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Abstract—Boolean function design is at the heart of cryptogra- wherew = w; .. .w, and® is exclusive-or. The corresponding
phy, and is the subject of a great deal of theoretical research. We polar form is
have use a simulated annealing approach to find functions with N
particular desirable cryptographic properties; for functions of a A .
small numbers of variables, results with properties as good as Lw(Z) = (—1)Fe®) = (—1)rm @ Gentn - H(*l)wlwl
(and sometimes better than) the best so far have been achieved. i=1
The success of this approach is very sensitive to the cost function 4
chosen; here we investigate this property, and describe a meta- These linear functions are used to form an orthonormal basis
search approach to finding the most effective cost function for in which we can expresg

this class of problems.
2n—1 2n—1

A 1 P 1 . .
|. INTRODUCTION =5 (Lol = on > F(w)L, 5)

w=0 w=0
A variety of desirable criteria for functions with crypto- .
graphic application can be identified (balance, high nonlinea(?-(‘*’)
ity, low autocorrelation, correlation immunity of reasonably I1l. M OTIVATION FOR A NEW COST FUNCTION
high order, high algebraic degree etc.) The tradeoffs betweerbptimisation-based work aimed at producing highly non-

these criteria are improperly understood and have been }mee functi h I d li ity itself as th t
subject of much research, e.g. [1], [8], [10], [13], [15], [L6]g oo o0 o HSEE ANCATY ESE a8 The €08

[17]. The more criteria that have to be taken into account, the Cr(f) = max |F(w)| (6)
more difficult the problem. Generating artifacts that possess w

several excellent properties simultaneously seems very hasihilarly, with low autocorrelation as the target, the autocor-
For some individual properties, it is unclear how tight the begtlation itself has been used as the cost function

is the Walsh-Hadamard function gt

theoretical bounds are, even for small numbers of input vari-

ables. Upper bounds on achievable nonlinearity have been the ¢, (f) = max Z f(@)f(z® s)| =max|f(s)] (7)
subject of conjecture [5], as have lower bounds on achievable 70 |5 570
autocorrelation [18], [8]. A typical optimisation approach to multi-criteria problems

The work here concentrates on four criteria: (i) balance (i} to take a weighted sum of the individual cost functions.
high nonlinearity (low linearity) (iii) low autocorrelation (iv) |ncreasing the number of components in the sum generally
high algebraic degree. These criteria, in various combinatioRgtajls a great deal of experimentation to determine optimal
have proven of interest to cryptological researchers, from bcgettings of the component weights. In addition, although
theoretical and optimisation perspectives. optimisation attempts using cost function components such as
those indicated have shown promise, rarely have they caused
real surprise. This leads one to ask: Is there a more effective

Given a boolean function of variables,f : B® — B, we way forward?
define the polar representatigh: B* — {—1,1,} by Consider Parseval's equation

f@) = (-1 @) D Py =27 ®)

where then bit numberz = z; ... z,,. f is usually interpreted
as a vector irR?".

A polar function is balanced if it hag"~! elements equal
to 1 and2"~! elements equal te-1, that is, if

Il. BACKGROUND TERMINOLOGY AND NOTATION

This constraingC;(f) = max,, |F(w)| > 2"/2. This bound
is achieved f has the highest possible nonlinearity) when,
for eachw, |F(w)| = 2"/2. Bent functions, discovered by
Rothaus [14], achieve this bound and are identical to Meier

21 and Staffelbach’s ‘perfect nonlinear functions’ [11]. (These
Y fl@)=0 (2) functions exist only for even values of) If some|F'(w)| are
=0 less than this bound, Parseval’'s theorem ensures that some

For eachu in 0...2" — 1, we define a linear boolean function®ther [F'(w)| must be greater than it. Thus, attempting to
restrict thespreadof absolute Walsh values achieved would

L,(z) =wiz1 ® ... Bwpxy, (3) seem to be a possible means of achieving high nonlinearity.



As well as having the highest possible nonlinearity, bent” | 2" stage miﬁrg;?;ep Rvalues I a | MIL | MasIL
functions also have zero autocorrelation. Thus a cost functiors [ NLT:ACT | —10:10:2 25, 3.0 0.95 | 400 | 400
like 6 | NLT:ACT | —10:10:2 2.5,3.0 0.95 | 400 | 400

A on/2 7 | NLTACT | —6:18:2 2.5, 3.0 0.95 | 400 | 400

Z [F(w)] -2 ©) 8 NLT —16:16:2 | 20,25, 3.0| 0.95| 400 | 400

w 8 ACT —8:16:2 25,30 0.97 | 500 | 500

would seem a simple candidate for attacking nonlinearity 2 | NLT —820:2 | 2.5, 2.75, 3.0( 0.951 400 | 400

