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Abstract.   There is a tension between biology’s emphasis on perpetuation and the change 
required by biologically-inspired evolutionary algorithms.  But there were radical changes 
when life first emerged from a prebiotic soup of chemicals.  We investigate the possibility 
of taking ideas about the origin of life to develop a novel general purpose constructive 
search technique, inspired by ideas from autocatalytic reaction networks.  Reactions 
combine partial solutions into fuller solutions; the reaction rates are catalysed by the 
products’ fitnesses. 

1 Introduction 

Most biological processes are concerned with the survival and propagation of existing life.  
Evolution is hesitant, taking small, incremental steps in a game played out over thousands 
or millions of years.  Yet evolutionary algorithms put change first, aiming to find answers 
from a radically different starting point.    

By definition, biology did not exist before life emerged.  Nature started with a 
collection of parts, a prebiotic soup of simple chemicals from which the first life forms 
emerged.  A number of theories have been put forward about the origin of life and we 
investigate how one of them – Kauffman [1993]’s autocatalytic reaction networks – might 
be used to inspire a new constructive search algorithm.   

The idea presented here is simple; the effort is in finding the right abstractions from 
chemistry to apply.  The solution is certainly not (yet) perfected, but hopefully offers a 
glimpse at what could be possible.   

2 Artificial and Real Chemistry 

There is much research on various artificial chemistries; for a comprehensive review of 
the field see Dittrich et al [2001].  Much of the research relates to investigation of real 
chemistry, life, complexity, novelty, self-organisation, emergence, and so on (for 
example, [Fontana 1992] [Kauffman 1993] [Kauffman 1995] [McMullin 1997] [Gross & 
McMullin 2002] and many others).  Some have tackled the problem of search using a 
chemistry-inspired approach (for example, [Kanada 1995]), but take a rather different 
approach from that suggested here. 

Consider the chemical reaction a b .  This has a molecules of reactant 
A combining with b molecules of B to produce C and D.  All reactions are reversible, and 

A B C Dc d+ +U
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in the back reaction C and D produce A and B.  At equilibrium, these two reactions 
proceed at the same rate.  The equilibrium constant K captures the ratio of 
concentrations of reactants, denoted [A] and [B], to products, [C] and [D], at equilibrium.  
The rate constant k captures the rate at which the reactions progress: k1 is the forward 
reaction rate constant and the reaction rate is k1[A][B]; k−1 is the back reaction rate 
constant and the reaction rate is k−1[C][D].  (See the Appendix for more details.) 

A catalyst is a substance that increases the rate of a reaction without being consumed 
itself; it speeds the rate, increasing k, by lowering the (free energy) barrier to the reaction.  
The speedup may be only marginal, or may be dramatic, increasing the rate by a factor of 
1012 or more [Haynie 2001].  An autocatalytic process is one that catalyses itself: the 
products of the reaction catalyse their further creation.  Kauffman [1993] [1995]’s 
suggestion for the origin of life is based on the autocatalytic network.  He adopts a 
simple, abstract chemistry to explore his ideas, using strings to represent molecules.  
Single letters (monomers) represent the food supplied to the system.  A reaction 
concatenates the reactants, adding a longer string (polymer) to the soup.  Alternatively, 
two products may result from a reaction: back reactions may cleave large strings into 
smaller fragments.  Kauffman also assumes that the products of some reactions catalyse 
other reactions.  In his simple model, catalysts for reactions are chosen randomly, with a 
low probability.  A network forms because “as the length of the molecules increases, the 
number of kinds of molecules increases exponentially, but the number of reactions by 
which they convert from one to another rises even faster” [Kauffman 1995].  So the ratio 
of catalysed reactions to chemicals eventually exceeds a certain threshold, and then a 
large collectively-autocatalytic system spontaneously emerges; this catalysed reaction 
subgraph consists of the vast majority of the reactants in the soup.  Similar results are 
observed with more complex catalyst models [Kauffman 1993, 1995]. 

