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Abstract. Conway’s Game of Life rules can be applied to Cellular Au-
tomata (CAs) running on aperiodic grids, namely Penrose tilings. Here
we investigate the result of running such CAs from random initial con-
ditions. This requires development of a Penrose tiling algorithm suitable
for CA experiments, in particular, a tiling that can be lazily expanded
as CA activity reaches an edge. We describe such an algorithm, our ex-
perimental setup, and demonstrate that the Penorse kite and dart tiling
has significantly different statistical behaviour from the Penrose rhomb
tiling.

1 Introduction

John Horton Conway’s Game of Life [3][8] is a simple two-dimensional, two
state cellular automaton (CA), remarkable for its complex behaviour [3][16].
That behaviour is known to be very sensitive to a change in the CA rules. Here
we continue our investigations [11] into its sensitivity to changes in the lattice,
by the use of an aperiodic Penrose tiling lattice [9][14].

Section 2 reviews Penrose tilings, and section 3 describes algorithms to gen-
erate them, including one that permits ‘lazy extension’ of the tiling. Section 4
generalises the concepts of neighbourhood and totalistic CA rules to aperiodic
lattices. Section 5 describes the experimental setup for running the Game of
Life rules on aperiodic lattices; section 6 reports the statistics of lifetimes, ash
densities, and growth of the region of activity.

2 Penrose tilings

2.1 Kites and darts, and rhombs

Griinbaum & Shephard [10, chapter 10| provide a good introduction to aperiodic
tilings, including Penrose tilings. The two variants of Penrose tiling we consider
here are ‘kites and darts’, and ‘rhombs’.
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Fig. 1. Penrose tiles (a) the dart (grey) and kite (white) tiles: the long and short
sides are in the ratio ¢ : 1, where the golden ratio ¢ = (1 + /5)/2 = 2 cos(w/5);
(b) the thick (white) and thin (grey) rhomb tiles
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Fig. 2. Kite and dart matching rules (a) vertex markings (b) Ammann bars

The kite and dart tile pair are shown in Fig. la; a large patch of kite and
dart tiling is shown in Fig. 19. The thick and thin rhomb tile pair are shown in
Fig. 1b; a large patch of rhomb tiling is shown in Fig. 21. [21] shows that the
number of thick to thin rhombs in a Penrose tiling is in the ratio ¢ : 1.

2.2 Matching rules and Ammann bars

To avoid a kite and dart being joined to form a rhombus (Fig. 7), and hence a
periodic tiling, there are additional ‘matching rules’: as well as edges of the same
length being put together, certain vertices (given by the dots in Fig. 2a) must
also be matched [9][10]. Another matching scheme uses Ammann bars (Fig. 2b),
which must be joined in straight lines across tiles [10]. (Completed Ammann
bars highlight the underlying structure, and can be used to construct tilings; see
section 3.5.)

To avoid rhomb tiles being used to form a periodic tiling, there are additional
‘matching rules’: as well as edges of the same length being put together, the edge
orientations (given by the arrows and dots in Fig. 3a) must also be matched [5].
Another matching scheme uses Ammann bars (Fig. 3b), which must be joined
in straight lines across tiles.

2.3 Valid vertex configurations

There are many ways to put the tiles together, even with the restriction of the
matching rules. However, in a true Penrose tiling (one that can be extended to
infinity), not all of these configurations can exist.

There are only seven valid ways to surround any vertex in a kite and dart
tiling [9] (Fig. 4).

There are only eight valid vertices in a rhomb tiling [5] (Fig. 5). The names of
these vertices come from the names of the corresponding kite and dart vertices
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Fig. 3. Rhomb matching rules (a) vertex marking and edge orientations plus
vertex angle numbering, where interior angles are 7/5 times the vertex angle
number (note that vertices labelled 2, and labelled 4, come in two kinds, due to
the matching rules: these are distinguished by overbars) (b) Ammann bars
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Fig. 4. The seven valid vertex configurations of a kite and dart tiling [9]

from which they can be derived [5]. Each vertex can be associated with a list of
vertex angle numbers (after [17, fig.6.8], augmented here with overbars, Fig. 3a),
corresponding to the vertex angles of the tiles forming the central vertex. These
are useful for determining how to complete forced vertices (see section 3.3). Note
that there are two distinct occurrences of the 3,3 vertex configurations (in the J
and D); see Fig. 6.

If a patch of tiling exhibits any other vertex configuration, it is not a true
Penrose tiling: it will not be possible to extend it to infinity. We use these valid
vertex configurations to analyse valid neighbourhood configurations later.
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Fig. 5. The eight valid vertex configurations of a rhomb tiling [5]
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Fig. 6. Disambiguating the 3,3 vertices: the two distinct ways a 3,3 vertex can
appear in a valid rthomb vertex configuration (in the J and D, see Fig. 5). This
is a context dependent marking [21].

3 Penrose tiler construction

3.1 Requirements

There are several different algorithms for constructing valid Penrose tilings of
arbitrary size. Here our aim is to experiment with CA rules on a Penrose tiling.
We need to decide what to do as activity approaches the edge of the current
grid. One common solution to this is to implement a ‘lazy’ grid, which expands
as necessary. This provides requirements for a Penrose tiling algorithm suitable
for investigating CAs:

1. The lazy tiler shall tile an arbitrarily sized rectangular region with a valid
Penrose tiling (supporting both kites and darts, and rhombs)
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Fig. 7. Relationship between (marked) rhomb tiles and kites and darts: a thick
rhomb comprises a dart and two half-kites; a thin rhomb comprises two half-kites
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Fig. 8. One iteration of deflating a dart tile and a kite tile, via intermediate
rhomb tiles (after [10, Figure 10.3.19]). The ratio of the original and final kite
and dart tile sizes is the golden ratio ¢.