. ) S 109 ACT —8:20:2 2.5, 3.0 0.97 | 500 | 500

and autocorrelation. However, functions achieving the idegaiig NLT —R:20:2 25.3.0 095 | 400 | 200

bound havgF'(0)| = 2"/2, and so are not balanced (balanced10 ACT —8:20:2 2.5, 3.0 0.97 | 500 | 500

functions havel'(0) = 0). Yet even if this particular cost| 11| NLT —8:30:2 2.5 95 | 400 | 400

function i itable f ing desirable bal d funktL ACT —8:16:2 25,30 0.97 | 500 | 500

unction is unsuitable for evolving desirable balanced fune-; yracT | 83022 55 0.98 T 1000 T 1000
tions, we might generalise equation 9, and plausibly consider TABLE |

cost functions of the form

Cxn =Y |1Fw) - x| (10)

SEARCH PARAMETERS USED

The parameters” and &2 provide freedom to experiment. It is oithough nonlinearity, autocorrelation and algebraic degree

difficult to predict what the best parameter values should bge 51 of interest, the approach is somewhat unusual in that

it is far from clear wha'F is the effect of imposing a balancgtage 1 targets none of the criteria directly, Stage 2 considers
requirement, and what is the effect of an add ~only one of the first two, and algebraic degree is never
Even assuming that_the cost function farmly of equat_lon Jt_g:msidered at all (it is simply measured at the end). The
can handle nonlinearity and autocorrelation, there is Ststivation for Stage 1 is very approximate. Its possible use
balance and degree to be considered. In our work, thgge eyolving balancedfunctions with desirable properties is
are handled in different ways: the search is constrained |faqely hased omnalogywith bent function characterisations,
move between only balanced functions, and algebraic degregdy theoretical analysis. Though the motivation is plausible,

ignored during search. It would be possible to allow the searglbre remains the question of whether the idea has any real
space to include unbalanced functions, but this would requit&srit and. if so. how to choose the paramet&rand R.
an additional cost function component to counter imbalance; ’

it seems easiest to avoid it. Ignoring algebraic degree is a V. EXPERIMENTAL RESULTS
conscious choice; the resulting functions have some algebraicl_ . . .
wo approaches have used in experiments. In the first, the

degree, which may turn out to be high, or may not. Fortunatel%, d-st hill-climbing is with £t i ity Wi
random search typically produces functions with high degre geond-stage hifl-climbing 1S with respect to noniineartty. e

and there is nothing obvious in the proposed cost functitgﬁfer to this approach as the NLT (Non-Linearity Targeted)

family to drive the search towards low degree approach. In the second, the second-stage hill-climbing is
' with respect to autocorrelation. We refer to this as the ACT

IV. THE GENERAL APPROACH (Auto-Correlation Targeted) approach. For each approach,
fiempts were made to evolve functions with=5...12. In

We use a local search. A search starts with a balanced (B . i ]
otherwise random) function in polar form. A valid move swap is section we present the best achieved results (previously
gorted in [4], and summarised here to provide context).

two dissimilar vector elements, and so preserves balance: tf

(equal) numbers of and —1 elements are maintained. In the next section we discuss the explpration of (he R)
In formal terms, we define this swap move as the neighboldrameter space that allowed us to achieve these results.
gg%difof the functiory. The functiong is in the neighbourhood A. Experimental results for nonlinearity

. The NLT and ACT approaches were applied over a range

Jz,yeB" o f(z)# f(y) A of X and R values for the parameters 6fyy. Table | shows
g(x) = f(y) ANgly) = f(:c) A the X and R values used, together with the parameters of the
Vz e B\ {z,y}: §(2) = f(z) annealing algorithmy is the geometric cooling parameter,
MIL is the number of moves attempted in each inner loop,
The approach is as follows: MazIL is the maximum number of inner loops for the search.

1) Use an annealing-based search to minimise the vakger all runs the maximum number of consecutive unproductive
of the cost function (suitably parametrised)r (equa- (without any move being accepted) inner loops{(L) before
tion 10). Let the best solution produced during the seartihe search ends was 50. 100 runs of the algorithm were carried

be f,. out for each parameter set.
2) Hill-climb from f, with respect to nonlinearity (or Table Il summarises the results obtained. The best values
autocorrelation) to produce the final solutiof), . obtained by theoretical construction are shown, together with

