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A growing interest in the neuro-inspired Reservoir Com-
puting (RC) framework has led to new unconventional and
physical computing systems. These include, optoelectronic
and photonic computers (Appeltant et al., 2011; Vandoorne
et al., 2011), quantum (Obst et al., 2013; Fujii and Naka-
jima, 2017), magnetic (Prychynenko et al., 2018), disor-
dered (Dale et al., 2016) and memristor-based computing
(Du et al., 2017).

However, no unifying framework exists to characterise the
quality of substrates for RC, or assess how faithful the RC
model represents the physical computational processes be-
ing exploited. Many systems can appear suitable but very
few are characterised by the computational properties found
to be essential for RC, often due to challenges involved in
evaluating such properties.

Here we outline a three-phase substrate-independent
framework we have developed and evaluated to characterise
and exploit physical systems for RC.

Phase 1: We measure substrate “quality” by experimen-
tally mapping the dynamical degrees-of-freedom the sub-
strate can exhibit; with higher degrees suggesting more vari-
ety of realisable reservoirs in a single substrate. To map the
space of dynamics, we use a minimalistic genetic algorithm
with Novelty Search (NS) (Lehman and Stanley, 2008). The
NS algorithm is well-suited as the substrate-dependent pa-
rameter space can often have complex and deceptive rela-
tionships to the substrates dynamical behaviour. Traditional
objective-based search can be counter-productive here, lead-
ing to less global exploration and more local exploitation.

Phase 2: We select an appropriate reservoir for a given
task based solely on the mapped dynamics. This is a non-
trivial problem. We use a metaheuristic search to navigate
the mapped dynamical space as an optimisation problem.

Phase 3: We evaluate the faithfulness of the model by
predicting task performance of one system based on the
similar dynamics of another. A faithful representation and
measures imply high accuracy in task prediction across sys-
tems. This could allow rapid task evaluation on cheaper be-
haviourally equivalent systems and functional models when
no physical models exist.

Through these combined phases the complex relationship
between physical properties and reservoir performance is
mapped, leaned and exploited. Leading to a better under-
standing of suitable RC substrates and a significant reduc-
tion in time and effort to verify suitability. Ultimately, free-
ing RC practitioners to focus more on substrate exploration
and design.
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