2. Given any point on the plane outside the tiled region, the tiler shall ap-
propriately expand the tiled region to a larger rectangle that includes this
point

3. During such expansion, the tiler shall not extend tiling unnecessarily (neither
in directions away from the expansion point, nor beyond it)

4. The tiler shall determine the neighbourhood of each tile, for use as a CA
lattice

5. The tiler shall determine when CA activity reaches the edges of the currently
defined lattice, and trigger suitable grid expansion

Our pentagrid lazy tiling algorithm meets these requirements. We describe
it here in some detail, because previous descriptions of pentagrid tiling algo-
rithms are somewhat obscure (and not tuned for CA experiments), and the lazy
extension algorithm has not been described before.

3.2 Deflation

The relationship of the rhomb tiles to the kite and dart tiles is shown in Fig. 7.
The deflation tiling method involves recursively breaking tiles into sub-tiles
(Fig. 8). This is one of the best known method of creating a valid Penrose
tiling, and derives from methods used in [14].

Ramachandrarao et al [15] describe a related decomposition process that
produces a valid rhomb tiling starting from a single thick rhomb, where the
decomposition processes are “akin to normal crystallographic operations”.
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Fig. 9. Example of Onoda et al [13] rhomb tiling algorithm. (a) Start from an S
vertex initial seed cluster; each concave vertex on the tiling edge is (3, 3), so is a
forced D vertex. Apply RI to completed each with a thin rhomb. (b) The result
is a regular decagon, with no further forced vertices. The underlying Amman
bars intersect at 108° (bold lines). R2 requires a thick tile consistent with the
vertex rules to be added “to either side” (that is, to one side or the other) of the
corresponding tiling vertex, which here has (partial) vertex number list (1,2,1)
(c) Both S3 and J have a partial vertex list of (1,2,1), but extension with a thick
tile implies extension with a 2, 3 or 3 vertex. The only way this can be done
consistently is to complete it as a J vertex, (1,2,1,3,3).

The deflation approach was taken in [11]; as noted there it is not a suitable
process for a lazy tiler, since the generation n grid does not clearly appear
as a subpart of the larger generation n + 1 grid. So although it is possible to
create arbitrarily large tilings (requirement 1), it is not possible to do so ‘lazily’
(requirement 2); this size must be set at the start.

3.3 Onoda’s rhomb tiling algorithm

Onoda et al [13] describe an algorithm for generating rhomb tilings. Start from
any valid ‘seed cluster’ tiling (for example, a single tile, or one of the eight valid
vertex tilings in Fig. 5). “R1: If one or more vertices are forced, choose a forced
vertex and add a forced tile to it.” A forced vertex is one that can be completed
in only one way to give a valid vertex. (Without loss of generality, we can add
the entire set of tiles needed to complete the forced vertex.) “R2: If there are no
forced vertices, add a thick tile (consistent with the vertex rules) to either side
of any 108° corner.” The 108° corner referred to in this rule is not (necessarily)
a 3-vertex of a thick rhomb: it is rather the underlying corner defined by the
edges of the completed forced patch of tiling “when viewed macroscopically”.
These macroscopic edges are traced out by the underlying Amman bars in the
matching rules (Fig. 9). Again, without loss of generality, we can add the entire
set of tiles needed to complete the chosen vertex.

This process results in a steadily growing patch of tiling (requirements 1 and
2). However, it is not suitable for a lazy tiler, since the direction that the tiling
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grows is not under programmatic control: it has to grow in the direction of forced
vertices first, then 108° corners (so does not satisfy requirement 3).

3.4 Ammann bars

The underlying Ammann bars of a Penrose tiling form five grids of lines, each
grid rotated by a multiple of 27 /5 (Fig. 9). Given such a grid, the underlying
tiling can be reconstructed.

A lazy tiler based on Ammann bars could satisfy requirement 3, as new grid
lines could be laid down only in the required direction. However, these grid
lines are not evenly spaced: they form a Fibonacci sequence [21]. The lazy tiling
extension (R2), which involves laying down new grid lines, would be possible,
but slightly tricky. Since there is a similar approach, but based on a regularly-
spaced pentagrid (see next section), the Ammann bar approach is not considered
further here. ([21] shows that if one starts with a rhomb tiling reconstructed from
Ammann bars, and deflates it, then the resulting rhomb tiling is one that can
be reconstructed from a regular pentagrid.)

3.5 Pentagrid

A multigrid comprises sets of evenly spaced parallel lines all at appropriate
rotations of each other. de Bruijn [6] shows that a multigrid is the dual of a
tiling. (The dual tiling of a grid associates a tile with every intersection of the
grid, and a vertex of the tile with every open area of the grid.) A special case of
the multigrid is the pentagrid, and its dual is a Penrose rhomb tiling [5].

The description of how to extract the dual rhomb tiling from a pentagrid
given in this section is adapted and simplified from [5] [21]. de Bruijn [5] provides
the original pentagrid definitions and theorems. His formulation is in terms of
complex numbers (rather than vectors), and has no diagrams, which can make
it hard to understand the approach in algorithmic terms. Socolar & Steinhardt
[21] recast the approach in terms of vectors, but also generalise to multigrids and
three dimensions, which again can obscure the components of a tiling algorithm.
Austin [1] provides a good overview of the technique.