3) Measure the nonlinearity, autocorrelation and algebréiest theoretical upper bounds (based partly on a similar table
degree off, pc. in [12]). Dobertin’s well-known conjecture (that for balanced



method 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12

lowest upper bound 12 26 56 118 244 494 1000 2014 Zhang and Zheng | 8 16 16 24 32 48 64 96
best known [7], [6] 12 26 56 116 240 492 992 2010 Maitra construction| 8 16 16 24 32 40 64 80
Dobertin’s conjecture [5] 26 116 492 2010 Maitra conjecture 16 24 40 80

Bent concatenation 12 24 56 112 240 480 992 1984 direct AC 8 16 16 32 56 80 128 20(
Random - - - 112 230 472 962 1955 NLT 8 16 16 16 40 64 96 144
Random plus Hill-Climb - - 114 236 476 968 1961 ACT 8 16 16 16 40 56 88 128

Genetic Algorithms [12] |12 26 56 116 236 484 980 1976

direct NL 12 26 56 114 236 480 974 1972 TABLE Il
NLT 12 26 56 116 238 486 984 1992 CONJECTURED BOUNDS AND ATTAINED VALUES FOR AUTOCORRELATION
ACT 12 26 56 116 238 484 982 1986 OF BALANGED FUNGTIONS

TABLE I

CONJECTURED BOUNDS AND ATTAINED VALUES FOR NONLINEARITY OF

BALANCED FUNCTIONS ) . .
functions with low autocorrelation. The work of Zhang and

Zheng [18] is widely referenced and recent work by Maitra [8]
has considerably improved on this. Zhang and Zheng provide
functions with evemn the highest achievable nonlinearity isconstructions for functiong,, with n = 2k andn = 2k + 1
NL(n) =2"~1 —2"/2 4+ NL(%)) is taken from [5]. such that
For n < 8, the technique rapidly achieves the indicated Coae(fn) < 281 (11)
theoretical bounds (often requiring only a few seconds on a ] ) ) .
1.4 GHz PC). The interesting cases aresoe 9...12. The and conjecture that balanced functignwith algebraic degree
annealing techniques begin to out-perform previous optinfil 1€ast3 satisfy
sation techniques. (The genetic algorithms results of Millan Cac(g) > 201/ (12)

et al. [12] are the _best results f°f other opt|m|sat|on-bas%ce autocorrelation values for balanced functions are mul-
approaches.) This is most dramatic for= 12, the largest \tﬂi}gles of 8, we can round up to the next available value.

size considered hgre. Ind_eed,.the ACT approach glso IGSitra [8] conjecturesthat, for evem, autocorrelation bounds
rise to examples with nonlinearity values equal to or in exceisc(n) for balanced functions are given by
of previous results. The technique produces results that are =

competitive with a well-known construction (the concatenation AC(n) = on/2 | AC(Q) (13)
of bent functions). However, as increases the best known 2
examples are still significantly better. Researchers report obtainilgC'(3) = AC(4) = AC(5) =

The improvement over previous optimisation-based resea&twith enumerative search; we have obtained each of these
results would appear primarily due to the new cost functioralues with annealing-based approaches.
family C'xg. To confirm this, for eaclm, 100 annealing runs  Table IIl records the best autocorrelation values obtained
were carried out with the standard direct cost linearity functidoy recent theoretical constructions, the bounds from Maitra’s
C1, (equation 6). A cooling rater = 0.98 was used, together conjecture, and by our NLT and ACT approaches. For 9
with MIL = 1000, MazIL = 1000 and M UL = 50. Thus, the the annealing approach would not appear to be able to match
traditional cost function was given a far greater computationgile conjectured or achieved bounds (Maitra has demonstrated
chance to work. The performance of annealing using this dirégtjhly nonlinear functions at these bounds). Howeveryfet
measure of nonlinearity followed by hill-climbing with respec8 the technique has generated a counterexample to Maitra’'s
to nonlinearity (shown in Table Il as ‘direct NL) is markedlyconjecture. In addition, if any of the generated functions with
worse than the results of either NLT or ACT. an autocorrelation o016 has degree greater than it would

Also, the number of moves in a loaldL is generally very also be a counter-example to the conjecture by Zhang and
low, especially for the larger.. The approximate nature of Zheng: this is indeed the case. In fact, almost all examples
stage 1 enables some short cuts to be taken in this reSpegénerated with this autocorrelation have algebraic degree of 6.
Still, it seemed prudent to revisit this issue and carry olMaitra has independently formed a counter-example to Zheng
some runs with considerably high&fIL, yet even a hundred- and Zhang'’s conjecture fat = 15 (based on a modification
fold increase inMIL showed no improvements on currentlyof Pedersen-Wiedermann functions). Our previously published
achieved values. NLT work [2] clearly contains counterexamples far= 8.
These have been verifiéd.

