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Abstract

We identify some desired mathematical properties of bonds
in an Artificial Chemistry (AChem) that promote complex-
ity and open-ended behaviour (i.e. an AChem not designed
to display particular behaviours). We identify the underly-
ing structures created by different properties of mathematical
products. We use these to exploit existing algebra to generate
a potentially open-ended subsymbolic AChem (ssAChem).
We give examples of how our approach leads to interesting
behaviour, focused on the structure of composite particles
within our system.

A Low Level Approach to Artificial
Chemistries

Most Artificial Chemistries (AChems) seek to produce a
system capable of displaying specific behaviours associated
with abiogenesis, the transition from inorganic to organic
(living) materials (Hutton, 2002; Lucht, 2012; Suzuki et al.,
2003). Those systems succeed in generating their partic-
ular behaviours because that is what they are designed to
do. Another approach is to consider that we are seeking
open-ended behaviour in our systems. In order to design
for open-ended behaviour we need to approach the problem
in an open-ended way.

We need to design a system that is rich and complex, with
properties that allow us to define all the reactions of our
AChem implicitly. We can then start looking for, and find-
ing, behaviours that are emergent from the design, rather
than engineered explicitly. We need a set of building blocks
and connectors that do not limit the structure we design.
Think of this as the difference between a prefabricated house
and a brick house. A prefab has pieces that are specifically
designed to fit together and form a house, and have a lim-
ited capability to do anything else. A brick house is just the
bricks and the mortar that joins them. The bricks are not
limited to building a certain house, or even a house of a par-
ticular size. With enough bricks and mortar the possibilities
are endless. Likewise in an open-ended AChem the only
limit should be the material and the amount of energy in the
system.

We need to consider desirable properties of the interac-
tions of our particles, rather than of the whole system, while
ensuring that we do not over- or under-constrain the AChem.
Here we do this by taking a mathematical approach, and
taking advantage of existing mathematical theory and struc-
tures. This allows us to discuss not just the properties and
behaviours of the particles, but also the different links and
linking structures between them. We can then use estab-
lished mathematics that has many emergent properties with
interesting forms of interactions. We can also expand our
view to talk about the effects of these properties on the sys-
tem as a whole.

Terminology

Dittrich et al. (2001) define an AChem as a triple (S,R,A),
where S is the set of possible molecules, R the set of rules
for binding molecules, and A an algorithm describing the
dynamics of the environment.

Rather than talking of ‘molecules’, we refer to the mem-
bers of S as particles; these are either atomic particles
(atoms) or composite particles (composites). Rather than
talking of ‘bonds’, we say that the rules R say how parti-
cles can be joined together with links; links can be broken to
decompose composite particles. We use this terminology to
help prevent confusion between the properties of real chem-
ical molecules and our AChem particles, and to prevent the
abuse of chemistry terminology.

Faulconbridge et al. (2010) introduce the concept of sub-
symbolic AChems (ssAChem), with an example based on
RBN-world. Such AChems have an implicit rule set where
the properties used by the rules emerge from the internal
structure of the particles. RBN-world was further developed
in (Faulconbridge et al., 2010; Faulconbridge, 2011).

Here we demonstrate how the algebraic properties of the
chosen rule set can be exploited to help obtain rich struc-
tures, and demonstrate this with an ssAChem based on a
Jordan algebra of Hermitian matrices.



Mathematical Properties and Structure of
Composite Particles

Our ssAChem rules have two parts: a set of mathemati-
cal products (or mathematical operations) for forming links
and composites, and a set of probabilities used to determine
probability of a reaction. In this section we discuss the prop-
erties of the mathematical product.

In mathematics there are two properties of a product on a
set that are easily defined, and that can be indicative of many
further properties of an algebra. These are associativity and
commutativity.

Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c) (1)
Commutativity: a ◦ b = b ◦ a (2)

When we have a binary product, thereby linking two parti-
cles, combinations of these properties lead to four distinct
structures, Table 1.

