
Open-Endedness: Definitions and Shortcuts

Wolfgang Banzhaf1, Guillaume Beslon2, René Doursat3 and Susan Stepney4

1 Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, A1B 3X5, Canada
2 Université de Lyon, INSA-Lyon, INRIA Beagle, CNRS LIRIS UMR5205, Villeurbanne, France

3 Informatics Research Centre, School of Computing, Manchester Metropolitan University, M1 5GD, UK
4 Department of Computer Science, and York Centre for Complex Systems Analysis, University of York, YO10 5DD, UK

Introduction
The open-endedness of a system is often defined as the con-
tinual production of novelty. Here we report on recent work
by Banzhaf et al. (2016) that pins down this concept more
rigorously. We define several types of novelty that a system
may exhibit, and classify these as variation, innovation, and
emergence. We also define an architecture suitable for build-
ing simulations of open-ended novelty-generating systems.

A meta-model for open-ended systems
Our definition of open-endedness (OE) is relative to the
model and meta-model of the system under investigation.
The concepts of “model” and “meta-model” are used for
building both scientific and engineering models of systems:
Models provide an abstract language for the relevant con-
cepts. A scientific (descriptive) model is used when ob-
serving and experimenting on a (natural or artificial) system;
An engineering (prescriptive) model (often a computational
model) is used to design and implement an artificial system.
In the case of a computational model, the model defines the
concepts to be implemented in code. Meta-models provide
the analogous abstract language to define models, compris-
ing the concepts that can be used to build the model. For ex-
ample, in an object-oriented system, the meta-model would
contain the concepts of ‘class’, ‘object’, ‘method’, ‘associa-
tion’, and so on.

There are many possible models and meta-models for
capturing and analysing the behaviour of systems. These
models and meta-models may be implicit or explicit. Here
we assume that we will implement and analyse agent-based
(or entity-based) systems. A suitable meta-model for such
an analysis, which allows us to capture intuitions about ma-
jor transitions, contains the following concepts:

• Entity: an identifiable integrated whole within the model:
a “thing” with structure (organisation) and behaviour (ac-
tivity, processing). An entity may be an atomic entity,
with no (modelled) internal structure, or a system entity,
composed of internal components.

• Environment: part of the domain of interest not modelled
as explicit entities, for example: space, fields, flows.

• System: a local environment plus a collection of interact-
ing entities, forming some identifiable whole. A system
may be an aggregate system, comprising a collection of
entities in a local environment but not considered to form
an entity in its own right; or a system entity, modelled as
an entity at a higher level than its component entities.

• Interaction: entities interact with each other and with
their environment, potentially forming systems

• Level: level-0 entities are atomic entities; level-N>0 en-
tities are system entities that contain lower-level entities,
including at least one level-(N−1) entity.

This meta-model can be used to provide the concepts used
in building specific entity-based models of system.

Definitions
We define types of novelty and OE with respect to the sys-
tem’s current model and meta-model. Novelty in an observed
system is classified as:

0. Variation: novelty within the model. Variation changes an
instance of the model, such as a change to the values of
a variable that exists in the model, without changing the
model itself. Variation explores a pre-defined (modelled)
state space, producing new values of existing variables.

1. Innovation: novelty that changes the model. Innovation
changes the model: for example, adds a new type or re-
lationship (that conforms to the meta-model), or elimi-
nating an existing one. Innovation changes the combi-
natorics and the size/structure of the state space, thereby
growing/shrinking the possibilities of variation.

2. Emergence: novelty that changes the meta-model. Emer-
gence changes the meta-model: a change that adds a new
meta-type or relationship, or possibly eliminates an exist-
ing one. A change to our meta-model that adds a new level
is a major transition. Another change to our meta-model



might include the addition of the concept of process as a
first-class thing.

An open-ended event is an event that results in innovation
or emergence. An open-ended system is a system with the
ability to continually produce open-ended events.