With ACT autocorrelation has been deliberately targeted but
Work on lower bounds for autocorrelation is less wellwith NLT this was not the case. Here, previously unwitnessed
established and recent years have seen researchers make fi@@correlation values (indeed counterexamples to conjectures)

jectures as well as providing constructions for highly nonlinear
2Maitra’s conjecture was brought to our attention by Millan, Security
1Early results published in [2] indicated that the purpose of the annealifRtgsearch Centre, Brisbane.
stage was to get the search into the ‘right area’ from which hill-climbing could 3We are grateful to Dr. Subhamoy Maitra for independently confirming the

give good nonlinearity. Actually finding a global optimum for Equation 1(properties of these counterexamples, and of several other functions reported
was somewhat secondary. here.

B. Experimental results for autocorrelation



NLT ACT R=30 X
(5:3,12,8) (5,3.12,8) (n,d,nl,ac) |-10 -8 —6 —4 -2 0 2 4 6 8 10
(5,4,12,16) (5,4,12,16) (5,—,12,—) | 76 92 95 100 100 100 100 100 100 100 1p0
(6,5,26,16) (6,5,26,16) (5,—,—,8) 10 36 69 80 0 0O 0O O O 0 @
(7,6,56,16) (7,6,56,16) (5,—,12,8) 10 36 69 80 0 O 0O O O 0 @
(8,7,116,24) (8,7,116,24) (5,3,12,8) 10 36 69 80 0 0O 0O O O 0 @
(8,5,112,16) (8,5,112,16) (5,4,12,8) O 0 0O 0O 0O OO 0 0O 0 O
(9,8,238,40) (9,8,238,40) (5,4,12,16) 0O 4 0 0 100 100 100 100 100 100 1GO0
(10,9,486,72) | (10,9,484,56) (5,—,12,-) 6 4 14 100 100 100 100 100 100 100 44

(10,9, 484, 64) (5,—, —,8) 14 18 12 74 0 0 0 0 68 67 3]
(11,9,984,96) (5,—,12,8) 2 310 74 0 0 O O 68 67 30
(11,10,982, 96) | (11,10,982,88) (5,3,12,8) 2 310 74 0 0 O O 68 67 30
(12,10,1992,156) (5,4,12,8) O 0 00O 0O OO 0 0O 0 O
(12,10,1990,144)| (12,11,1986,128) (5,4,12,16) 0O 0 0 0 100 100 100 100 0 0 0

TABLE IV
BEST VALUES (n, d, nl, ac) OBTAINED USING NLT, ACT

TABLE V
n = 5, PERCENTAGE SUCCESSFUL RUNSNLT (uPPER, ACT (LOWER)

R=30 X

have been generated by both techniques. The area is cleaffy 4. 7, ac) |-10 -8 -6 —4 -2 0 2 4 6 8 10|
btle. Interestingly, the technique has generated couyy —2% ) 0 0 0 %0 8 89 90 99100 98 $

very subtle. stungly, que has g B, —, —, 16) 1 3 3 94 100 100 100 100 100 39 10
terexamples for quite a small value of Having broken these | (6, —, 26, 16) 0O O O 8 8 89 90 99 100 37 1
conjectures pretty much by accident, it seems appropriatef t&: 5, 26, 16) 0 0 0 9 10 39 41 59 51 11 (
try to break some conjectures deliberately (section VII) Fpro:4,26,16) O 0 0 8 81 B85 54 9 97 33 1
yl ¢ SOT | y S V). PP — 56,0 0 0 0 0 0 76 91 99 100 30 @
the time being it may be noted that the techniques, in a smalk, —, — 16) 72 80 82 100 100 100 100 100 100 100 83
way, have already provided something new. (6,—,26,16) 0 0 0 0 0 76 91 99 100 30 ¢
(6,5,26,16) 0 0 0O O 0 44 46 49 52 12 (

VI. THE EFFECT OF VARYINGX AND R (6,4, 26, 16) 0O 0 0 O 0 67 8 96 93 25 (

TABLE VI

Here we discuss the amount of searching in th& R)
parameter space necessary to achieve these results.

It is instructive now to examine thgint values of nonlin-
earity and autocorrelation achieved (and to note the algebraic
degrees). Table IV records the best functions obtainedryy
run of the NLT and ACT approaches. The quadruples in t

n = 6, PERCENTAGE SUCCESSFUL RUNSNLT (uPPER, ACT (LOWER)

ﬁé mostac. A ‘—' indicates no restriction. The number of

tables record the number of inputs the algebraic degreé, runs in all cases was 100. Thus the first column of Table V
the nonlinearityn/, and the autocorrelationc. indicates that 76 runs aX = —10 produced functions with

An immediate observation is that both NLT and ACT glenr_1on|inearity of 12 (which is actually the highest achievable),

erate functions with very high algebraic degree, even maxi f ha_d thﬁ (Iowest_ po_sscible) alrj]toco"rrelatl(_)r;] value of ? The
degree,n — 1 for a balanced function. This may be regarde owing three entries indicate that all 10 with autocorrelation

as a bonus since degree was ignored as part of the seaP&tf actually had nonlinearity of 12 and degree of 3.