For an associative, commutative binary product we can
change the order of evaluation and the ordering within any
evaluation. No matter how we link a given set of particles,
we get the same result. The structure is a bag. For an asso-
ciative, non-commutative binary product we can change the
order of evaluation such that there is no ordering on the prod-
ucts, but we cannot change the ordering within the product;
the structure is a string.

Associativity is an assumed property of most algebras.
Non-associative algebras, while rare, normally appear in an
applied setting. They have been used in connection with
genetics (Reed, 1997) and physics (McCrimmon, 1978) as
well as a broad range of applications to mathematical theory
(Gonzalez and Martinez, 2003). One of their main attrac-
tions is that with their enforced evaluation order they can
embody a loose form of time, or at least an ordering of in-
teractions.

For a non-associative, commutative product we can re-
order particles in a product, but we have an enforced order
of products. The structure is a binary tree, with unordered
child nodes. For a non-associative, non-commutative prod-
uct, we have an enforced order of products and ordering of
particles within the products. The structure is a graph, with
complicated directionality restrictions requiring labelling on
both edges and nodes; these are not simple structures and do
not conform to any of the normally used graph subtypes.

Let us consider these four structures in terms of an
AChem. A bag has no internal structure, and limits us to
a set of composite particles with the cardinality of the power
set of the component particles. In real chemistry there are
isomers: molecules with different inherent properties de-
spite containing the same atoms in different arrangements
(Muller, 1994). Isomers add complexity and increase the
size of the combinatorial space. An AChem with a bag struc-
ture has no equivalent of isomers, so we do not want to base
ours on an associative commutative product.

Associativity Commutativity Structure

Yes Yes Bag
Yes No String
No Yes Tree
No No Graph

Table 1: Summary of structure provided by different mathe-
matical properties

Strings are structures that have received a lot of atten-
tion in the computing community, but they are rather simple
mathematical objects that lack room for expansion. They
have very simple combinatorial power of

Cn−1 =
(2n− 1)!

n!(n− 1)!
(3)

Strings support analogues of isomers, but there are not many
of them. There is also no ordering of operations, so how they
are formed does not affect the result. So we reject associa-
tive non-commutative products.

The tree structure given by the non-associative commuta-
tive product not only has more room for expansion to larger
trees, it also has an implicit ordering. Because we cannot
change the order of operations we get a variety of structures,
and a system in which structure is as important as the build-
ing blocks themselves. This gives us a system with greater
intrinsic flexibility.

The graph structure of a non-associative non-
commutative product provides yet more structure, but
makes it hard for the product to have any regularity to
exploit as it allows so many possible structures. It is not
necessary that we work with a structure this complex so we
stick to trees.

Larger products
We can look beyond binary products to products that take
more arguments, combining multiple particles with a com-
mon link.

This does not affect the structure of the system if we have
an associative non-commutative product: since it is associa-
tive this changes nothing and we still have a string. However
in the case of the non-associative commutative product as we
expand from a binary product to a larger product we move
from a binary tree to a general tree.

There are a larger number of possible trees with n ≥ 4
leaves than strings with n ≥ 4 elements. For n = 3 we have
s3 = 6 and t3 = 4, where sn is the number of strings with
n elements and tn is the number of trees with n leaves. For
n = 4 we have s4 = 24 and t4 = 31 using products of any
size, see Figure 1. We can show that from this point onward
there is a larger number of possible trees than strings.

The number of possible strings increases with n such that
sn+1 = sn(n+1). For trees we have a faster growth. We can
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Figure 1: Tree structures with four leaves with multipliers
indicating the number of relevant rearrangements of leaves,
giving an indication of all possible trees with four leaves
with in this system.

show that if we link the extra element to the result of each of
the graphs with n nodes with a binary link then the new ele-
ment can be swapped with any of the other elements to give
at least tn+1 ≥ tn(n+1). We also always have more graphs
as this does not include the graph of the (n+1)-product (see
Figure 2) making tn+1 strictly greater than tn(n+ 1). Thus
as we have more trees at n = 4 and a faster growth in the
trees than in the strings, for n ≥ 4 we always have more
possible trees than strings.

In terms of an AChem, these properties show that we
have a more interesting selection of possibilities in a non-
associative system than otherwise, and these possibilities are
controlled by the order in which reactions occur. Hence
we focus on non-associative commutative products for our
ssAChem design.