Implementation shortcuts
To study a system such as the ones captured by our meta-
model, we need to be able to simulate multi-level systems.
We may need to introduce new components in our simu-
lation to simplify or accelerate the dynamics of the higher
levels. We call these new elements shortcuts, since they
directly implement some properties of the higher level that,
in an ideal simulation, would emerge from the generative
level-0 entities. Shortcuts are hard-coded design optimisa-
tions manually introduced into the simulation.

Shortcuts provide optimisations by explicitly constrain-
ing structures and behaviours at their level, rather than re-
quiring these constraints to emerge from the system’s be-
haviour. Hence, specific shortcuts will enable or constrain
certain classes of open-endedness.

When designing the simulation of an open-ended system,
one crucial design step is then the identification and im-
plementation of relevant shortcuts. These will be research-
dependent: they will depend on the specific question one
wants to answer with the simulation. Examples of shortcuts
used (usually implicitly) in simulations are:

• Individuality: entities at level N > 0 are hard-coded
rather than emergent.

• Replication: the explicit implementation of operators that
replicate the entities at level N external to the entities.

• Fitness: replacement of the differential reproductive suc-
cess emerging from the difference between entities by an
explicit computation of reproductive success according to
some target task.

Open-ended simulations
We have defined OE in terms of innovation and emergence:
changes to models and meta-models. In classical software
simulations, a model is designed (say, in UML) conform-
ing to some meta-model (e.g. of object orientation, or agent-
based systems), and then implemented. The running code
conforms to the model. That model does not change as the
system runs. Therefore, can such simulations ever exhibit
innovation or emergence? Can they be open-ended?

The short answer is that they exhibit innovation and emer-
gence. The implementation model is an engineering model.
However, the running system can be analysed with a scien-
tific model, and this model can change. Consider Conway’s
Game of Life. The engineering model consists of dead/alive
cells, which interact with their neighbours. This model is

(typically) fixed. However, the model used to analyse the
running system can include concepts such as blocks, and
gliders, and other higher-level components. These higher
levels are emergent, according to our definition.

The longer answer, however, is that they probably can-
not exhibit OE, i.e. the continual production of open-ended
events. The reason is that the code, conforming to the fixed
model, cannot directly exploit the (scientifically modelled)
innovations and emergents. It may well be the case that
changes to the scientific (observational) model need to be
fed back into changes to the engineering model. Steps along
the way include:

1. The emergent novelty is recognised outside the simula-
tion, by analysing the scientific model.

2. The emergent novelty is anticipated and recognised, using
pre-coded recognisers present in the code (hence in the
engineering model), available to report it once it appears.

3. The type of emergent novelty is anticipated and captured,
using pre-coded rules available to recognise it, and make
it a component of the simulation once it appears.

4. The emergent novelty is somehow emergently recognised
by the simulator, and new code is generated by the simu-
lator to capture the recognition.

5. The emergent novelty is somehow emergently captured
by the simulator: once recognised, new shortcut is gener-
ated by the simulator to capture the specific emergence.

How to realise the later steps remains an open research
question. Until then, simulations can use hard-coded short-
cuts to overcome some of these issues.

Conclusion
We have defined open-endedness in terms of novelty, and
identified three classes of novelty in terms of models and
meta-models. We have sketched a meta-model for entity-
based simulations, and a shortcut architecture for efficient
implementation. We have outlined research requirements
for fully open-ended simulations that can incorporate model
changes and meta-model changes automatically.

Acknowledgments WB acknowledges funding from NSERC
under Discovery Grant RGPIN 283304-2012, GB and SS from the
European Commission (FP7-ICT-2013.9.6 FET Proactive: Evolv-
ing Living Technologies) EvoEvo project (ICT-610427).

References
Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster,

J. A., McMullin, B., de Melo, V. V., Miconi, T., Spector,
L., Stepney, S., and White, R. (2016). Defining and sim-
ulating open-ended novelty: Requirements, guidelines, and
challenges. Theory in Biosciences. DOI: 10.1007/s12064-
016-0229-7, 54pp.


	Introduction
	A meta-model for open-ended systems
	Definitions
	Implementation shortcuts
	Open-ended simulations
	Conclusion

