
Bio-Reflective Architectures for Evolutionary Innovation

Simon Hickinbotham and Susan Stepney

Department of Computer Science, University of York, UK
York Centre for Complex Systems Analysis

email: sjh518@york.ac.uk

Abstract

Computational reflection uses software architectures that are
capable of self-modification at runtime. These systems have
implementations between two extremes: procedural reflec-
tion, in which unlimited self-modification is available at
the expense of infinite recursion; and declarative reflection,
which uses pre-defined metrics to drive the self-modification
and is hence limited in scope. Biological processes also ex-
ploit the concept of reflection, where natural selection drives
the process of modification. The concept of a ‘program’ in
computing has an analogy with an individual member of a
species. The process of life is discretised into a series of au-
tonomous systems, each of which creates modified versions
of itself as offspring. This paper unifies the concept of com-
putational reflection with biological systems via a new anal-
ysis of von Neumann’s Universal Constructor. The result is
a bio-reflective architecture that is capable of unconstrained
self-modification without the problems of infinite recursion
that exist in the computational counterparts. The new archi-
tecture is a blueprint for applications in Artificial Life studies,
Evolutionary Algorithms, and Artificial Intelligence.

Introduction
In this paper we unify certain concepts from computational
reflection (Maes, 1987; Smith, 1984) and Artificial Life
(ALife). These concepts address how self-representation,
autonomy and evolution contribute to ‘living’ systems. Each
of these topics has aspects that are represented in the idea
of reflection – computing which is ‘about itself’ – and the
manner in which the genotype simultaneously specifies and
is maintained by the phenotype.

As we describe below, computational reflection and bi-
ological systems have many things in common. A model
of computational reflection gives new insight into biological
systems. In addition, biological systems give a new perspec-
tive on the nature of computational reflection.

We introduce this topic with a summary what reflection
means in computer science, and then go on to discuss the
implications in ALife.

Computation without reflection: Here we present a
highly simplified model of Conventional Computing (C-

Code base

Running a Program

Executing Code

Interpreter

Figure 1: Running a computer program without reflection.
The code base is analysed by the interpreter, and run as ex-
ecuting code. Solid boxes are data, Dashed boxes are run-
ning programs. Solid arrows indicate the provision of data.
Dashed arrows indicate an action upon a process.

COMP), so that the concepts we present below have a clear
conceptual base.

In C-COMP, computers run programs that process data.
On execution, both the program and the data are held as bi-
nary digits in RAM. The CPU ‘reads’ the program which
‘acts upon’ the data. For our purposes, we can consider that
the CPU executes one instruction at a time, and that instruc-
tion works on one data point. This can occur because the
sequence of operations is specified by the program, and the
data is organised into a set of related structures in RAM. If
the program is written correctly, it will process the data in
the manner intended, even though the CPU never ‘sees’ the
entire program or data set at any one time. Although there is
no physical distinction between the program and its data, it
is usual for the two to be treated separately. This is because
the data is processed by the program, meaning that some if
it is changed or manipulated to form the output.

The number of instructions needed to do anything useful
to data is usually very large. In order to make it easier to

write useful programs high level languages have been de-
veloped which group sets of instructions together into use-
ful commands. In this way, modern programming languages
make it possible to write programs without intimate knowl-
edge of the hardware that the programs run on, although
there is no reason why reflection could not be implemented
using machine code as much as it could with Python.

We illustrate this concept in figure 1. This shows the re-
lationship between the Code base, the interpreter, and the
code that is executing. The code base is the program written
in some language. It becomes executing code via the action
of the interpreter. (By interpreter we mean whatever process
is accessing the code base and executing it.)

Although the von Neumann architecture that forms the
basis of C-COMP has program-data equivalence at the
word-level, there is not usually a direct way for the exe-
cuting code to feed aspects of its computation back to the
code base or the interpreter. Although some well known lan-
guages such as Java support reflection, there is no require-
ment to use reflection when writing progams. Such feedback
is needed if the program is to be verified, maintained and im-
proved. In the absence of automated feedback mechanisms,
these tasks are carried out by human programmers. Models
of computational reflection attempt to provide this feedback
at runtime, which is guaranteed to provide the current con-
text of the computation as it is being performed. Here we
begin to see the relationship of reflection to ALife: the cur-
rent context is the environment in which ALife systems must
survive, and the process of life is the equivalent of the com-
putational concept of runtime.