A grid (Fig. 10a) is a sequence of regularly spaced parallel lines, labelled with
the integers. A unit vector e normal to the lines defined the direction of the grid.
A number v defines the distance of the line labelled zero from the origin. So the
grid line labelled N is defined by

xe=N+v (1)

where N is the line label.
A point x’ not on a grid line is assigned an index value equal to the higher
label of the adjacent grid lines:

No = [ 1] 2)
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Fig.10. (a) A grid defined by unit vector e and offset v (b) Five unit vectors,
with angles 2k7/5 = k x 72°, defining a pentagrid. Note that ey and e; form
two edges of a thick rhomb, and ey and es form two edges of a thin rhomb. Note
also that |eg + e1 + ea| = ¢.

i=0| =2 i=l i~
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Fig.11. A regular pentagrid. Each polygon formed by the grid lines is rep-
resented by the 5-tuple of grid labels (i,7,k,m,n): a = (2,2,1,2,1); b =
(2,2,1,2,2); ¢ = (2,2,2,2,2); d = (2,2,1,2,2). Note that adjacent polygons
differ in only one label value (corresponding to the grid containing the grid line
forming their common edge).
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A pentagrid is a set of five grids, defined by five equally spaced direction
vectors (Fig. 10b), and five offsets vp,...,74. de Bruijn [5] defines a regular
pentagrid to be one where at most two grid lines cross at any one point (Fig. 11),
achieved by suitable choice of offsets. (A sufficient condition for regularity is
where all the offsets —1 < 7; < 1, all are different, 79 = 0, and neither v; + 74
nor 2 + 3 is an integer.)

Then, under the condition that

Z%‘ =0 (3)

de Bruijn [5] proves that the pentagrid is the dual of a Penrose rhombus tiling:
a tile is defined at every intersection of grid lines, and a tile vertex at every open
polygonal region surrounded by grid lines; the condition that no more than two
lines intersect ensures a unique tiling. ([21] extends some of these definitions
and results to grids with irregular spacings of grid lines, including Ammann bar
grids, and to 3D grids.)

Consider a pentagrid with each of its open regions labelled with a 5-tuple of
integers (ko, k1, k2, ks, k4), calculated according to equation 2 (see Fig. 11). Each
such region corresponds to the vertex of a rhomb, with coordinates [5, eqn 5.2]
[21, eqn 4(—1)]

4
VvV = Z kiei (4)
=0

de Bruijn [5, eqn 5.4] defines

4
I=> kimod5 (5)
=0

to be the index of the rhomb vertex, and shows that it is never 0.

The regularity constraint ensures that precisely four regions surround any
intersection of pentagrid lines. These four regions differ in only two of their five
grid labels (corresponding to grids containing the two intersecting grid lines they
surround), and the values of these labels differ by at most one (Fig. 11). From
equation 4 and Fig. 10b, we can therefore see that any such four adjacent regions
correspond to the vertices of a thick rhomb (if the grid lines intersect at an angle
of 27/5) or a thin rhomb (if the grid lines intersect at an angle of 47/5).

The fact that the rhombs so defined form a valid Penrose tiling is the basis
of the pentagrid tiling algorithm.

3.6 Pentagrid lazy tiler algorithm

The pentagrid approach satisfies our requirements for a lazy tiler.

Requirement 1: Given a rectangular region to be tiled, T', we can lay a pen-
tagrid over it, and extend the lines of the pentagrid to calculate all intersections
that lie within 7.
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Requirement 2: Given a point p ¢ T, we can extend the region to be tiled to
T’, the smallest rectangular region that includes both T" and p, and then extend
the pentagrid to calculate the new intersections that lie within the extended
region T — T.

This also satisfies requirement 3, that the tiling is not unnecessarily extended
during this process.

Requirement 4: The algorithm calculates the vertices of rhombs before it
calculates the rhombs themselves. These vertices are also vertices of neighbouring
rhombs, so the neighbourhood can be built up as the tiles are calculated.

Requirement 5 can be satisfied as follows. Consider some further region def-
initions. The neighbourhood of a tile ¢, N(t), is the set of all tiles close to ¢ in
some way (different kinds of Penrose tiling neighbourhoods suitable for defining
CAs are given in section 4.1). Let C' be the ‘complete neighbourhood’ region:
all tiles ¢ in T whose neighbourhood is ‘complete’ (that is, also in T') for some
neighbourhood definition N (t).

C={teT|NHCT} (6)

Clearly C' C T, and unless the neighbourhood is trivial, C C T'. Let A be the
region where we allow cellular automaton activity to exist. We require

ACCcCT (7)

The extension of A is dictated by development of cellular automaton activity.
This can be triggered when there is activity, a change in state, of a tile t € A
where N(t) € A, so there are members of the neighbourhood of ¢ outside A
(although they will be in T if the requirement of equation 7 holds before this
activity step). We extend A to include all the neighbourhood of ¢. In order to
ensure that A C C still holds, this may require extension of C, and hence of T'.

It would be possible to calculate this extension exactly; however it is far
cheaper in terms of computational complexity to extend the tiling such that
the distance between the boundary of T and A is always greater than a dis-
tance d that ensures that the condition A C C holds. (This does slightly violate
requirement 2, that the extension not go beyond p, but not to any significant
degree.)

For a generalised Moore neighbourhood (suitable for Game of Life CA rules)
the value of d is determined by examining the valid vertex configurations in
Figs. 4 and 5. For kites and darts, the largest is the queen (Q) vertex (Fig. 4),
with a maximum diameter of twice the width of a dart, or 4 sin(27/5) times the
length of a short edge. For rhombs, the largest is the S3 vertex (Fig. 5), with a
maximum diameter of twice the long diagonal of the thin rhomb, or 4 sin(27/5)
times the length of an edge.