3 Chemistry-inspired search 

Our search model explores the possibility of using some of these ideas and harnessing 
some of the constructive power that – if Kauffman is right – must surely be in these 
systems.   In particular, we ask:  Is it possible to start with a few simple elements and use 
these to construct a complete solution?  Is it possible for a solution simply to emerge?   

In these networks the different reaction rates, catalysis, the varying supply of reactants 
and products, and the interactions between them turn the whole system into a much more 
complex entity.  This complex interplay of factors ultimately determines each molecule’s 
‘fitness’, evolves throughout the life of a network, and makes the ground rules through 
which reaction networks are able develop their emergent behaviour.   

To use these ideas to inspire a search algorithm, we must find a mapping between the 
concepts in a reaction network and the sort of representations typically found in a search 
problem.  The search algorithm must also build up a reaction network, directing this 
building towards solving some external problem.  The network development must be 
simple to model, and it must be possible to apply it to many different problems.   
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Modelling partial solutions 

The reaction network represents the entire solution space, so it must be possible to model 
all solutions and partial solutions within this space.  The representation of a (partial) 
solution is as a molecule within the network.  The connections between the molecules are 
modelled as reactions.   

Due to the large size of most search spaces, genetic algorithms (GAs), and many other 
meta-heuristic search algorithms, model only a small part of it at any given time.  We do 
the same here.  Kauffman initialises his networks with small food molecules, which react 
to form larger molecules.  In our reaction network, the food comprises the simplest 
“atomic” partial solutions.  Food is reacted to create larger molecules that participate in 
subsequent reactions.  As molecules are created, the associated reaction links between the 
participants are also created.  Through a series of reactions, complete solutions can be 
created.  The molecules in the network do not have a set position within the final solution; 
this is fixed as full solutions are built up.   

We look at a (very!) simple case study problem: “n 1s”.  This searches a solution space 
of the strings drawn from the alphabet Σ = {0,1} for that string of length n that comprises 
all 1s.  Partial solutions are substrings.  Reactions produce new molecules by 
concatenation, such as 01 + 11 → 0111.  n 1s is by no means a challenging problem for 
humans, neither is it a difficult problem for computers: hill climbing works admirably.  
However, it is a problem that GAs find relatively tricky; for example, our comparison GA 
implementation tried over 9 million solutions before finding the answer to 512 1s.  Also, it 
is a simple enough problem that it is a useful basis for analysis. 

Fitness-based catalysis 

Here, an external fitness function is imposed on the reaction network, to direct reactions 
to form good solutions.  This is achieved by catalysis.  Catalysing a reaction increases its 
rate and produces more product.  We want more of the fitter products, so the catalysed 
rate is related to a product’s fitness.  

The aim of the network is to build up increasingly fit solutions by combining good 
intermediate molecules already in the network.  Good building blocks have a high 
reaction rate, so quickly appear in large numbers.  Ideally, when a new reaction is added 
to the network, the best possible molecules (partial solutions) should be chosen as 
reactants.  So participants  are selected probabilistically based on their concentrations.  By 
integrating catalytic activity over time using concentrations, it smoothes over short term 
perturbations in the fitness function, making the network less sensitive.  This is also 
consistent with the approach used in most GAs, in which common genes tend to appear in 
more offspring.  The higher chance of selecting good building blocks as participants in 
new reactions reinforces fit parts of the final solution at an early stage.  This is could 
prove beneficial in directing the search, but does not preclude the network from trying 
even fitter alternatives if they are found.   
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Fi re 2  Catalysing back along reaction paths 

Catalysis Network 

Catalysis is applied to reaction paths in the network.  Where a partial fitness function 
exists, each molecule acts as an autocatalyst for its own production (fig 1).  If there is no 
partial fitness function, any final produc  on the reaction path catalyse their building 
blocks (fig 2); we do not address that prob m (the credit assignment problem) here. 