Next, we discuss reflection in abstract terms, and relate it
to a series of related concepts in ALife. Then we review the
way C-COMP has used reflection in different programming
paradigms. The aim is to gather a set of observations on
how reflection might work in ALife, which we then present
in the fourth section. We end with a discussion, and some
proposals on ways to implement reflective ALife systems.

Computational reflection
“A reflective system contains structures which represent as-
pects of itself” (Maes, 1987). Reflection is any act of com-
puting that is ‘about itself’, that is to say it is computation
about the computation that is being performed, without di-
rect reference to the goal of the computation. It is self-
inspection at runtime, and a candidate definition of what
comprises a living system. Self-inspection is of no use un-
less it is possible to act upon the outcome of the inspection,
so C-COMP reflection allows self-modification: the ability
to create (reify) new sorts of first class objects . We will link
this feature to living systems in the latter half of this paper.

Reflection requires that a representation of the code is
available as data at runtime, by which the reflective process
can deduce which aspects of the program have particular
computational features. In order to achieve this, a data struc-

Code base

Procedural Reflection

Executing Code

InterpreterMonitor

Figure 2: Procedural reflection. Key as in figure 1.

ture representing (a model of) the program itself is created
during execution of the program, and it is used to modify the
execution of the program at run-time. This is done by means
of a special type of interpreter which: (i) gives the running
system access to data representing the system ; and (ii) has
to guarantee the causal connection between the ‘executing
code’ (the running system) and the ‘base code’ (the system
representation). Causal connection guarantees that modifi-
cations to the executing system are reflected in in the code
base. All reflective operations depend upon the maintenance
of the causal connection in order to ensure that interpretation
of what the execution is doing is accurate. Different meth-
ods of reflection use different ways to present the program
representation as data to the running code (Maes, 1987).

A reflective system can bring about modifications to itself
because it is able to generate and analyse data about its own
computation. It is capable of detecting an issue in the ex-
ecuting code and modifying the code base. The reflective
interpreter reinterprets the code base during execution. By
endowing a computational process with the power to mon-
itor the computation that is being performed, systems are
(theoretically) more able tolerate faults, organise their pro-
cessing, and even organise their code base in the light of
changing conditions (Smith, 1984). How this is achieved
depends upon the mode of reflection being carried out. Two
sub-classes of computational reflection are described below.
The first, procedural reflection, allows reasoning about com-
putation by running a model of the interpreter on a model of
the code whilst the code is executing. The second, declar-
ative reflection, attempts to avoid these costs by abstraction
of the properties of the executing code.

Procedural reflection
Procedural reflection encapsulates the role of the interpreter
within the executing program, and assigns extra duties to it
(Maes, 1987). The components of a procedural reflective
architecture are shown in figure 2. The components of stan-

Code base

Procedural Reflection

Procedural Reflection level II

Executing Code

Executing Code

InterpreterMonitor

InterpreterMonitor

Figure 3: Meta-circularity of procedural reflection shown
as two reflective layers. Key as in figure 1.

dard computation from figure 1 are all present. An inter-
preter process carries out the execution of the program, but
it also makes information about the computation available to
a monitoring process, shown as Monitor in the figure. The
encapsulated interpreter must guarantee a causal connection
between the code base and the executing code. The moni-
tor is able both to reason about the execution of the program,
and to act upon this reasoning by making changes to the code
base, so changing the execution of the program at run-time.

Procedural reflection requires that a (more or less) com-
plete representation of the program is contained in the reflec-
tive layer. This means that it is possible to generate the layer
below from the representation in the current layer using the
interpreter. There is a clash here because the twin goals of
specifying the system and being able to reason about it can
be incompatible, leading to duplication of information at the
very least.