However, attaining high algebraic degree is very much the | € €ffect of theX' parameter is enormous. Fer = 5
general trend of the annealing approaches taken. there are clear differences between NLT and ACT. For ACT,

Forn < 8, there is no difference in the properties of théhe profile of production of5, 4, 12, 16) contrasts starkly with
best functions achieved. As increases it would appear thatthose involving autocorrelation of 8 above it. Perhaps the most

NLT has an edge with respect to nonlinearity and ACT an ed§i€resting results here are those o 8 in Table VIIl. Here,
with respect to autocorrelation, but this seems marginal, a effect of thelz parameter is seen to have significant effect.

to be expected. There would appear to be some interestffy £ = 2 few functions of interest are derived. This simply
potential tradeoffs being made, e.g. far = 5 relaxing the

autocorrelation requirement (from 8 to 16) would appear ta g =30 X
raise the achieved algebraic degree (from 3 to 4). Similarly En ad, nl, t§c) —6-4-2 0 2 4 6 81012 14 16 1§
— ; 7,—,56, — 35 60 50515/554753 9 0 1 0 D
for n = 8, there yvould appear to bg a potentlal_tradeoff 7 — 16 > %0 2627 2624312 0 0 0 0 ©
between nonlinearity and autocorrelation. It may simply be (7, - 56, 16) 2 4 66 7 4330000 0
that our particular search techniques are incapable of finding (7, 6,56, 16) 06 2 1200222000 00Q0
(5,4,12,8), (8,—,116,16), (8,6,112,16) etc. g;vizﬁélf)) = ‘; ® g 2 3136 3;3 9 % % % %
Table IV records the extremes that were generated but does(7, | _1¢) 13 87 828782827876 5 0 0 0 D
not indicate how easily the functions were generated (i.e. how (7, —, 56, 16) 0 1 012023000TO0T0
often). Tables V, VI and VIl show how the value of the L(7:6:56,16) 0 1 01102200000

TABLE VI

parameterX radically affects the functions produced. Here
(n, d, nl, ac) indicates for functions ofi inputs an algebraic
degree at least, nonlinearity at leask! and autocorrelation

n = 7, PERCENTAGE SUCCESSFUL RUNSNLT (uPPER, ACT (LOWER)