As well as the forward path depen  
within the network, there is a backward path dependence between catalyst and reactants, 
which introduces a degree of competition and cooperation between elements within the 

Reaction rates are used to indicate fitness; however, the existence of equilibria is 

ould 

nes 
In

po
wo ost impossible.  Fortunately, the reaction can easily be simulated by 
devolving responsibility for these calculations down to the molecular level.   

network. 

essential in regulating reactions.  Each individual reaction influences all others on the 
same path, and by extension in the entire network: 
• fit molecules are provided with positive feedback, increasing their rate of production 
• the creation of less useful molecules is slowed by their concentration build-up; it c

even lead to the back reaction (their destruction) dominating 
• the balance of concentrations and reactions shifts continually as new molecules are 

added to the reaction network, establishing new paths that utilise or largely supersede 
older o

 a suitably large network, the effects of all of these interactions should give rise to 
intricate and complex – yet controlled – emergent behaviour.   

4 Implementation 

Even for relatively simple sets of reactions, calculating information such as equilibrium 
sitions can be difficult; performing the same sorts of analyses on reaction networks 
uld be alm
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We have implemented a simple artificial reaction network system.  It comprises 
molecules representing partial solutions, situated in a reaction network linking them 
together with fitness-catalysed reaction rates.  All (forward) reactions created have two 
reactants (though the same molecule could be selected twice).  While this is a 

y, “higher order” reactions with more than two reactants are 
relatively uncommon in nature, too.  

Th

ir concentrations.  The resulting product is compared 
to the currently existing molecules.  There are three possibilities: 

generating reaction is added to the network with a forward reaction rate k1 
given by the fitness of the product molecule, and a back reaction rate k  = k /K.  K is 

 generating reaction is added to the network 
n rate given by the fitness of the product molecule 

ated, depending on their 

eq
va
tim

or the 8 1s problem, the run length varies considerably and is quite dependent on which 

ced the solution almost immediately.  Features typical of 
most runs that do not complete almost immediately are: (i) at first, the fitness of the best 
solution rises rapidly as good molecules are combined (a short run finds the answer at this 

simplification of wet chemistr

 
Initialise:  The simulation is initialised with only food molecules (atoms), and no 
reactions.   
 

e simulation then loops around the following two steps until a solution is found, or the 
maximum number of steps has been taken. 
 
Grow network: The network is updated (grown) either by combining two molecules 
(forward reaction) or by splitting one (back reaction).  Reactants are selected for this 
process probabilistically based on the

• new product: the new product is added to the molecule pool with zero concentration; 
the new 

−1 1
taken to be a constant of the run; typically K = 10 (see later). 

• existing product, new reaction: the new
with a reactio

• existing product and reaction: an existing reaction has been duplicated, so the process 
tries again to create a novel reaction 

 
Update Concentrations:  The molecules’ concentrations are upd
old concentrations and the fitness-based reaction rates, using a discretised version of 

uation 9.  The concentrations of the food molecules are maintained at their initial 
lues.  A parameter allows the concentrations of the other molecules to be updated m 
es per network growth step. 

5 Results: 8 1s and 16 1s problems 

F
reactants are selected in the early stages of network growth.  If these are judiciously 
chosen, the answer is typically found after the network has grown to 10–15 molecules; 
however other runs grew to 200–300 molecules before finding the solution, a fair 
proportion of the search space (search space size is 2n + 2n−1 + … + 21 = 510 for n = 8).   

About 75% of the runs produ



6        

sta ); (ii) the next new molecule produced isge  relatively unfit, but this is followed by 
another relatively good solution;  (iii) this fitness oscillation continues throughout the run.   

e 
we

mo

ked molecules, often with similar constituent atoms, 
thr

ent reactor types to create the 

les 
at the end of the reaction chain soon increase well above that of the other molecules.  

ainly this has some nice 
pr

As

The results from larger n 1s problems follow a similar pattern: promising results are 
produced initially, followed by more mediocre solutions.  Solutions for 16 1s are typically 
produced after creating 80–500 molecules (in a search space of size 130,000), although 
again some runs last much longer.   