The original treatment [6] uses the pentagrid approach to produce a rhomb
tiling; here we outline how it is used in an algorithm for a lazily extending tiling,
of rhombs, and of kites and darts.
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Fig. 12. Initial tiling T extends to tiling 7" with extension regions E1, Fy, E3, E4
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Fig.13. An arbitrary rectangle R to be tiled, with corners vg, vy, vs,vs, and
diagonals shown with dashed lines. For each e;, the diagonal with direction closer
to that of e; gives the two opposite corners between which grid lines should be
calculated. So vy and v, are used to define the extent of grid lines for e; and
e3; vi and vs for e; and ey either pairs of opposite corners may be used for eg.

Choosing the offsets. First, choose suitable offsets v; that ensure a regular
pentagrid and that obey equation 3. A sufficient such choice is (0, v, —v, 2v, —27),
governed by the single parameter v, where 0 < v < 0.5.

In all the results reported here, we used the offsets (0.2, —0.2, —0.1, 0.4, —0.3).
This violates the 79 = 0 condition, but does create regular pentagrid.

Tiling a region. We consider only the tiling of a rectangular region. The
problem of tiling an initial region and then extending the tiling can be reduced
to tiling arbitrary rectangles. For example, Fig. 12 shows the extension of tiling
T to tiling T’ with four rectangular extension regions Ey, Fo, E3, Ej.

To tile an arbitrary rectangle R we must ensure that all grid intersections
that lie within the rectangle are calculated. For each of the five grids, every
one of its lines that intersects the rectangle must be considered. We do this by
observing that the maximum extent of the grid that needs to be considered is
defined by the rectangle’s diagonal that is closer to the direction of the grid, e
(Fig. 13). So, for example, grid 1 has the set of grid values N; given by (using
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Fig. 14. Marking a rhombus depending on its vertex indices. These are the
only combinations of vertex indices that are generated from a pentagrid. (Note:
these vertex index numbers are unrelated to the ‘vertex angle numbers’ shown
in Fig. 3a.)

equation 2)
[Vg.el — ’71-‘ < Nl < |—V0~el - ’Yl-| (8)

All pairs drawn from Ny X N7 X Na x N3 x Ny calculated in this way contain
all the grid intersections in the rectangle R (plus more outside).

Converting grid intersections to tile vertices. To calculate the vertices of
a tile we must discover the 5-tuples defining the four open regions around an
intersection. The 5-tuples corresponding to each intersection index are calculated
using equation 2 (to get the other three indices of the intersection 5-tuple) and
Fig. 11 (to get the four vertex 5-tuples). The coordinates of the corresponding
vertex are given by equation 4.

Iterating over intersections naively would result in each vertex being calcu-
lated 4 times: to ensure the each vertex is calculated only once, we store the
vertex information in a hashtable indexed by its 5-tuple. At each vertex we also
maintain a list of all tiles that share the vertex: this aids subsequent neighbour-
hood calculations.

Conversion from rhomb to kite and dart tiling. The pentagrid approach
yields a rhomb tiling. This can subsequently be converted to a kite and dart
tiling using the mapping shown in Fig 7.

First, the rhombs need to be “marked”, in a way that depends on the vertex
index (equation 5). de Bruijn [5] shows that the only combinations of vertex
indices formed by a pentagrid are (1,2,2,3) or (2,3,3,4); the marked vertex is
the one with vertex index 1 or 4 (Fig. 14).

Each thick rhomb is broken into a dart and two half-kites, each thin rhomb is
broken into two half-kites (Fig. 7), taking the rhomb marking into account. The
half-kites are then suitably joined to produce a complete kite and dart tiling.

Precision issues. We have the condition that only two grid lines cross at
any intersection point. de Bruijn [7] gives the condition for a singular pentagrid
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Fig.15. (a) von Neumann neighbourhood (b) Moore neighbourhood, or box
neighbourhood of radius » = 1 (¢) box neighbourhood of radius r = 2

(where more than two lines intersect at some point) to be for grid ¢ € {0,1,2, 3,4}
and an integer k if

(k=)o +vic1 +vi+1 €Z 9)

Choosing grid 1 = 0, vy = 0, this gives
k¢ +v+va€Z (10)

Assuming non-extreme choices of ; and 74 (that is, choosing v1+v4 = O(1)),
and given ¢ = O(1), this condition could occur in a computation by rounding
error, if there were an error of one unit in the last place of k.

Our implementation uses Java doubles, which are implemented using double-
precision 64-bit IEEE 754 floating point, which have a 53-bit mantissa, corre-
sponding to approximately 16 decimal digits. So the algorithm does not lose
accuracy (no grid singularity occurs) below N = O(10%°) grid lines, or O(1032)
tiles. If larger tilings than this are required, higher precision arithmetic should be
used. (This is only an order of magnitude argument, but since our tiling investi-
gations are significantly below this limit, with O(10°) tiles, we can be confident
that there is no loss of accuracy affecting our results.)

4 Cellular automata on aperiodic lattices

Classic cellular automata are defined on regular lattices. The update rule depends
on the state of each cell’s full neighbourhood (the surrounding cells, and the
updating cell itself)3, and the structure of that neighbourhood is invariant: all
places in the lattice look the same, and the update rule can be applied uniformly
across the lattice. Typical neighbourhoods for 2D cellular automata are shown
in Fig. 15. These neighbourhoods can be formally defined in terms of metrics
on the lattice. However, we define them (later) in an equivalent manner that
permits easy generalisation to aperiodic lattices.