Challenges in procedural reflection: The method of self-
representation offered by procedural reflection has its chal-
lenges, centering on the problem of exactly when to spawn
a process that is ‘about’ another process, since each process
has a computational cost in terms of RAM and CPU. We en-
ter the domain of meta-circularity when we realise that the
reflective layer in figure 2 is itself a running program. If the
interpreter has to have a complete representation of the rela-
tionship between the code base and the running program, it
follows that a fully reflective architecture would need a sec-
ond reflective layer, figure 3. Since the reflective representa-
tion is part of the running code, it must also be monitored, at
a higher level. Following from this reasoning, it is straight-
forward to see that the recursion in this model can extend
ad infinitum, whereby a hierarchy of processes are spawned,
each monitoring the process below and with only the pro-

Metrics Code base

Declarative Reflection

Executing Code

InterpreterMonitor

Figure 4: Declarative reflection. Key as in figure 1.

cess at the bottom doing any actual work. This problem is
avoided by bending the rules slightly, letting the interpreters
represent only parts of the system at each level and eventu-
ally deciding that further recursion is no longer fruitful.

In addition, the role of the interpreter in procedural re-
flection is complex since it has two tasks to perform: inter-
preting the code base, and feeding back information on the
computation to the monitor. If we forsake the embedding
of the interpreter within the reflective layer, some of these
problems can be avoided.

Declarative reflection

Unlike procedural reflection, declarative reflection avoids
the need to specify the code base exactly, and instead seeks
to generate useful statements about the system (Maes, 1987),
for example information regarding the time and space com-
plexity of the executing process. Here, the interpreter sits
outside of the reflective process, and merely provides it with
a set of metrics. The monitor can then act on these metrics
and change the code base, which is then used as executing
code by the interpreter, figure 4.

The advantage of this approach is that the danger of in-
finite recursion of reflective layers is greatly reduced (al-
though still possible), and the duties of the interpreter are
more clearly defined.

Challenges in declarative reflection The benefits of
declarative reflection come at the expense of the ability of
the reflective system appropriately to detect conditions that
should be acted upon. The metrics can only describe what
has been done by the system – it is much harder to give a de-
scription of how the effect has happened, making it more dif-
ficult for the Monitor to decide how to implement changes.

For this reason alone, reflective architectures are rarely
purely declarative. Most reflective architectures use ele-
ments of procedural reflection and elements of declarative
reflection.

Reflective properties of ALife systems
We seek ways to apply reflective ideas in C-COMP directly
to ALife systems, in the hope that the advantages of reflec-
tion can be emulated. However, reflection in biology is dif-
ferent from reflection in C-COMP. We are trying for a ‘uni-
fied’ treatment to reflective processes in biology, and so pos-
sibly find ways to improve reflection both in ALife systems
and C-COMP generally.

Having reviewed procedural and declarative reflection,
we must also describe an alternative approach to reflection
based on phenomena and techniques observed in and in-
spired by biological systems. But first, we briefly review
some of the issues in computational reflection from a bio-
logical perspective.

The absence of a ‘designer’: In biological systems, this
necessarily has an impact on what reflection means. How
can a system be ‘about itself’ in the absence of a pre-defined
purpose? There are two parts to this question. First we must
consider how a design is specified, and then we must con-
sider how this goal is met (See also Dennett (1971) for a
discussion of design stances).

Biological systems use the genotype as a specifier of the
phenotype via what Pattee (1982) calls the ‘symbol-matter
articulation’, in which the specification of a machine (the
symbol side) and its implementation (the matter side) are
related to one another. This articulation is analogous to the
requirement for causal connection in reflective languages,
but it is at its strongest where the system exhibits semantic
closure, which we describe later.

Thus, in biology the design of the system seems to be
absent from the model of reflection – but what is the goal
of self-inspection and self-modification if there is no design
with which the system can be compared? The answer is
that biological systems reintroduce ‘purpose’ via evolution,
by using populations of solutions and applying selection to
them. Our goal in defining a bio-reflective architecture is to
describe how these phenomena combine to yield a reflective
system.

Rejecting declarative reflection: Declarative reflection
offers a means of avoiding having a sophisticated interpreter
in each reflective layer, and reduces the risk of infinite re-
cursion. However, the declarative approach is rigid: it is
difficult to detect when it is yielding insufficient informa-
tion about the system, and it is difficult to implement new
declarative statements when required.