For reasons examined below, the current version of the program does not yet scal
ll, so was not tested on significantly larger problems.   
 

Fitness oscillation behaviour can be explained by the concentrations of intermediates.  
Initially, the network chooses fit building blocks as reactants as they have been produced 
in greater quantities.  However, it does not take particularly long for the concentration of 

lecules that are less fit (but unused as reactants) to exceed that of more valuable 
molecules that are now part of reaction chains.  The next novel reaction is likely to use 
one of these less fit molecules because of its high concentration.  This quickly reduces its 
concentration (and that of closely lin

ough back reactions), allowing the next new reaction to use fitter molecules again.   
 

Network flow:  Chemists rely on a number of differ
products they need.  The two main types are: batch reactors, where chemicals are added 
and then left to reach equilibrium (a closed system); and flow reactors, where reactants are 
continually refreshed and products removed (an open system).  Systems in nature behave 
somewhere between these extremes: they are open systems, but products are not 
uniformly swept away and replaced as soon as they are created.   

If the food used by the network is replenished, material continues to flow through the 
system, preventing it from approaching equilibrium.  We achieve this by keeping the 
stocks of food at the same concentration throughout.  The concentrations of the molecu

These continue a roughly linear rise in concentration for the remainder of the run.  The 
concentrations of the intermediate products rise initially, then reach an approximately 
steady state, being produced and consumed at roughly the same rate. 

Some difficulties are experienced if this flow model is used when a network is being 
built.  The concentration of the molecules at the end of reaction chains keeps on rising, 
making them likely candidates for the next novel reaction.  Cert

operties, such as building up full solutions quickly by tending to combine large 
molecules.  However, some of these large molecules are not useful: this bias against 
smaller, but essential, building blocks is problematic. 

6 Strengths and weaknesses of the algorithm 

 is evident from the preliminary results, there are some issues with the current version: 



Artificial Catalysed Reaction Networks for Search      7 

• The system punishes good components.  Good molecules often form part of other good 
molecules, which have high reaction rates.  These larger molecules rapidly deplete the 
stock of their fit constituents.  In short, the good building blocks are used up making 
nearly, but not quite, perfect solutions.  Adjusting K makes little difference: initially 
the smaller molecules remain in higher concentration, but this just encourages more 
reactions to be created using it.   

e essential requirement for a 
system to be self-selective is that it has to stabilise certain structures at the expense of 

 

 
Ho

La
be not too sensitive to fitness values for partial solutions, 

Th
rat
un s 
amifications for larger molecules that rely on it; and increasing the production rate of 

ed final product concentrations 
that are about 3 times greater than they would otherwise be.  But this is a substantial 

olecules in the network; the 
sy

012 without running 
out

molecule in two.  If those components do not yet exist in the simulated network, they 

• The system does not remove any unfit components.  “Th

others” [Eigen & Schuster 1977].  Almost all GAs do this: a GA would be
unproductive if the population grew because there were no ‘death’ each generation.   

wever, the approach does have some nice properties.   
 
ck of sensitivity to partial fitness function:  Due to the equilibrium relationships 
tween molecules, the algorithm is 

implying that the partial fitness does not need to be calculated with any great fidelity.  
is is useful for problems where the partial fitness has to be estimated.  Increasing the 
e of a reaction by a factor of 10 to 100 has little effect on the concentrations of other 
connected molecules.  Dramatically reducing the rate of an essential component ha

r
most intermediates by a factor of 10 usually yields associat

corrective influence that has been exerted by the network.  
The use of equilibrium reactions is crucial to preventing over-sensitivity to vagaries in 

the fitness function.  Acting through a complex web of interactions and interdependencies, 
even if the reaction rate of some molecules within the network is wildly inaccurate, the 
network dramatically curtails their production through a combination of reversible 
reactions and limiting the flow of material to set reaction pathways.   