NLT X R=20 R=25 R=30
(n,ad, nl,ac) | =10 -8 -6 -4 -2 0 2 4 6 8101214 16 X | nl ac nl ac nl ac
(8,—, 116, —) 2522 8 3 1131 2 157592811 —16 | 106.22 84.72| 108.32 73.68] 111.56 59.28
(8,—,—,16) 0 11 13 21 161311151822 0 0 0 O —14 | 106.24 86.64| 10854 71.68| 111.88 56.72
(8,—,116,24) 0 00O0OOO0OOO0OO0OS8100 —12 | 106.08 84.88| 109.0  67.12| 112.68 49.6
(8,—,112,16) 0 11 13 21 161311151822 0 0 0 O —10 | 105.86 85.12| 109.9  65.92| 114.46 41.04
(8,5,112,16) 0 11 13 21 161311151822 0 0 0 D —8 | 106.08 86.0 | 111.26 59.84| 113.26 28.48
(8,7,116,24) 0000 OOOOOOS8O0O0GO0 —6 | 105.78 85.92| 112.08 51.84| 112.48 25.84
(8,—, 116, —) 0 0 022 21430 052342818 —4 | 106.28 84.4 | 113.44 32.08| 112.16 24.48
(8,—,—,16) 0 0 0 81015131110 7 0 0 0 O —2 | 106.02 88.16| 112.28 27.12| 112.18 24.72
(8,—,116,24) 0 00O0OOO0OO0OO0OO0O1011040 0| 11012 61.36| 112.42 27.2 | 112.16 25.52
(8,—,112,16) 0 0 0 81015131110 7 0 0 O 2| 1131  36.32| 112.28 26.24| 112.22 26.08
(8,5,112,16) 0 0 0 81015131110 7 0 0 0 O 4| 113.0 348 | 112.26 27.92| 112.12 2456
(8,7,116,24) 0000 0OO0OO0OO0O0S8100 6 | 113.28 36.48| 112.28 27.68| 112.18 23.68
(8,—,116, —) 0 0 0 0 0 01911181511 7171p 8 | 113.22 36.08| 112.12 27.2 | 112.38 23.84
(8,—,—,16) 0 000OOOOOOOOOOCO 10 | 113.08 36.56| 114.74 33.12| 1150 33.6
(8,—,116,24) 0 0000010001010 12 | 112,72 36.0 | 113.98 352 | 1149  34.96
(8,—,112,16) 0 00O0OOOOOO0OO0OOOOGO 14 | 113.24 352 | 113.78 36.16| 114.02 36.96
(8,5,112,16) 0000 OOOOOOO0OOCO 16 | 112.94 36.16| 113.28 37.92| 113.38 38.16
(8,7,116,24) 0000 OOOOOO0ODOOOGQO TABLE IX
TABLE VIII n = 8, AVERAGE nl AND ac RESULTS
n = 8, PERCENTAGE SUCCESSFUL RUNNLT, R = 3.0 (UPPER, R = 2.5
(MIDDLE), AND R = 2.0 (LOWER)
R=25 R=275 R=230
X | nl ac nl ac nl ac
—8 | 23356 73.2 | 2365 52.8 | 2366 50.56
emphasises how crucial experimenta.tion is for these sorts of _2 ggg:gg gg:zg ggg:ii gi:gg 322% gi}li
problems. ForR = 3.0 and R = 2.5 it would appear that —2 | 236.3 51.28| 236.3 51.92| 236.64 51.84
the ranges ofX for which (8, —,116,24) and (8, —, 112, 16) (2) ggg-ég gi-gg ggggi g%iz ggg-ig gig‘z‘r
fu_nctu_)ns are generated are d_|510|nt. It_|s interesting to note for 2| 2361  51.92| 2364  50.96| 23654 5152
eight inputs performance using the ‘ideal’ bound & 16) 6 | 236.22 52.64| 236.4  50.88| 236.7 51.6
is actually pretty poor. AllowingX to vary considerably is 8 | 236.14 52.08| 23642 51.44| 236.56 52.88
clearly a good idea 10 | 236.04 53.52| 236.38 51.84| 236.72 52.0
. ) 12 | 236.06 52.96| 236.46 52.96| 236.66 52.96
Some features emerge when one considers the average non- 14 | 2359  52.72| 236.16 52.4 | 236.46 52.88
linearity and autocorrelation values attained for eé&h R) 16 | 2358  54.08| 23592 53.68| 236.2  53.44
air. For eight and nine input variables these are shown in 18 | 23566 56.8 | 2359 = 568 | 23586 556
par. g P 20 | 23536 57.2 | 23552 56.72| 23554 57.68

Tables IX and X. Forn = 8 we can see that the lowest
average autocorrelation and highest average nonlinearity do
seem in conflict. This simply reflects the ability to obtain
(8,—,116,24) and (8,—,112,16) but never(8, —, 116, 16).

No (8, —, 116, 16) functions have never been publistfe&or

n =9 the two desirable properties seem broadly in harmony, . .
Indeed, forn = 9 and R = 3.0 the 236.72 and 51.44 (f0r¥hls measure treats dl(s) equally. In contrast, criteria such as

X — —4) are the highest nonlinearity and second Ioweg%e Strict Avalanche Criterion (SAC), or Propagation Criteria
0

autocorrelation averages attained. o= 9 most parameter Var'Ol[J:S orderslcl G SCA(\]C?) are deem_ec(zl) tolhaflve a local
choices give rise to nonlinearity averages better than the bggyour. or example, requirégs) = 0 only for vectors

result achieved by random, hill-climbing or genetic algorithm% of Hamming weightl and places no constraints on the

with a direct cost function (of which the best for nonlinearit)yalues of (?ther vyectors. The sum—of-§qgares IS offered. as
one of two ‘global’ avalanche characteristics (the other being

TABLE X
n =9, AVERAGE nl AND ac RESULTS

is 236). ) . . ;
the maximum of the autocorrelation functions, equation 7).
VII. THE INTENTIONAL GENERATION OF Constructions are proposed for balanced functions on even and
COUNTEREXAMPLES odd numbers of input variables and the sum-of-squares values

Zhang and Zheng [18] offer a sum-of-squares measure gj{gvided. For evem = 2k the sum of squares indicator is

a desirable characteristic. For a Boolean functiino; is

H A . o4k 3k+3 3k+1
simply the sum-of-squares of the auto-correlation functions of =20 27770 =2 (15)
(see equation 7): _
2" —1 The authors note that the lower bound26f is met only when
of = Z #2(s) (14) f is a bent function (i.er2(0) = 24¥), and conjecture that
5=0 the functionf ... with g; = 2%k 4 23k+3 _ 23k+1