Jordan Algebras
Having established that these mathematical properties are
desirable, we need to find a system in which we have these
properties. Mathematics as a field has already found and
studied systems with such properties, in the case of non-
associative commutative systems we have Jordan Algebras
(McCrimmon, 2006).

Jordan Algebras were originally conceived to find a so-
lution to describing observables in quantum mechanics, but

(a)

ni+1subtree size i

(b)

ni+1ni· · ·n2n1

Figure 2: Trees showing greater growth than strings

were later discarded for that purpose because none of the
Jordan Algebras were able to solve the problem. They have
two important properties which define them:

Jordan identity: (x • y) • x•2 = x • (y • x•2) (4)

where x•n = x • x • · · · • x (n times)

Power associative: x•mx•n = x•(m+n) ∀m,n ≥ 0
(5)

Power associativity tells us what happens when we work
with just one kind of particle.

There are several Jordan Algebras (McCrimmon, 2006).
Here we take the most accessible Jordan Algebra that ex-
ists over the Hermitian matrices (a matrix is Hermitian if it
equals its Hermitian conjugate, see Equation 14).

With this Jordan Algebra we start with a binary product
formed of familiar matrix multiplication and addition to de-
fine the Jordan product:

X • Y := 1
2 (XY + Y X) (6)

As one can see X • Y = Y •X . It is also non-associative:

(X • Y ) • Z = 1
2 (XY + Y X) • Z (7)

= 1
4 (XY Z + Y XZ + ZXY + ZY X) (8)

6= 1
4 (XY Z +XZY + Y ZX + ZY X) (9)

= 1
2X • (Y Z + ZY ) (10)

= X • (Y • Z) (11)

One of the advantages of a non-associative algebra is the
ability to expand from the binary product and the binary tree
it creates to a general product and its general tree. We can
expand the binary product linearly to give the Jordan triple
product:

{X,Y, Z} = (X • (Y • Z) + (X • Y ) • Z − (X • Z) • Y )

= 1
2 (XY Z + ZY X) (12)

We can further extend this to an arbitrary length n product,
called an n-tad in Jordan theory (McCrimmon, 2006):

{X1, X2, · · · , Xn} = 1
2 (X1X2 · · ·Xn +Xn · · ·X2X1)

(13)



Using the n-tad notation, (X • Y ) = {X,Y }.
Commutativity of this product means that we can fully re-

verse the order of the elements in the product, but not freely
rearrange the order completely. So there is a large number of
possible n-tad products for a particular set of n objects, in-
creasing our combinatorial power and the ability of our sys-
tem to exploit some properties of composite particles. Thus
Jordan Algebras equip us with products that are open-ended,
and are applicable to the open set of Hermitian matrices.

Mathematical Objects
Other AChems have used ‘matrices’ as the basis of their set
S. In particular, the binary string chemistry (Banzhaf, 1993),
dubbed the matrix-multiplication chemistry by Dittrich et al.
(2001), makes use of matrix multiplication. However, it
does not treat its particles as mathematical objects; rather,
it folds binary strings into a matrix in order to give a sim-
pler definition of a function over the binary strings. This is
common for the use of ‘matrices’ in systems that use ‘ma-
trix’ to mean a two dimensional storage array rather than the
mathematical object that we use here.

All of the previous discussion in this paper has been build-
ing towards creating a system that uses mathematical objects
for both the particles and links of our system. This is the
beauty of a mathematical product: it is in some ways an ob-
ject with properties in its own right.

Additionally, the matrices themselves are rich in emergent
properties that might be exploited by our system.

Hermitian Matrices and Subsymbolic Artificial
Chemistries
The atoms in the Jordan ssAChem used here are 3× 3 Her-
mitian matrices.

Hermitian matrices use the Hermitian conjugate of a com-
plex matrix:a11 a12 a13

a21 a22 a23
a31 a32 a33

† =

ā11 ā21 ā31
ā12 ā22 ā32
ā13 ā23 ā33

 (14)

The elements aij are complex numbers, and ā is the complex
conjugate of a. A matrix M is Hermitian if M = M†. Her-
mitian matrices are closed under the Jordan product (Mc-
Crimmon, 2006).