Declarative reflection is like extrinsic fitness functions in
Evolutionary Algorithms in that they run the risk of over-
specifying the problem at hand and ignoring innovative so-
lutions. The declarative approach is problematic in ALife
because it adheres to an unchanging (and unchangable) de-
scription of what the design is, implicit in the metrics that
are used to monitor the system. It is difficult to define ex-

actly what the declarative statements should be a priori, and
so it becomes difficult to define what should be measured in
order to detect what changes would be beneficial. Another
analogy is that the declarative approach embeds too much of
the reflection in the ‘physics’ of the system (Hickinbotham
et al., 2016), meaning that the metrics are not under con-
trol of the ‘biology’ and so cannot be changed to improve its
representation of the running system.

Rejecting procedural reflection: From the perspective of
computer science, the two disadvantages of procedural re-
flection are that it places too many demands on the inter-
preter to allow an efficient implementation, and that the
meta-circularity of the system leads potentially to infinite
recursion.

The goal of reflection is to bring about automation in im-
provement of a computational system, in the same manner
as natural selection in biological systems. Biological sys-
tems also exhibit recursion in that each organism is created
by an earlier organism via a replication process. A key point
is that biological systems are organised such that for most
of its lifetime an organism is autonomous. It is not neces-
sary to have a (complete) representation of the individual’s
phylogeny for the system to function, but something of that
phylogeny is represented in the organism’s genotype.

Reflectionless self-replicators Reflection involves hold-
ing a model of the code base and maintaining a causal con-
nection between this and the actual execution of the model
on the CPU. There is a direct analogy here with the relation-
ship between the genotype and the phenotype in biology.

In ALife systems, models of biology are subject to exper-
iments by computer simulation. Unlike biology, everything
about each system is knowable, but everything (including all
of the relevant physics) must be initialised, parameterised
and implemented. There are also many assumptions about
the appropriate representation of such simulations in main-
stream computers. The attraction of this approach is that
it makes clear the relationship between mechanisms of bi-
ological innovation and how these models of biology could
be applied to (models of) computation.

Many self-replicating ALife systems exist, but these tend
to be modelled on a hypothetical ‘RNA world’ in which
each entity inspects an instance of itself in order to create
a copy (Ray, 1991; Ofria and Wilke, 2004; Hickinbotham
et al., 2010). These are automata chemistries (Dittrich et al.,
2001), artificial agent-based systems in which each agent is
a program.

Many ALife platforms contain instances of agents that it-
eratively manufacture copies of themselves. A mechanism
for changing the copies, usually called mutation, is intro-
duced in order to explore the design space of the system’s
universe. In this sense the program that the agents are run-
ning is self-modifying. This process of self-modification is

central to mechanisms of reflection.
Although these systems have shown innovation, there

seems to be an upper bound on the level of complexity they
can attain, even though there is no theoretical limit on the
innovation. Could this be related to reflection? We ad-
dress this question by turning to the work of Von Neumann
et al. (1966), in his theory of self-reproducing automata. The
point, also made recently by the McMullin group in Dublin
(Baugh, 2015; Hasegawa, 2015), is that these systems tend
to reproduce by a process of self-inspection. von Neumann
indicated that there are limitations to reproduction by this
method, linked to the difficulty of ‘reading’ a machine of ar-
bitrary complexity. We argue in addition that these systems
are reflectionless; although they appear to be ‘about’ them-
selves, they are merely sophisticated Quines (self-copying
automata with no inputs) that make no reference to an ab-
stract model of what they are. We have made similar points
in (Hickinbotham et al., 2011). Finally, we emphasise here
that although a system may have program-data equivalance,
it is not guaranteed to be ‘reflective’ – to achieve this, further
conditions must be met.

Universal constructors von Neumann’s observations
about the limitations of reproduction by self-inspection led
to the development of his theory of self reproducing au-
tomata. He defined a set of sub-assemblies that together
formed a Universal Constructor (UC). The original was cel-
lular automaton-based, but the ideas translate to ALife and
biological systems. We follow the notation of McMullin
(2012) in the following.

the von Neumann architecture comprises four machine
subclasses A,B,C,D plus their machine descriptions
Φ(A,B,C,D), figure 5. The process of self-reproduction
is here divided into two parts, which allows machines of ar-
bitrary complexity to be duplicated. Only one entity in the
system is copied by inspection. This is G, which consists
of an abstract description of everything else in the system:
G = Φ(A,B,C,D). The remaining four machine classes
function as follows. A is the Constructor, which has the
capacity to read G and manufacture functioning machines
from their description. B is the Copier, whose role is to cre-
ate copies of G by inspection (for this reason, G is usually
a one-dimensional sequence of instructions). The operation
of A and B with respect to G is governed by C, a Control
structure. Finally machine class D is reserved for Ancil-
lary Machinery, which carries out any other function of the
machine irrespective of the self-replicating assemblages just
described.