“Informal correspondence indicates that one such function has just been achieves _nearly optimal Sum-qf-squares avalanche
attained. characteristic of balanced functions d&;



" Sonbgf"?é' Gﬁg‘z;’]d minirﬁﬂﬂfahnga:eﬂgg"m?g;?(imun provided bounds but no functions or methods of construction
5 1280 2048 1664 1664 1664 were actually exhibited by Son et al. and the results presented
? 1‘;232 372%%88 zgg% 242;33‘2 25:177% here are the best demonstrated. Sung et al. have improved the
8 67584 90112 86656 899315 101244 lower bound for functions satlsfymg a propagation criterion
9 266240 524288 379904 389273.6 404864 for a number of vectors [16]. Maitra [9] addresses the bounds
10 || 1056768 1245184 1535488 1550272 1566592  on global avalanche criteria for correlation immune functions.
TABLE XI| Metaheuristic searches are well-known for handling vast
SUM-OF-SQUARES CONJECTURED BOUNDS AND RESULTS search spaces where other techniques break down. Here they
have generated counter-examples at small values. cfhe
practical importance of the results shown here is that counter-
examples to conjectures were demonstrated with considerable
For oddn = 2k + 1 the sum of squares indicator is ease. Only fom = 10 did any run fail to produce a function
o = 9dk+3 (16) achieving or bettering the GAC-conjectured bounds.
The authors state: B. Reuvisiting the Past

the sum-of-squares avalanche characteristic of the The functions generated during the NLT and ACT experi-
function is extremely good. Again we conjecture that ments of section V were revisited, and their sums-of-squares

it achieves the lowest possible value for balanced ~Measured. Fon = 5...10 functions had been generated with
functions onVay.s1 sums-of-squares as low as the minima generated by the direct
experiments in this section. Additionally, far= 9 a function
with sum-of-squares value of 376832 had been generated and
for n = 10 one with value 1534720 had been generated. Both
A. Experiments with Sum-of-Squares as the cost function are lower than the results obtained by the direct use of sum-

We have generated functions for even and adith lower ~Of-squares as a cost function. This is not so surprising, since
o values than those conjectured minimal, using as the the functions generated earlier had very low autocorrelatioq for
cost function forf. The search was restricted to move ovePWern and so at least a moderately low sum-of-squares might
the space of balanced functions with the same move stratdifyyexpected. Given a suitable histogram of spectral values an
as before. A cooling parameter = 0.95 was used together €xcellent value might be attained. For example, some functions
with MIL = 200, MazIL = 400 and MUL = 50. with n = 7 and autocorrelation of 16 satisfy(s)| = 0 for up

For 5-10 input variables00 runs of the annealing algorithmt0 66 non-zero values of. This alone is sufficient to break
were carried out followed by hill-climbing (with the same costhe conjectured bound of 32768.
function).. The results are given in .Table XI. gnd show thg \what are these results telling us?
GAC conjectured bounds together with the minimum, average I . .

Our initial work was largely targeted at nonlinearity; low

and maximum values achieved over all runs. As can be Seentocorrelation was a secondary concern. The ACT technique
many runs of the algorithm generated counter-examples to e y ' q

conjectures. Fon = 10 no counter-example was generated. Iyas adopted only after it was noticed that the NLT approach

some cases the conjectured values are markedly sub-opti gnerated functions with low autocorrelation. However, the

Average time per run is also shown, indicating the speed wi eaking of conjectured autocorrelation bounds, and the ease

which conjectured bounds were broken (e.g. for= 7 all with which the sum-of-squares bounds were broken, suggests

100 runs produced a counter-example taking on average 113at a more autocorrelation-focussed effo_rt might well pay
ividends. The sum-of-squares cost function uses the auto-

seconds for each run). . A . .
) correlation spectral valug¥gs), implicitly targeting the ‘ideal’

This is clearly a very simple task to carry out. Yet opti- N .
misation is not yet established in professional cryptograp 'Iuer(s) = 0 (for non—zerOS). As befqre, onl'y bent functions .
n even numbers of variables) achieve this, yet our focus is

Optimisation has the potential to provide confidence in X .
counter-examples to conjectures like the above. It can do %Ianced func_'uons (of bOth even and omd BY analogy W'th.
e cost function of equation 10, the following cost function

very efficiently. Furthermore, this is not just an exercise if) . .

counter-example generation. If low sum-of-squares really %mny suggests itself

desirable then heuristic optimisation is obviously a good tool N

to derive better functions ci) = Z
Global avalanche characteristics are beginning to receive

more attention from researchers. Son et al. have publishedVith X = 0 and R = 2 this reduces to the sum-of-squares

lower bounds orv; for balanced functions [15]. They showcost function. AsR increases large values 6fs) are clearly

that oy > 22" + 273 (and also give upper bounds ondiscouraged. Experiments were carried out using the parameter

nonlinearity of balanced functions in termsf). The bounds values given in Table XII. Fifty runs were carried out for each

on oy are also shown in Table XI. It can be seen that there igrameter setting (except for = 12 where only ten runs

still considerable distance between the obtained values andwere attempted). Table Xl shows the best results obtained

The statement ‘nearly optimal’ for the = 2k case is a little
unclear. The statement fer= 2k + 1 is unequivocal.