Hermitian matrices provide a rich variety of properties
such that we can use them as prime material for creating a
subsymbolic AChem (ssAChem) where emergent properties
of the matrices dictate the linking capabilities/probabilities
of a particle, and the algebra gives the structure of the com-
posite particles.

In this work we use the eigenstates of the Hermitian Ma-
trices, chosen for their dimensionality and spatiality, and be-
cause they are a well studied mathematical object. A fully
worked example of linking, probabilities and strengths gen-
erated using Hermitian matrices is given in the Appendix.

Subsymbolic Link
We make use of the eigenstate of the matrix to define linking
probabilities. For a matrix M , consider

Mv = µv (15)

The solution vectors vi are the eigenvectors; the correspond-
ing scalars µi are the eigenvalues. Here we choose these unit
eigenvectors and the corresponding normalised eigenvalues
λi as our emergent properties of interest to define our linking
probabilities:

λi = µi/
∑
µj (16)

We normalise the eigenvalues to ensure sensible linking
probabilities of larger composites.

The probability of two particles A and B linking, based
on a given pair of eigenvalues and eigenvectors, is defined
to be:

pAiBj = N (λAi − λBj )
(
1− 1

2 ((vAi
· vBj

) + 1)
)

(17)

This has two parts. The first term N (λAi − λBj ) is the
probability density of the normal distribution (µ = 0, σ = 1)
at the point given by the difference in the normalised eigen-
values. This means the probability of linking is larger for
more similar normalised eigenvalues. The normal distribu-
tion is not the only option; we simply need a symmetric dis-
tribution centred on zero, and the normal distribution is a
well-known such one.

The second term (1 − 1
2 ((vAi

· vBj
) + 1)) uses the dot

product between the corresponding unit eigenvectors. The
dot product between two unit vectors is the cosine of the
angle between them. The overall term has a value between
0 and 1, and is 0 if the vectors are perfectly aligned and 1 if
the vectors are anti-aligned.

The probability of two particles linking, pAB , is defined
as the maximum probability of all the possible pairs:

pAB = max{pAiBj
∀i, j} (18)

The other property we define from the eigenstate is the
strength of the link (probability that the link does not de-
compose). This is based solely on the difference in the nor-
malised eigenvalues:

lA•B = N (λAi
− λBj

) (19)

Both these properties are based on the binary product. We
define the linking probability of a triple link to be:

pACB = min{pAC , pCB} (20)

and we use the same set of eigenvalues to generate the links
strength as the minimum of the strengths for each of the pairs
[λAp

, λCq
] and [λCr

, λBs
]:

l{ACB} = min
{
N (λAp

− λCq
),N (λCr

− λBs
)
}

(21)

This can be extended to the n-tad case in a similar fashion.



Composite Particles Probability

In our system the links have properties of their own. Equa-
tion 18 is the probability of the link forming given the pres-
ence of its components and that we choose that many reac-
tants.

We need a further two probabilities to work out the proba-
bility of the resulting composite of the link existing, fA. We
need a probability of a particle existing, eA:

eA =

{
1 if A is an atom
fA if A is a composite

(22)

And we need a probability that each particle takes part in
the reaction. All reactions that form a link require us to se-
lect at least two components. We define the probability of
selecting further components for the reaction as 0.1 for each
component. This choice discourages our system from con-
stantly forming large links and quickly becoming one large
composite.

r{A1,··· ,An} = 0.1n−2 (23)

So together the probability of a composite forming in terms
of its last link is:

fX = f{A1,··· ,An} = pXrX

n∏
i=1

eAi (24)

Composite Particles Strength

Link strength in our system is truly a property of the link
rather than the composite. The composite particle contains a
series of links all with different properties; each link has the
link strength given in Equation 19. The overall composite
strength is given by the probability of each of the links not
decomposing, and is the product of all the link strengths in
the system. The result is that larger links are stronger than
a series of smaller links as there is less chance for the com-
posite to break down. This is given by:

sX =
∏
Y⊂X

lY (25)

where lY is the link forming Y a sub-particle of X .