We illustrate the overlap between von Neumann’s Uni-
versal Constructor architecture and procedural reflection in
figure 6. The layout of this figure follows the procedural re-
flection diagram in figure 2, and adds the UC nomenclature
in red. All of the components of UC bar one are present
in procedural reflection, but the naming conventions are dif-

G = Φ(A,B,C,D)

P: von Neumann Universal Constructor

D:
Ancillary

B:
Copier

A:
Constructor

C:
Control

Figure 5: von Neumann’s Universal Constructor Architec-
ture. Key as in figure 1.

ferent. What we have called the Monitor is called the Con-
troller in the UC, but their roles are identical: to orchestrate
the operations of the other sub-assemblies in the overall ma-
chine. The Interpreter is mirrored in the UC as the Construc-
tor, which takes a description of a machine and creates the
machine based on that description, in the same way that an
Interpreter reads source code and creates a working manifes-
tation of the code on a conventional computer architecture.
The Code Base in the procedural architecture is represented
in the UC as the symbol Φ(D). Both of these labels rep-
resent the abstract concept of a description of a functioning
machine: D is the functioning machine, and Φ() is a de-
scription operator. The executing code in the procedural re-
flection model is referred to as ‘D: Ancillary machinery’ in
the UC nomenclature. The only component that UC adds to
the procedural reflection model is the Copier. The copier is
responsible for duplicating the machine descriptions in Φ().
We describe its role in bio-reflection below.

The layout of figure 6 is an unsatisfactory description of
bio-reflection because it falls victim to the meta-circular ar-
chitecture in the same way as shown as in figure 3, but
the conceptual link is important for what follows. The UC
nomenclature in this figure already gives some clues about
what is missing from the model.

Bio-reflection
Having made some observations about reflection in ALife,
we now propose a new architecture of self-modification,
which we call bio-reflection, since its development from C-
COMP reflection is inspired by biological processes.

Inspection of the mapping between the UC architecture
and the procedural reflection architecture in figure 6 shows
that some of the components of UC are missing from it.
Firstly there is no machine description for anything but the
Ancillary Machinery in a single reflective layer. Secondly,
there is no Copier.

The absence of machine descriptions appears to be the
feature that forces reflective systems into a recursive situa-

Code Base
Φ(D)

Procedural reflection
JvN Universal Constructor

-
B: Copier

Monitor
Φ(C)

Code Base G = Φ(A,B,C,D)

Interpreter
Φ(A)

JvN Universal Constructor as Bioreflection

-
Φ(B)

Base
Φ(D)

Executing Code
D: Ancillary Machinery

Execution
D: Ancillary

-
B: Copier

Interpreter
A: Constructor

Monitor
C: Control

Executing Code P = A,B,C,D

Interpreter
A: Constructor

Monitor
C: Control

Figure 6: Comparison of components of procedural reflec-
tion (black text) from figure 2 and the Universal Constructor
(red text). Key as in figure 1.

tion of figure 3. von Neumann solved this problem by spec-
ifying that all the components in the architecture be repre-
sented by abstract descriptions.

The copier is missing for two reasons. Firstly, it is easy
to copy source code for computer programming languages.
Secondly, the concept of reflection requires that the inter-
preter acts upon the source code while the program is run-
ning. From this perspective, why would one bother to have
an extra machine in the architecture?

Why is a copier important? This point is related to the ab-
sence of a designer. It is hard to say what a living organism
is about, because there is no designer, and hence no purpose
to the organism. This makes the concept of control rather
more vague: what is it that the entity is being controlled for?

Due to mutation, variation in the expression of Φ(X)
means that it is likely that a machine will fail sooner or later.
Having a population of individuals insures against that. A
population of machines is inevitably exposed to selection.
By making the copier an intrinsic part of the machinery, we
can ensure that successful individuals are reproduced in the
population.