This is perhaps illustrated most convincingly by comparing the effect of increasing the 
fitness of a component by an order of magnitude.  In a normal GA, the fit component 
would rapidly take over the population to the exclusion of everything else.  Here, the 
component’s production is greatly restricted by other m

stem is regulating itself.  With no outside interference, global knowledge or complex 
rules, the reaction network has clamped down on a runaway reaction and maintained itself 
in a stable state.   

This is exactly the sort of self-organising behaviour one would hope to see: catalysts 
used in biological processes speed up reactions by factors as great as 1

 of control; Eigen & Schuster [1977]’s and Kauffman [1995]’s models rely on these 
subtle relationships in their models of early life.   

 
Novelty from back reactions: back reactions are crucial to regulating concentrations.  
They have an additional effect in the simulation.  A back reaction splits an existing 
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might become valuable new building blocks.  If they do, the back reaction could still 
create additional reaction paths, providing new routes through the reaction graph.  This 
co

Prevention of premature convergence: premature convergence is naturally prevented, 

Innovation operator:  Creating a novel reaction acts as the innovation operator in the 

Equilibrium constant K:  K is currently fixed for a particular run, and is the same for all 

 fully address the problems noted earlier, though.)   
• If K were adjusted dynamically, depending on the demand for a molecule, it could 

pr ng large, unused stocks 
of on network as a whole: 
how quickly would K be changed, and by how much?  A mechanism employed by 

e answer 

Op the inclusion of 

ad

uld speed up the molecule’s production, or reduce its consumption of molecules along 
its original reaction path, affecting their concentrations and chance of being selected for 
novel reactions.   

 

primarily through including some history within the model.  By storing partial solutions, 
the system retains information about the search space that has been explored so far.  
Suppose most of a search has concentrated on a small part of the solution space.  If a very 
different, but excellent, alternative is found, the search will implicitly backtrack through 
the reaction network to explore this area too.  The reaction network provides a dynamic, 
just-in-time mechanism for avoiding convergence.  In GAs, premature convergence is 
alleviated by mutation: the relationship between these processes is still to be understood. 

 

search.  It manipulates the equivalent of GA schemata directly, combining them based on 
their fitness; there is no need to evolve them implicitly by maintaining a large population, 
as with a GA.  It is also not destructive, so should not suffer from problems akin to introns 
that can plague GP.   

7 Improving the search through better chemistry 

reactions; typically K = 10.  (A number of different values were tried for K, with limited 
effect.)  There is an argument for adopting a more complex, or even dynamic, K: 
• If K were decreased as the size of molecule grows, it might prevent final products from 

being made in such large quantities, leaving more medium length molecules to react.  
(This is unlikely to

eclude the molecule either from being ‘sucked dry’ or buildi
 itself.  It is unclear what effect this would have on the reacti

biological systems with (ostensibly) similar effects is regulation of catalysts.  However, 
this requires a higher level of control than is assumed to be present in a catalytic 
network; further it is not clear what form this control should take, given that th
is not known to the system. 
 
en system flow:  A better model of flow of food into the system and 

removal of material from the reaction network could allow the inclusion of significant 
ditional selective pressure.   
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Re
the
is 
to 

 
Ca alyst concentration: The current system does not consider the concentration of 

re considered, reaction rates would tend to follow an 
aut catalytic S-curve [Logan 1996].  This would prevent a molecule from being made as 

reases, so 
does the catalytic effect and hence the rate.   

eens on an n×n chessboard such that no two 
queens are attacking each other: they do not share a column, row, or diagonal.  Since no 
two queens can be in the same row, we can represent the solution in terms of only the 

um w 1, column 1), (queen 2 in row 2, column 
4) and so on.  The full solution is a suitable permutation of 1..n, such as [1423]; partial 

 n-queens is unlikely to be as accurate as that 
us  in n 1s, as the problem cannot be broken down fully, but the network’s ability to 

length of the 
partial tour. 

