29

3. The expression involving OVN&MUT is unwound to O � OVN&MUT 43�, in order to
be translated.

4. The use of 5ZQF* on the full syntactic argument is a rare usage. Usually meaning
expressions are called on subcomponents of the syntax tree. The DCTG
formulation does not directly support such usage. So 5ZQF* is translated to a call
to the ordinary Prolog predicate UZQF*'MBU, which itself has the translation of the
Z. Then this clause can make use of the same UZQF*'MBU.

5. Before we can find the range of the sequence of the attributes " we need to extract
the underlying sequence from within its DCTG superstructure, which is what
"??GMBU	"TFR
 does. Similarly for * and *E.

30 Z to Prolog DCTG translation guidelines

7. References

[Abramson 1989] Harvey Abramson, Veronica Dahl. Logic Grammars. Springer.
1989.

[Clocksin 1984] W. F. Clocksin, C. S. Mellish. Programming in Prolog. 2nd edition.
Springer. 1984

[Formaliser] Z Specific Formaliser User Guide. Logica. 1989-2000.

[ISO-Z] Formal Specification -- Z Notation -- Syntax, Type and Semantics.
International Standard. ISO/IEC 13568. 2002.

[Spivey 1992] J. M. Spivey. The Z Notation – a reference manual. 2nd edition.
Prentice Hall. 1992.

[Stepney et al] Susan Stepney, Dave Whitley, David Cooper, Colin Grant. A
Demonstrably Correct Compiler. Formal Aspects of Computing, 3:58-
101. BCS, 1991.

[Stepney 1993] Susan Stepney. High Integrity Compilation. Prentice Hall. 1993.

[Stepney 1998] Susan Stepney. Incremental Development of a High Integrity
Compiler: experience from an industrial development. In Third IEEE
High-Assurance Systems Engineering Symposium (HASE'98),
Washington DC 1998.

[Sterling] Leon Sterling, Ehud Shapiro. The Art of Prolog: advanced
programming techniques. MIT Press. 1986.

[Stringer-Calvert et al] David W. J. Stringer-Calvert, Susan Stepney, Ian Wand. Using PVS
to prove a Z refinement: a case study. In FME '97, Graz 1997. LNCS
vol 1313. Springer, 1997

	Preface
	Historical background of the DeCCo project
	The DeCCo Reports
	Acknowledgements

	Introduction
	Plain Z
	Z and Prolog naming conventions
	Z types
	Z values
	Given sets
	Simple given sets
	Free types

	Cartesian tuples
	Schema bindings
	Flattened schema bindings
	Other values

	Schemas
	Simple Schema declarations
	Predicate part
	Nested schemas
	Decorated Schema declarations
	Theta expressions
	Schema as predicate

	Modelling Z functions
	Functions as sets of pairs (DeCCo environments)
	Functions as a computations (Z toolkit definitions)
	A recursive rewriting
	Accumulator optimisation

	DCTGs
	Plain DCTGs
	Syntax
	Semantics
	Prolog equivalent
	Multiple semantics

	Extensions for free types
	Concrete Syntax and parsing

	Semantic functions
	Declaration
	Specification

	Partiality
	Spotting partiality
	Declared arguments do not match function signature
	Implication, or bar part in universal quantifier
	Partial arrow in the signature

	Implementing partiality
	Split into cases
	Syntactically disallowed behaviour
	Statically undefined behaviour
	Dynamically undefined behaviour

	Summary

	Examples
	Unary Op pred, dynamic semantics \(Pasp §6.2.4�
	Constant, type checking \(Pasp §7.4.2\)
	Unary expression, dynamic semantics \(Pasp §7.6�
	Actual parameter, type checking \(Pasp §7.3.2\�
	Variable declaration, type checking \(Pasp §9.4�

	References