So bio-reflection works on populations of machines,
which gives the control component of the architecture we
seek. This is part of the way we avoid infinite meta-circular
reflection. But we have to accept that populations have their
own computational costs attached.

The bio-reflective architecture follows the UC architec-
ture, but with some external considerations that we describe
below. The overlap between the bio-reflective architecture
and UC is shown in figure 7. There are two classes of en-
tity: the code base and the executing code as in computa-
tional reflection. The difference is that all the executing ma-
chines in the system have a representation in the code base
layer. The idea is that, following the UC architecture, the
machine descriptions in the code base are sufficiently rich
to allow the machines to be constructed from them, but suf-
ficiently simple to be easy to copy by the copy machine.
In this way, the system is self-contained (i.e. semantically

Code Base
Φ(D)

Procedural reflection
JvN Universal Constructor

-
B: Copier

Monitor
Φ(C)

Code Base G = Φ(A,B,C,D)

Interpreter
Φ(A)

JvN Universal Constructor as Bioreflection

-
Φ(B)

Base
Φ(D)

Executing Code
D: Ancillary Machinery

Execution
D: Ancillary

-
B: Copier

Interpreter
A: Constructor

Monitor
C: Control

Executing Code P = A,B,C,D

Interpreter
A: Constructor

Monitor
C: Control

Figure 7: Bio-reflective Architecture. Universal Construc-
tor terms are shown in red. Key as in figure 1.

closed), and there is no requirement for a recursive pattern
of reflection to further organise the self-modification. Re-
flective actions that would have happened at a higher level
of reflection are handled via changes to the representation
in the code base (via the copier), and changes to the way
that representation is interpreted by the constructor. These
two components together guarantee causal connectedness in
a semantically closed manner, without the need for any ex-
ternal specification (beyond the physics of the system, which
should be minimised).

Facets of bio-reflection Mutation is slightly different
from self-modification, because of absence of a design: mu-
tations merely modify, then selection identifies which of the
modifications are improvements. In this way, much of the
things that a monitor has to do are moved to an external pro-
cess that runs at the population level.

In order to generate the running code, several things must
be brought to bear on the description of the machine. The
functionality of the Interpreter is the most relevant to this
discussion, but this functionality depends upon the ‘Physics’
of the system, which is not described the genotype, but im-
plicitly referenced by it. In this way, the abstract description
is incomplete, but consistent with the executing machines.
This feature allows us to sidestep the recursion that exists in
computational reflection.

The architecture also allows new sorts of objects to be rei-
fied via two routes. The first involves the innacurate copying
of the code base via the action of the copier, leading to mu-
tation in one of the machine classes. The second is a special
case of this - an inaccurate reification of the interpreter has
the potential to change the way the entire code base is inter-
preted, leading to a change in the way all objects are reified.

In this way, the semantics of the code base are self-
contained because the machine that interprets the code base
is encoded within the code base. This feature guarantees
causal connectedness, but also allows the meaning of a code

base to be interpreted differently depending on the nature of
the interpreting machine, in what Pattee calls semantic clo-
sure. ALife systems which reprduce via self inspection do
not have this feature, and so cannot be said to be reflective.

Semantic Closure and Causal Connectedness Causal
connection is a major component of semantic closure, but
it says nothing about the semantics of the system and how
they arise. In the bio-reflective architecture, semantic clo-
sure means that the semantics of the machine descriptions
are embodied in the relationship between the executing ma-
chines and their specification. This feature of the system is
most prominent in the encoding of the interpreter, which has
to read a specification of itself, and construct a copy of itself
from that specification. If, by mutation or other error during
construction, the function of the interpreter changes slightly,
then the whole meaning of the Φ() operator is changed.

Examples of this in biology are well known (Foster,
2007). For example, the ‘SOS response’ to DNA damage
in E. coli involves the expression of RNA polymerases that
are more able to successfully copy damaged DNA but with
lower fidelity, thus increasing the mutation rate whilst the
population is under stress. A bio-reflective ALife system
has the potential to emulate these phenomena.