Structure

The Jordan Algebra underlying this system means that the
structure of the composite is as important as the particles
that make it up. Through this we can see that not only does
the structure add to the properties of the composite, but also
we can find behaviour in the structure independent of the
particles. By this we find the analogue of an isomer from
real chemistry.

1.

XXXX

2.

XX

XX

3.

XXX
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4.

XX

X

X
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Figure 3: The set of structural isomers of four identical
atoms

Isomer Probability Strength Maximum
reaction
size

No.
links

I1 0.0020 0.3989 4 1
I2 0.0040 0.1592 3 2
I3 0.0040 0.1592 3 2
I4 0.0079 0.0635 2 3
I5 0.0079 0.0635 2 3

Table 2: Particle probability and particle strength for the iso-
mers of the identity atom (isomers 1 to 5 with X=I).

An Example of Emergent Richness
Throughout we have talked about the richness of the Jordan
Algebra basis for this system and how it allows us to create
a system in which we can have meaningful isomers. We can
see this most clearly when we consider the homomers (iso-
mers containing only one kind of particle) generated by the
identity matrix, I , which is also an identity under the Jordan
product (and hence all these composites are also represented
by I).

There are five possible structural isomers using just four
atoms I (Figure 3). Each of these has a probability of form-
ing and a strength (Table 2).

From these results we can see that in the simplest of cir-
cumstances (when we are looking only at the structure of the
isomer), structures with larger links are harder to form but
once created are also harder to destroy. Thus we have emer-
gently created a system that has stronger and weaker struc-
tures depending on the way the composite particle forms.

These multiple link isomers can form links with particles
of different matrices, which have different eigenvalues. We
give a second example of a base particle for which the five



Isomer Probability Strength Maximum
reaction
size

No.
links

M1 0.0019 0.3774 4 1
M2 0.0037 0.1476 3 2
M3 0.0037 0.1496 3 2
M4 0.0073 0.0585 2 3
M5 0.0070 0.0557 2 3

Table 3: Particle probability and particle strength for the iso-
mers of the M atom (isomers 1 to 5 with X=M ).

resultant homomers behave differently. Consider the matrix
M :

M =

 1 i 0
−i 1 0
0 0 1

 (26)

The isomers formed from M all result in the same final
matrix, as is true of all homomers due to the power associa-
tivity law (Equation 5). Since all the component matrices
have the same eigenvectors, we never have a product occur-
ring with the same eigenvalue position, as they are perfectly
aligned and so the linking probability is zero (Equation 17).
This increases the strength and probability of larger links as
all pairs in the link can form across the strongest link be-
cause there is no case in which both possible link positions
are occupied.

These results show that isomers are all unique: the struc-
ture is not defined by size or number of links (otherwise iso-
mers M2, M3 or M4, M5 would be identical). This also
shows that the structure has a strong effect on the system.
The link properties are changing because we are no longer
working with the identity matrix, and the composites are dif-
ferent fromM . Thus when we link with the larger composite
particles, eg ((M •M) •M), we are in fact linking with a
different set of eigenvalues (if not necessarily a different set
of eigenvectors as discussed previously). This still gives us
a pattern of decreased probability of creation and increased
strength for a smaller number of larger links.

We can also see that this behaviour does not indicate a uni-
versal pattern of higher probability causing lower strength
regardless of other properties. Isomer M4 has a higher prob-
ability than isomer M5 but also has a higher strength. We
can also see that these do not stretch across different ho-
momers as I isomer I1 is more probable than M isomer M1
and is also stronger. This means that it is not the relationship
between probability and strength that causes this behaviour,
it is a relative effect caused by differently structured homo-
mers of the same size.

While the probabilities given for the existence of com-
posites existing here are small and tending towards zero for
larger composites we must remember that this system is in-
tended to operate over a very large number of interactions.

Thus while the probability of any particular composite ex-
isting is small particularly for larger composites the chance
of generating a (large) composite is relatively high given the
number of possible (large) composites.