3 The standard definition of CA neighbourhood includes both the surrounding cells
and the updating cell. Throughout this paper we use slightly different terminol-
ogy (because we are nearly always referring to outer totalistic CA rules, see later):
by neighbourhood we mean only the surrounding cells. If we want to include the
updating cell, we refer to the full neighbourhood.
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Fig. 16. The generalised von Neumann neighbourhoods of a kite and dart Pen-
rose tiling.

Py Y Vi

Fig.17. The generalised von Neumann neighbourhoods of a rhomb Penrose
tiling.

In general, the update rule depends on the particular state of each separate
neighbour. For totalistic CA rules, however, the next state of a cell depends only
on the number of full neighbourhood cells in certain states. For outer totalistic
CA rules, the next state of a cell depends only on its current state, and the
number of neighbourhood cells in certain states.

For example, in Conway’s Game of Life outer totalistic CA, the neighbour-
hood of each cell comprises the 8 nearest cells of the regular Moore neighbour-
hood (Fig. 15b). Each cell has two states, ‘dead’ and ‘alive’. If a cell is alive at
time ¢, then it stays alive iff it has 2 or 3 live neighbours (otherwise it dies of
‘loneliness’ or ‘overcrowding’). If a cell is dead at time ¢, then it becomes alive
(is ‘born’) iff it has exactly 3 live neighbours.

For aperiodic lattices such as a Penrose tiling, the detailed structure of the
neighbourhood varies at different locations in the lattice. Totalistic and outer
totalistic rules can be given an interpretation in these aperiodic tiling neighbour-
hoods.

4.1 Generalised von Neumann neighbourhood

We define the generalised von Neumann neighbourhood of a cell to be all the
cells with which it shares an edge (or, equivalently, two distinct vertices). Hence
the size of the neighbourhood equals the number of edges of the central cell.
Figures 16 and 17 show the range of distinct generalised von Neumann neigh-
bourhoods which form valid vertices (rotations and mirror images of these neigh-
bourhoods are not considered to be distinct).

de Bruijn [7] identifies the same rhomb neighbourhoods (but considers mir-
ror images separately), and shows that a valid Penrose rhomb tiling can be
constructed by considering just these neighbourhoods, without the need to use
the rhomb matching rules of Fig. 3.
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Fig. 18. The generalised Moore neighbourhoods on a kite and dart Penrose
tiling, with neighbourhood sizes.

In the rectangular lattice (Fig. 15a), none of the four von Neumann neigh-
bourhood cells themselves share an edge. So if A is a neighbour of B, and B
is a neighbour of C, then A is not a neighbour of C: neighbouring von Neu-
mann neighbourhoods do not overlap (recall that we do not treat the central
site as a member of the neighbourhood for the purposes of this paper). In the
Penrose lattice, this is no longer the case: cells in a generalised von Neumann
neighbourhood can share an edge, so neighbouring generalised von Neumann
neighbourhoods can overlap. This may affect the communication paths through
the Penrose CA.

4.2 Generalised Moore neighbourhood

We define the generalised Moore neighbourhood of a cell to be all the cells with
which it share a vertex.

Not only do cells have irregular shaped neighbourhoods, with the generalised
Moore neighbourhood not all cells have the same number of neighbours. The
range of neighbourhood sizes and configurations is limited.

Fig. 18 shows the eight distinct generalised Moore neighbourhoods in a kite
and dart tiling: there are no other valid ways to surround a kite or a dart (this
can be established by exhaustive consideration of the valid vertex configurations
shown in Fig. 4). So there is one neighbourhood configuration of size 8 around a
kite, and two around a dart; three of size 9 around a kite, and one around a dart;
and one of size 10, around a dart. ([11] incorrectly states that kite and dart tilings
have neighbourhoods of size 8 and 9 only.) Figure reffigure:moorekitenbrhood
show an area of kite and dart tilings with colouring to highlight the size of cells’
neighbourhoods.

Similarly, Fig. 20 shows the 11 distinct generalised Moore neighbourhoods in
a rhomb tiling. There is a larger range of distinct neighbourhood configurations
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Fig.19. A kite and dart tiling shaded by neighbourhood type. The neighbour-
hood shading is uniformly distributed between white and black such that ag is
white and ay black.

for rhomb tilings. Figure 19 show an area of rhomb tilings with colouring to
highlight the size of cells’ neighbourhoods.

As can be seen from Figs. 19 and 21, not all sizes of neighbourhoods appear
with the same frequency. Figure 22 shows the distribution of neighbourhood
sizes in a kite and dart tiling and in a rhomb tiling.

4.3 Generalised box neighbourhood

The Moore neighbourhood is a special case of a box neighbourhood, with radius
r = 1. Let N(c) be the generalised Moore neighbourhood of cell c. We define
recursively a generalised box neighbourhood of radius r > 1. Let N(¢,r) be the
box neighbourhood of cell ¢, of radius r. Then define

N(c,1) = N(c) (11)
N(e,r) = U N(n,r—1) (12)
neN(c)

See Figs. 23 and 24.

The frequency distribution of neighbourhood sizes for » = 2 neighbourhoods
is shown in Fig. 25 for kites and darts, and for rhombs. Again, the rhomb tilings
have larger neighbourhoods, and a larger spread of neighbourhood sizes.