A different continuum Maes (1987) indicates that most
computational reflective architectures were somewhere be-
tween the Procedural and Declarative extremes. In most
reflective systems, the code base is represented sufficiently
explicitly to allow the reflection to occur, and the ‘miss-
ing’ parts of the code base is represented by declarative
statements. The bio-reflective approach offers a different
perspective on this: in biological systems the code base
(genome) is augmented by the physical and chemical pro-
cesses in the cell, allowing the enzyme ‘machines’ to be
constructed by the ribosome; in computational ALife sys-
tems, the virtual physico-chemical processes are necessarily
less complex, consisting of the function of opcodes, and the
‘given’ computational machinery (registers, stacks, etc) as-
signed to each individual.

Another continuum is to do with the relationship between
mutation and selection: mutation pushes newly created au-
tomata towards a random/disordered state, but selection en-
sures that that the reflective processes of interpretation and
monitoring are maintained.

Discussion
Reflection and the design stance If computation is to be
about itself, we need some definition of what the ‘self’ is.
Here, biology is more straightforward, because the design
of the organism is self-contained. The issue is more compli-
cated in software because it is engineered: it has a designer,
a purpose, and an implementation in source code.

We have an immediate difference between engineered re-

flection and emergent reflection. Engineered reflection re-
quires the conscious act of building a reflective system.
Computation can happen without reflection precisely be-
cause the computation is engineered: it has a designer. One
of the problems is that reflection within these architectures
holds the designer as a ‘third option’ in which the ultimate
design can reside. The AI community have reflection to
be about debugging, optimising etc, which is the origin of
Cantwell Smith’s ‘computing about itself’ metaphor. Reflec-
tive acts are anything that is done ‘about’ the computation,
such as debugging, optimising etc. This assumes the design
is ‘known’ and that we are attempting to refine the imple-
mentation to reflect the design.

How can biological processes be reflective if they are not
designed? This is a core question that we must answer if
we are to build a bridge between computer and biological
sciences. Firstly, we note that in some ways, the absence
of a designer makes reflection simpler: the ‘ultimate’ de-
sign is simply the system itself; whether the design resides
in the genotype or the phenotype is immaterial. Whereas in
C-COMP, programs that did things could exist before reflec-
tive processes were available, in biology this was not possi-
ble: how could a process emerge that was ‘doing’ something
before the system became self-referential? Without the self-
referential process, the biology is nothing more than com-
plex (carbon) chemistry. Only when a specification and an
interpreter became available did life truly emerge.

We are not refuting RNA world with this argument; we
are merely stating that even there, some RNA would be tem-
plate, and some would be machine.

On the ‘self’ in Computer Science Unlike biological or-
ganisms, computer programs are designed. Following from
this, Cantwell Smith noted that we have an issue: what is
the design of the program? Is it the concepts in the program-
ming team’s heads? The source code? The executing code?
The answer appears to be a combination of all three: the
concepts give the broad thrust of what needs to be done; the
source code is an instantiation of these ideas, plus bugs; the
executing code is what actually happens, which is what the
source code is trying to persuade the interpreter to do. But
some of the actions of the interpreter then become part of
the design, and these are not necessarily in the source code.

McMullin’s lab has attempted to build instances of the
von Neumann replicating architecture in Tierra and Avida.
Both implementations of the von Neumann architecture in
these systems tend to collapse to their original RNA world
configurations of replication, unless strict constraints are
placed on the evolution. For example in (Baugh, 2015), the
system could only be made viable by deleting any offspring
with a different length from the parent. These results are
important, because they allow us to identify features of au-
tomata chemistries which foster the more sophisticated self-
reproducing entities described by von Neumann.

The model we propose can be implemented as an emu-
lation of biology by allowing the monitor to act as a gene
regulator only, or towards C-COMP-style learning system,
by configuring the Monitor to pass ‘message sends’ to the
selection process. In both configurations, the reflective acts
are fully autonomous and internally consistent.

Conclusion
The dream of AI is to have systems that adjust themselves to
meet our needs, be they robotic, informational or biological.
The foundation of these systems is that they are reflective:
they are able to reason about themselves. This problem is
encountered in ALife, Artificial Intelligence and C-COMP,
as noted by Pattee (1982). By considering ALife as reflec-
tive systems, we are more able to draw from this wider body
of research and move the field forward.