 

actant selection:  Molecules to make a novel reaction are selected entirely based on 
ir concentration.  The rate should be included as well.  The difficulty applying this here 

that that the reaction rate is determined only once a reaction exists.  It may be possible 
estimate rate from other similar reactions, although exactly how is not clear. 

t
catalysts when determining reaction rates; they are assumed to be present in large excess.  
This is not actually true, since all reactions are directly autocatalysed by their products.  If 
the catalyst concentration we

o
quickly at low concentrations, stopping the products of novel reactions from using up 
valuable building blocks.  It is possible that this would go some way to dampening the 
oscillations seen in the current results.  It would also reduce the rate at which a molecule’s 
concentration can be reduced through back reactions: as the concentration dec

8 Application to other problems 

One of the aims is to create a search algorithm that is not domain specific, one that can be 
applied to a wide variety of problems.  This section outlines how reaction networks could 
be applied to the n-queens problem, to the Travelling Salesman Problem (TSP), to 
program generation, and to formal proof.   

 
n-queens:  The problem is to place n chess qu

col ns.  So [1423] represents (queen 1 in ro

solutions are permutations of subsets of 1..n, such as [14] and [32], and the food 
comprises the single numbers in 1..n, [1][2][3][4].  Reactions concatenate partial 
solutions; ones that would put two queens in the same column are forbidden. 

Any partial fitness function devised for
ed

control the under- and over-production of its molecules should prevent this from being a 
major concern.   

 
TSP:  The problem is to find a short route through a network of cities.  The full solution is 
a suitable permutation of 1..n giving the order of city visits.  Partial solutions are partial 
tours, permutations of subsets of 1..n, and the food comprises the single numbers in 1..n, 
[1][2][3][4].  Reactions concatenate partial solutions; ones that would put the same city in 
the solution more than once are forbidden.  The partial fitness function is the 
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Pr

les are subtree fragments.  Reactions concatenate by subtrees;  terminals 
are attached to the leaf nodes only, and prevent further concatenation at that point.  

jectures.  Reactions produce new conjectures by applying inference rules to 
the reactants.  The solution is the molecule true or false.  The proof is the reaction 

GA precursor:  One avenue that has not been explored, but which could prove fruitful, is 

9 

ith scalability have 
ari However, we believe this to be a fruitful approach, and are proceeding to look at 

nts 

ogram generation:  The problem is to find a computer program to calculate a 
particular result.  The reaction network can be used to build programs as trees, in the style 
of GP solutions.  The food molecules are the functions and terminals specified in the 
problem.  Molecu

Typing, spatial or other tree constraints could be imposed on the reactions.  Determining 
the relevant partial fitnesses is an open problem. 

 
Proofs: The problem is to find a proof of a conjecture.  The food molecules are the 
conjecture to be proved, and any relevant lemmas and axioms.  Partial solutions are other, 
inferred, con

pathway from the food conjecture to the solution.  Again, determining the relevant partial 
fitnesses is an open problem.   

Back reactions could prove to be particularly valuable here.  Suppose that a large, but 
only moderately good proof had been constructed, yet contains within it is a really useful 
lemma.  If the proof were split, via a back reaction, into the lemma and the rest of the 
proof, the lemma could then be incorporated into other, fitter proofs.  

 

to combine this approach with a standard GA.  The initial population for the GA would be 
created by running the algorithm outlined here, and using any final (but non-optimal) 
solutions, or “padding out” good partial solutions.  This would hopefully give a better 
starting position for the GA, and would overcome many of the points raised above.   