4.4 Penrose Life rules

Using our definition of the generalised Moore neighbourhood, the definition of
the Game of Life as given in section 4 can be used unchanged on a Penrose
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Fig. 20. The generalised Moore neighbourhoods on a rhomb Penrose tiling, with

neighbourhood sizes.
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kite/dart rhomb
size|type| cells % type| cells %
7 b0 |2831 9.1
2831 9.1
8 | a0 |4994 14.7 bl |4576 14.6
al (4248 12.5
a2 (1890 5.6
11132 32.7 4576 14.6
9 | a3 |6116 18.0 b2 |2134 6.8
ad (6125 18.0 b3 |2842 9.1
ab [3762 11.1
a6 (3774 11.1
19777 58.2 4976 15.9
10 | a7 |3083 9.1 b4 {2370 7.6
b5 {1735 5.6
b6 |2133 6.8
b7 (3475 11.1
b8 (3501 11.2
3083 9.1 13214 42.3
11 b9 |3522 11.3
b10 |2136 6.8
5658 18.1

20%

8

9

10

Fig. 22. Generalised Moore neighbourhood statistics, on a 33992 cell kite and dart
tiling (black bars, median size = 9), and a 31255 cell rhomb tiling (grey bars, median
size = 10)

Fig. 23. Examples of box radius r = 2 aperiodic neighbourhoods on kite and
dart Penrose tilings, and on rhomb Penrose tilings
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Fig. 24. An example of a box radius » = 5 aperiodic neighbourhood on a kite
and dart Penrose tiling, and on a rhomb Penrose tiling

size| kite/dart | rhomb
cells  %lcells %

25| 4248 12.5
26| 4994 14.7{1597 5.1
27| 4204 12.4| 829 2.7
28111330 33.3|1912 6.1
29| 2351 6.9{1092 3.5
30| 3782 11.1{1977 6.3
31| 1441 4.2{1314 4.2
32| 1642 4.8|2588 8.3
33 493 1.6
34 4609 14.7
35 1075 3.4
36 4622 14.8
37 3489 11.2
38 828 2.6
39 4830 15.5

30% -

20% -

10% -

0% - T T T T T T T

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Fig. 25. Neighbourhood statistics » = 2 neighbourhood, on a 33992 cell kite and dart
tiling (black bars, median size = 28), and a 31255 cell rhomb tiling (grey bars, median

size = 34)
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lattice. Some early investigations are reported in [11]; further investigations are
reported later in this paper.

In our investigations, we use some typical GoL terminology, defined here.
(The quoted definitions are from [19].)

soup “A random initial pattern, often assumed to cover the whole Life universe.”
Here we consider only finite soup extents, but allow subsequent activity
outside the initial soup patch.

quiescence Eventual periodic CA activity. Once the CA has entered a quiescent
state, its future activity is periodic, and hence predictable.

ash “The (stable or oscillating) debris left by a random reaction.” Hence an ash
is the quiescent state left by a soup.

5 Experimenting with Life

In [11] we report that the Game of Life has different quantitative behaviour on a
regular lattice and on a Penrose kite and dart lattice: on the Penrose lattice the
lifetime to quiescence is much shorter, and the ash density is lower. This section
investigates if there are similar differences between the behaviour of the rules
running on kite and dart and on rhomb lattices.

Null Hypothesis: The Game of Life run on kites and darts has identical
statistical behaviour to the Game of Life run on rhombs.

To test this hypothesis, we investigate three statistics: lifetime to quiescence,
ash density, and growth of the active area.

5.1 Experimental setup

To test the hypothesis we vary the density D of soups of similar sizes S on rhomb
and kite and dart tilings, run the cellular automaton to quiescence, and record
the lifetime to quiescence t4, ash density p (measured over the soup box), and
soup growth g.

Lifetime ¢,: The lifetime, or the time to quiescence, is defined to be the
number of timesteps from the soup state (¢ = 1) until the pattern of live cells
(measured over the whole timing G) first repeats (at ¢ = t,). Each timestep, the
CA’s current state is stored, along with the number of live cells. To check for
quiescence, the current state is compared to all previous states with the same
number of live cells. The period p is the number of timesteps since the state was
previously seen: p = t; — tprev-

Ash density p: The proportion of live cells in the ash at ¢ = ¢,, measured
over the soup tiles.

Soup growth g: The number of cells in the maximum active area divided by
the number of cells in the soup: g = A/S. measured over the soup tiles (Fig. 26).

Tiling grid: We use a lazily expanding tiling for both kites and darts, and
rhombs. We use an initial tiling of size G = 23194 for the kite and dart experi-
ments, and of size G = 23123 for the rhomb experiments. It is difficult to produce
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Tiling !

Activity

Soup

Fig. 26. The initial tiling grid G, the central soup area S, the maximum activity
area during the run A, and the possibly extended tiling grid G, (dashed box) to
accomodate the activity.

25% 50% 75%

Fig. 27. The three central soup areas, to scale with the initial grid area.

identical sized tilings: these are deemed close enough for fair comparison. These
differences in tile numbers are of similar scale to the differences in tile numbers
between regular and kite and dart tilings used in [11] (and are about twice the
size of the largest grid explored there).

Soup area: Three initial soup areas S, covering the central 25%, 50%, 75%
of the area of the tiling. See Fig. 27 and 28.

Soup density: 100 soup densities D, in the range [0.01, 1.0] with increments
of 0.01. Each cell in the soup area S is initially alive with probability D; all other
cells in G are initially dead. See Fig. 29.

Runs: Each of the 100 soup densities D across the three soup sizes S is run
to quiescence 1000 times.

5.2 Statistical analysis

We want to test whether certain distributions are statistically the same or dif-
ferent: the commonly-used tests assume an underlying normal distribution. Are
the distributions here (sufficiently) normal?