It is remarkable that the Universal Constructor design
from 1949 is still relevant today. By casting it as a reflec-
tive system, new emphasis can be placed on the components
of an ALife system, suggesting new avenues for research in
both Artificial Life and Computer Science. To quote a re-
view of the first draft of this paper: “Interesting questions
present themselves: should we be using reflective languages
to build reflective replicators? Would self-awareness in a
replicator, i.e., introspection into its own method of repli-
cation/ecological niche, enable an enhanced form of auto-
constructive evolution a la Spector and Robinson (2002)?
A Lamarckian-Darwinism where organisms simulate their
offspring in sandboxes and hack their own genomes accord-
ingly?”

C-COMP reflection does not account for copying of code
bases in the reflective act, and the von Neumann architec-
ture does not make clear the role of the monitor, or take
natural selection into account within the model. With our
bio-reflective architecture presented here, we have arrived at
a consistent representation that clarifies the distinction be-
tween C-COMP and biology, and provides an intellectual
basis for future ALife implementations.

Acknowledgements
This work was funded by the EU FP7 project EvoEvo, grant
number 610427.

References
Baugh, D. (2015). Implementing von Neumann’s architec-

ture for machine self reproduction within the Tierra ar-
tificial life platform to investigate evolvable genotype-
phenotype mappings. PhD thesis, Dublin City Univer-
sity.

Dennett, D. C. (1971). Intentional systems. The Journal of
Philosophy, 68(4):87–106.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries – a review. Artificial Life, 7(3):225–275.

Foster, P. L. (2007). Stress-induced mutagenesis in bacte-
ria. Critical reviews in biochemistry and molecular bi-
ology, 42(5):373–397.

Hasegawa, T. (2015). On the evolution of genotype-
phenotype mapping: exploring viability in the Avida
artificial life system. PhD thesis, Dublin City Univer-
sity.

Hickinbotham, S., Clark, E., Nellis, A., Stepney, S., Clarke,
T., and Young, P. (2016). Maximising the adjacent pos-
sible in automata chemistries. Artificial Life, 22(1):49–
75.

Hickinbotham, S., Clark, E., Stepney, S., Clarke, T., Nellis,
A., Pay, M., and Young, P. (2010). Diversity from a
monoculture: Effects of mutation-on-copy in a string-
based artificial chemistry. In ALife XII, pages 24–31.
MIT Press.

Hickinbotham, S., Stepney, S., Nellis, A., Clarke, T., Clark,
E., Pay, M., and Young, P. (2011). Embodied genomes
and metaprogramming. In ECAL 2011, pages 334–341.
Springer.

Maes, P. (1987). Concepts and experiments in computa-
tional reflection. ACM Sigplan Notices, 22(12):147–
155.

McMullin, B. (2012). Architectures for self-reproduction:
Abstractions, realisations and a research program. In
ALife XIII, pages 83–90. MIT Press.

Ofria, C. and Wilke, C. O. (2004). Avida: A software plat-
form for research in computational evolutionary biol-
ogy. Artificial Life, 10(2):191–229.

Pattee, H. H. (1982). Cell psychology: an evolutionary ap-
proach to the symbol-matter problem. Cognition and
Brain Theory, 5(4):325–341.

Ray, T. S. (1991). An approach to the synthesis of life. In C.
Langton, C. Taylor, J. D. Farmer, S. Rasmussen, editor,
ALife II, pages 371–408. Addison-Wesley.

Smith, B. C. (1984). Reflection and semantics in Lisp.
In Proc. 11th ACM SIGACT-SIGPLAN symposium on
Principles of Programming Languages, pages 23–35.
ACM.

Spector, L. and Robinson, A. (2002). Genetic programming
and autoconstructive evolution with the push program-
ming language. Genetic Programming and Evolvable
Machines, 3(1):7–40.

Von Neumann, J., Burks, A. W., et al. (1966). Theory of self-
reproducing automata. IEEE Transactions on Neural
Networks, 5(1):3–14.

	Introduction
	Computational reflection
	Procedural reflection
	Declarative reflection

	 Reflective properties of ALife systems
	Bio-reflection
	Discussion
	Conclusion

	Acknowledgements