Conclusions 

We have outlined a novel search algorithm inspired by catalysed chemical reaction 
networks.  It performs well on small problems, but some issues w

sen.  
introducing better chemistry, and trying more challenging problems. 

One aspect of the original inspiration, Kauffman [1993] [1995]’s autocatalytic 
networks, that has not been addressed in this algorithm is the random choice of reaction to 
catalyse, and the resulting emergent self-catalysing network. That is also a topic for 
further study. 
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A d rate constant k 

use to 

[199
is determined 

) 

where E = energy; P = pressure; V = volume; T = temperature; S = entropy.  If ∆G < 0, the 
reaction is favourable.  Consider the reaction .  At equilibrium, there 

thing in between.  The 
Gibbs free energy determines the position of equilibrium.  ∆G is the free energy of the 

(2) 

ponents.  The concentrations of reactants 
and products vary between reactions, so it is useful to normalise the chemical potentials to 
1M (mole) concentration. 00]: 
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Equilibrium constant K an

Here we give a very brief overview of the properties of chemical reactions that we 
inspire our artificial reaction network search algorithm.  See, for example, Gutfreud 

5], [Logan 1996], Haynie [2001] for more detail. 
Whether a chemical reaction is thermodynamically favourable or not 

by the change ∆ in the Gibbs free energy G:  
 

G E P V T S∆ = ∆ + ∆ − ∆   (1
 

A B C Da b c d+ +U

 
0

A A ln[A]G G RT= +   (3) 
 

may be very little of the reactants, very little product, or some

products minus that of the reactants: 
 

products reactants C D A BG G G cG dG aG bG∆ = − = + − −  
 

The GX are the chemical potentials of the com

 It can be shown that [Mathews et al 20
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where GA
0 = chemical potential at 1M; [A] = concentration of A.  So the whole reaction’s 

free energy change can be written as: 
 

( )0 ln [C] [D] [A] [B]c d a bG G RT∆ +

(6) 

∆ =   (4) 
 

where R = gas constant.  At equilibrium, the concentrations have fixed equilibrium values, 
for a given temperature and pressure.  The equilibrium constant K is:  

 

( )[C] [D] [A] [B]c d a bK =   
eq

f the concentrations of the react he 

(5) 
 

At equilibrium there i  = 0.  (This does s no favourable direction for the reaction: ∆G not 
mean that no reactions are occurring; rather, the forward and back reaction rates are 
identical.)  Setting  ∆G = 0 in eqn (4), substituting for K from eqn (5), and rearranging: 

 

( )0expK G RT= − ∆

ction rate constant; k−1 = back reaction rat ual 

  
 

ction is directly 
proportional to the product o ants” [Gutfreud 1995].  T
constant of proportionality (at given temperature and pressure) is called the rate constant.   

where k1 = forward rea e constant.  The act
reaction rates are determined by the product of the concentrations and the rate constant, in 

Gibbs free energy can be used to determine the direction of a reaction, but says nothing 
about how quickly the reaction happens.  The rate of a chemical reaction obeys the law of 
mass action, which states (in this context) that “the rate of rea

Consider the simple reaction: 
 

1

1A 2B C
k

k−
+ ZZZXYZZZ   (7) 

 

this case, forward reaction rate = k1[A][B][B] = k1[A][B]2, reverse reaction rate = k−1[C].  
The change in concentrations is thus: 

 

2
1 1

[A] [B] [C]2 [A][B] [C]d d dk k
dt dt dt−= = − = −  (8) 

 
eneral: In

 
 g

A B C
[A] [X]

a b c
d d

+ + +… X Y Zx y z+ + +U …

1 1[A] [B] [C] [X] [Y] [Z]a b c x y za k k x
dt dt−= − = −… …

 
If the Gibbs free energy of the products is less than the reactants, the overall reaction is 
favourable.  However, but there is a fr

 (9) 

ee energy barrier to overcome before the reaction 
can occur, the height of which determines the reaction rate k.   