Figures 31 and 32 show the histograms of lifetime and ash density results
over the 1000 runs for one particular soup size and soup density. The lifetime
distributions, at least, do not look normal.

We investigate further the distribution of lifetimes and ash densities for these
examples. We calculate the median, mean, standard deviation, skew and kurtosis
of these distributions (using the MS-Excel functions MEDIAN, AVERAGE, STDEV,
SKEW, and KURT respectively), for the lifetimes (Fig. 33) and the ash densities
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| 25% 50%  75% G
kite and dart [5842 11670 17527 23194
rhomb |5815 11611 17405 23123

Fig. 28. Number of tiles involved in the experiments, soup sizes S = 25%, 50% and
75%, and full initial grid size G

30% 70%

Fig. 29. Typical soups at two densities, for kite and dart (top) and rhomb (bot-
tom) tilings

Fig. 30. The ashes resulting from the 30% soups of Fig. 29. Note the extended
areas of activity.
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50
40
30 4

20 4

150 200 250

20

10

0
0 50 100 150 200 250

Fig. 31. The distribution of lifetimes to quiescence on the kite and dart tiling
(top) and rhomb tiling (bottom), for 1000 runs with soup size S = 25% and
soup density D = 0.8; with comparison normal distributions of the same mean
and standard deviation.

50

0.0% 0.1% 0.2% 0.3% 0.4%

100 -

50

0.0% 0.1% 0.2% 0.3% 0.4%

Fig. 32. The distribution of ash densities on the kite and dart tiling (top) and
rhomb tiling (bottom), for 1000 runs with soup size S = 25% and soup density
D = 0.8; with comparison normal distributions of the same mean and standard
deviation.
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D=04 D=038
soup k&d rhomb|k&d rhomb
25%|m| 96  158| 37 57.5

w| 994 163.0{41.9 65.1
ol 19.6 37.0{18.6 37.3
S 1.1 09| 1.2 1.5
k| 2.0 1.2] 2.1 3.9
50%|m| 108  179| 40 60
w| 111 185.1{44.7 66.6
ol 19.6 37.2{185 33.7
s| 0.7 0.8 1.2 1.2
k| 0.9 0.5 2.0 2.1
5% |m| 116 190 44 67
©|118.6 198.1{47.1 74.1
o| 20.0 404|179 359
s| 0.9 1.2] 1.3 1.2
k| 1.1 2.8] 4.3 4.3

Fig. 33. Statistics for the lifetime distributions (median m, mean p, standard deviation
o, skew s, kurtosis k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and

75%

soup

D=04
k&d rhomb

D =028
k&d rhomb

25%

0.0044 0.0034
0.0008 0.0008
0.2 0.3
0.2 -0.0

0.0018 0.0011
0.0005 0.0004
0.4 0.5
0.2 0.1

50%

0.0084 0.0022
0.0011 0.0006
—0.1 0.2
0.1 —-0.1

0.0063 0.0015
0.0010 0.0005
0.1 0.3
—0.0 0.0

75%

e Q FE|x>n Q BE(xw 9F

Fig. 34. Statistics for the ash densities (mean u, standard deviation o, skew s, kurtosis
k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and 75%

0.0123 0.0091
0.0027 0.0013
—0.1 0.2
-0.1 -0.1

0.0029 0.0023
0.0007 0.0006
0.2 0.1
0.0 -0.1
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kites rhombs
# > 45(349 (= A)|650 (= B)
# < 45(651 (= ()|350 (= D)

Fig. 35. The number of measurements above, and not above, the joint median
value of 45, for soup size S = 25%, density D = 0.8

(Fig. 34: we do not show medians here, since they are indistinguishable from the
means).

For large samples (N > 150) drawn from a normal population, the skewness
statistic is approximately normally distributed with mean 0 and standard devi-
ation s; = /6/N [20, §5.13]; for very large samples (N > 1000) drawn from a
normal population, the kurtosis statistic is approximately normally distributed
with mean 0 and standard deviation s = /24/N [20, §5.14]. Hence skew values
beyond two standard errors of skewness, or kurtosis values beyond two stan-
dard errors of kurtosis, indicate that the distribution is not normal at the 95%
confidence level.

For N = 1000 (just valid for the kurtosis test), 2s, = 0.5 and 2s;, = 1.0.
Both these values are lower than those calculated for the lifetimes (Fig. 33), so
the lifetime distributions are not normal at the 95% confidence level. Normality
of the ash densities has not been ruled out by this test (Fig. 34).

Given this non-normality of the lifetimes, we calculate the non-parametric
median and quartile statistics of the runs, for the range of soup densities (Figs. 37
and 39). These results are in qualitative agreement with those in [11]: low life-
times and ash densities at extreme soup densities; a ‘plateau’ in the behaviours
for soup densities ~ 0.2 — 0.6; lifetimes ~ 100 — 200; ash densities ~ 1 —2%. We
now, however, have better statistics, and new results for rhomb tilings.

Since the lifetime distributions are not normal, we use the non-parametric
median test, to test whether the distributions have statistically significantly dif-
ferent medians [18, pp.111-115]. (In practice, our sample sizes are probably large
enough that assuming normality and using a t-test is probably valid. However,
the certainly valid, if somewhat weaker, non-parametric test is adequate in this
case.)

Null Hypothesis T: for soup size S = 25%, density D = 0.8, there is no
difference between the median lifetimes for kites and darts, and for rhombs.