Other Possible Behaviours
This is not the only interesting behaviour we might find
which results directly from non-associativity and a mathe-
matical focus.

Firstly we may consider looking at the isomers of our sys-
tem in order to understand the more general behaviours of
isomers. We can look at the probabilities of large molecules
forming and their ability to act as information storage and
transfer. We can be certain from the design of the system
that the formation and replication of large composite parti-
cles is possible. However we cannot be sure of how stable
or regular these large composites would be. If they are not
stable then they cannot act as an information storage and
transfer mechanism as the data would have too high a prob-
ability of corrupting. If they are not sufficiently regular then
the information stored in them cannot be read in any useful
manner.

The concepts of catalysis and substitution are fairly well
established behaviors looked for in AChems (Hutton, 2003;
Faulconbridge et al., 2010; Hickinbotham et al., 2010;
Suzuki et al., 2003). Many other systems implement these
concepts in addition to their basic reaction mechanism. We
could create additional capability in our system to enable
catalysis and substitution, but it is not necessary. This is be-
cause we have a probabilistic system. If we have two parti-
cles, A andB, that have a low probability of linking then we
can use a composite particle C to generate a larger particle
((A•C)•B) (Figure 4). When we decompose in the correct
manner this can leave us with a composite (A • B) whose
total probability of forming is much higher than the origi-
nal probability of A,B linking directly. It is even possible
that this would allow objects with perfectly aligned eigen-
vectors, which would normally have a linking probability of
0, to connect and have a strong resultant link.

Another well-established desirable behaviour is replica-
tion. We have not eliminated self-replication. In this system
it would look like a composite forming and then it being
used much like C in Figure 4 to help the formation of an
identical composite. Interesting instances of this would be
cases in which the copy has a higher probability of exist-
ing than the original. This would mean that the composite
encourages the creation of copies of itself.

Considering the analogy to real chemistry, we will at
some point want to consider adding a temperature analogue
to our system. This should modify the probability of linking
in the system. In this case it could modify either the eigen-
values or the eigenvectors of the matrix. There are very few
ways to do this that do not effect both of these, so as well
as changing the probability of linking we would be caus-



pAB = 0.01

BA

=⇒ fAB = 0.01

pAC = 0.4
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=⇒ f(AC)B = 0.16
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dc=0.2−−−−→

BA

=⇒ f(A)B = 0.032

Figure 4: A general example of what the concept of catalysis
would look like in our system where dC is the probability of
C decomposing in the correct manner.

ing the composite to “rotate”. The structure of the matrices
provide for a direct connection between an analogue of ther-
mal energy and its effects on the energetic states (such as
rotational or kinetic energy) of our composite particles. In
addition, in our system variation of temperature should lead
to increasing and decreasing probabilities, similar to the ef-
fects in ensembles in real chemistry as described by statisti-
cal thermodynamics.

Summary and Conclusions

Creating an AChem using a mathematical basis such that
links and ordering exists gives us a chance to exploit the
open set of Hermitian matrices and their already well-
studied emergent properties. It also provides us with struc-
ture that exists and is capable of displaying emergent be-
haviours that cannot be predicted purely from the mathe-
matical roots of the system.

We have shown that even within the power associativity
provided by the Jordan Algebra the fact that the underlying
system is non-associative allows for these strong structural
influences to become more prevalent and vary the system.
We have also discussed that this may not remain the case
when expanded to general isomers but will remain true in
homomers.

We have demonstrated that we can find interesting impor-
tant behaviors in this sort of ssAChem that were in no way
designed into our system. This suggests that these systems
have much greater potential in that they are not being lim-
ited by the intentions and goals of their creators. In terms
of our starting metaphor, we are starting to create bricks and
mortar, rather than a prefabricated AChem.
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Appendix: worked example
Linking Hermitian Matrices
Consider the three Hermitian matrices:

X =

 1 −i i
i 0 0
−i 0 0

Y =

1 1 1
1 1 1
1 1 1



Z =

−1 i 0
−i −1 0
0 0 0

 (27)

These have the following eigenvector matrices and eigenval-
ues:

X : vX =

 0.58i 0 0.82
0.58 0.71 −0.41
−0.58 0.71 0.41

λX =
(
−1 0 2

)
(28)

Y : vY =

 0.41 0.71 0.58
0.41 −0.71 0.58
−0.82 0 0.58

λY =
(
0 0 3

)
(29)

Z : vZ =

−0.71i −0.71i 0
0.71 0.71 0

0 0 1

λZ =
(
−2 0 0

)
(30)

We can form three links over these matrices, using the rele-
vant products:

1. (X • Y ) =

 1 1
2 −

1
2 i

1
2 + 1

2 i
1
2 + 1

2 i 0 1i
1
2 −

1
2 i −1i 0



2. {X,Y, Z} =

 −1 1i − 1
2 −

1
2 i

−1i −1 1
2 −

1
2 i

− 1
2 + 1

2 i
1
2 + 1

2 i 0



3. ((X • Y ) • Z) =

 − 3
2 − 1

2 + 1i − 3
4 −

1
4 i

− 1
2 − 1i − 1

2
1
4 −

3
4 i

− 3
4 + 1

4 i
1
4 + 3

4 i 0


Link Properties
For each of these links we can calculate the probability of
the link, L, forming, pL, and the strength of the link, lL. In
order to calculate the probability of L we need to calculate
the probability using each possible choice of eigenvalues.
Taking link 1 we have the probabilities as given in Table 4
the maximum of which occurs using the second eigenvalues



p X1 X2 X3 Z1 Z2 Z3

Y1 0.035 0.257 0.041 0.086 0.142 0.362
Y2 0.170 0.299 0.019 0.182 0.299 0.200
Y3 0.027 0.242 0.121 0.118 0.072 0.051

Table 4: Probability of linking with Y for X and Z for each
eigenvalue

p Z1 Z2 Z3

(X • Y )1 0.0270 0.1210 0.0354
(X • Y )2 0.0782 0.2700 0.0997
(X • Y )3 0.1638 0.0175 0.0135

Table 5: Probability of (X • Y ) linking with Z for each
eigenvalue

of X and Y , this gives us a probability pXY = 0.2992 and
a strength of lXY = 0.3989. These along with the strength
and probability of the other two links are summarized in Ta-
ble 6.

For link 2 we take the minimum of the probabilities pXY

and pY Z . The probabilities for pY Z are also given in Table 4
and the maximum occurs with Y ’s first eigenvalue and Z’s
third eigenvalue. This gives pY Z = 0.3623 which has a
strength of lY Z = 0.3989. We then have that the overall
pXY Z = 0.2992 and it has strength lXY Z = 0.3989.

For link 3 we need to work out a third set of probabilities
between (X•Y ) andZ, these will be based on the eigenstate
of X • Y (Table 5):

(X•Y ) : V(X•Y ) =

 0 −0.5− 0.5i 0.5 + 0.5i
−0.71i 0.5i 0.5i

0.71 0.5 0.5


λ(X•Y ) =

(
−1 0 2

)
(31)

This means the largest probability comes from using the
second eigenvalues of each component and so p(XY )Z =
0.2700 which makes the strength l(XY )Z = 0.3989.

Composite Properties
We next consider the f and s values for the composite re-
sulting from each link. The first link has only atoms and
is binary so fXY = pXY and since there is only one link
the strengths are also the same: sXY = lXY . Similarly
sXY Z = lXY Z as there is only one link but fXY Z 6= pXY Z

as the size of the link reduces the probability to fXY Z =
0.1pXY Z = 0.0299.

Finally we have the probability of the third link:
f(XY )Z = pXY p(XY )Z = 0.0808. The base components
are atoms and the links are all binary so it is simply the
product of the probabilities of both links. The strength
is the product of the strengths of each link: s(XY )Z =
lXY l(XY )Z = 0.1591.

Link Probability Strength Composite
Probability

Composite
Strength

1 0.2992 0.3989 0.2992 0.3989
2 0.2992 0.3989 0.0299 0.3989
3 0.2700 0.3989 0.0808 0.1591

Table 6: Summary of links probabilities and strengths
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