The calculation involves splitting the measurements into four groups: those
above, and not above, the joint median of the measurements. The relevant num-
bers for our test case are given in Fig. 35). Then we calculate the value of x?
from [18, eqn(6.4)]:

- N (|AD — BC| — N/2)* B
= AT B+ DA+ O BLD) 03 (13)

The probability of occurrence under Null Hypothesis T for x? > 90.3 with
one degree of freedom is p < § CHIDIST(90.3,1) = 107! for a one-tailed test.
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Therefore we can reject Null Hypothesis T, with an extremely high degree of
statistical confidence.

In fact, the difference in the medians in this test case is statistically significant
to an almost ludicrous degree. This extreme level of statistical confidence is due
mostly to the large number of samples, N = 1000. (Such large samples are
much more typical in computer science than, say, medicine, because computer
experiments are relatively cheap, and have no ethical considerations.) As Bakan
says ([2, ch.1, p.7], as quoted in [12]): “there is really no good reason to expect
the null hypothesis to be true in any population”. A sufficiently large sample
size will always be able to refute a null hypothesis: the smaller the effect, the
larger the sample required to detect it. For normally-distributed populations
with means and standard deviations similar to those of Fig. 34, sample sizes in
the low tens would be sufficient to establish a statistically significant difference
of their means at the 99% confidence level.

Because of this, we also perform a test of the effect size. We use Cohen’s
effect size d-test [4, §2.5]. (Strictly speaking, we should not use this statistic,
because the distributions are not normal. But if we get a sufficiently large value
of the d-statistic, we can still be confident in the importance of the difference.)
For samples with different variances but the same sample size, we use

my —ma

= (14)
(57 +53)/2

where the m; are the two sample means, and the s; are the two sample variances.

So d measures the difference in the means compared to the spread of the data.

Cohen’s criterion is that d = 0.2 indicates a small effect, d = 0.5 a medium
effect, and d = 0.8 a large effect. For soup size S = 25%, density D = 0.8, we
have d = 0.8 indicating a large effect from the change in the tiling.

So, for all the results that follow, we do not present the statistical significance:
the differences are all extremely significant. We present the skew and kurtosis
normality tests, median and quartiles, means, and the effect size, demonstrating
that all the statistics chosen exhibit a large effect with the change in the tiling.

6 Lifetime, ash, growth results

6.1 Lifetimes

Null Hypothesis 1: The Game of Life run on kites and darts has identical lifetime
statistics to the Game of Life run on rhombs.

See Figs. 36, 37. The skew and kurtosis tests show that the distributions
are significantly non-normal. The lifetime distributions for the two tilings are
different, with a large effect size, refuting Null Hypothesis 1. The Game of Life
on the rhomb tiling has significantly longer lifetimes than it does on the kite and
dart tiling. From [11], we can say that they both have shorter lifetimes than Life
on a regular lattice.
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skew test kurtosis test

Kite

Skew
Kurtosis

Soup Density

Skew
Kurtosis

s s s
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Soup Density Soup Density

H 3
o 2
2
2k
1
0 s s s s ' 0 s s s s '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Soup Density Soup Density

Fig. 36. Lifetime to quiescence t,: normality tests (soup sizes 25% top, 50%
middle, 75% bottom)
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Fig. 37. Lifetime to quiescence t,: medians and effect size (soup sizes 25% top,

50% middle, 75% bottom)
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skew test kurtosis test

Kite
Rhomb -------
2ks=1 ——

Skew
Kurtosis

05

T s W B
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Soup Density Soup Density
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Rhomb -------
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0 0.2 0.4 0.6 0.8 1
Soup Density Soup Density
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. Al M h i
o Lo i M‘:j\ﬁu‘.” ‘1(‘-\“\. 1ily

0 0.2 0.4 0.6 0.8 1
Soup Density Soup Density

Fig. 38. Ash density p: normality tests (soup sizes 25% top, 50% middle, 75%
bottom)

6.2 Ash densities

Null Hypothesis 2: The Game of Life run on kites and darts has identical ash
density statistics to the Game of Life run on rhombs.

See Figs. 38, 39. The skew and kurtosis tests show that the distributions are
consistent with being normal, except for large soup densities. The ash density
distributions for the two tilings are different, with a large effect size, refuting
Null Hypothesis 2. The Game of Life on the rhomb tiling has significantly lower
ash densities than it does on the kite and dart tiling. From [11], we can say that
they both have lower ash densities than Life on a regular lattice.
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Fig. 39. Ash density p: medians and effect size (soup sizes 25% top, 50% middle,
75% bottom)
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skew test kurtosis test
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Fig. 40. Soup growth g: normality tests (soup sizes 256% top, 50% middle, 75%
bottom)

6.3 Soup growth

Null Hypothesis 3: The Game of Life run on kites and darts has identical growth
of soup to the Game of Life run on rhombs.

See Figs. 40, 41 for statistics on the growth of the area of soup. The skew
and kurtosis tests show that the distributions are significantly non-normal. The
growths of the two tilings are different, with a large effect size, refuting Null
Hypothesis 3. The Game of Life on the rhomb tiling has significantly more growth
from soup than it does on the kite and dart tiling.
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Fig. 41. Soup growth g: median and effect size (soup sizes 25% top, 50% middle,
75% bottom)
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Conclusions

We have presented a Penrose lazy tiling algorithm, suitable for statistical exper-
iments of CA rules. We have used it to perform experiments with Game of Life
rules, and demonstrate that the Game of Life on the rhomb tiling is significantly
different from that on the kite and dart tiling: it has longer lifetimes, lower ash
densities, and higher soup growth.

Work is underway to investigate and classify the oscillators left in the ash.
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