#(s)] - x| an

S



" mif_rgir;_gsetep fvalues | o | MIL | Mazll | no. function minima sometimes (or often) are good places from
5 —141 3.0 0.90 | 400 400 50 which to hill-climb (with respect to a particular property) to
? —43231 g-g 8-38 288 288 gg desirable functions. In addition, the cost surface is sufficiently

—4:4: . . . . .
8 441 30 095 | 400 400 50 navigable to allow these extrema to be regched via guided
9 —4:4:1 3.0 0.95 | 400 400 50 search. So what prevents the approach getting better results?
i(l) —832{3614 g-g 8-32 388 388 gg Consider now the current family and its possible limitations.

—8:20: . . .
12 8204 5 095 | 800 800 10 The cost functions are of form

N ~ R
TABLE XI c(f) =Y |IF@)l - X| (18)
SEARCH PARAMETERS USED w

Assume, for explanatory purposds,= 3. For eachw the cost

best functions | no. runs| total no. runs function contribution is
giving best value 3 9 9 3
(5.3.12,8) 450 150 |G° —3XG” +3X°G — X° (19)
(5,4,12,16) 300 . . -
(6,5,26,16) 450 450 whereG = |F(w)|. But this is restrictive. A more general cost
(7,6,56,16) 450 2 function is:
(8,7,116,24) 450 1 m
(9,8,236,32) 450 4 Ay — el
(10,9,484,56) 850 18 c(f) Z ZbZG (20)
(11,10,984,80) | 400 1 w [i=0
(12,11,1988,120) 80 2 That is, adopt the absolute value of some polynomial in
TABLE Xill |F(w)|. Thus we allow arbitrary order and arbitrary coeffi-
AC-CUBE RESULTS (n, d, nl, ac) cients. This model is more flexible than the cost functions

chosen so far. (Consideration of non-integhaleads to even

further flexibility.) But this flexibility comes at a price. There

is no obvious relationship between the coefficients of, say,
by this method. The small amount of experimentation hasquintic polynomial inf(w) whose minima are reached by
already led to improved results. In particular, for the firsfnctions with desirable properties! What is important is that
time an autocorrelation 082 has appeared fon = 9. For there should exist some appropriate values of the coefficients
n = 11 the (11,10,984,80) is the best profile achieved tofor which this is the case, and that we should be able to find
date (see table 1V). Similarly;12,11,1988,120) has the best them. A means of achieving this is discussed next.
autocorrelation achieved to date for= 12.

A. Hill-climbing on Cost Function Parameters

VIII. OPTIMISING THE COST FUNCTIONS The approach uses higher level optimisation on the poly-

The preceding sections have proposed plausibly wetemial coefficients. For any particular set of coefficients, ten
motivated cost functions, and the results have shown that thems of annealing were carried out minimising the the cost
are capable of providing highly nonlinear balanced Booledonction defined by those coefficients. This was followed by
functions with low autocorrelation and high algebraic degree second stage hill-climb with respect to nonlinearity. The
(with different emphases depending on the cost function usedyerage nonlinearity of the functions resulting from those runs

That the approach generates functions with high algebraias taken as a fithess measure for the set of coefficients. With
degree is perhaps not so surprising. Functions of low algebr#iés fithess measure a hill-climb was carried out on the set of
degree are actually extremely rare. Unless the propertimsefficients.
sought actually force the search to move towards low algebraicA random set of coefficients was used to initialise the cost
degree there is little chance that it would. function. Each coefficient frondy to b,,_; was increased or

It is also fairly clear that the cost functions used do not chadecreased (by some specified amount) in tagn= 1 always).
acterise highly desirable functions (judged by our criteria), @nly moves that improved the average value obtained were ac-
even characterise what it means to be ‘close’ to such functiorepted (thus a form of hill-climbing has been used). Evaluating
(or even, for that matter, close to some particular ‘familylO runs of annealing is very costly in computational terms for
of such functions: there may well be other functions with single fitness evaluation of the coefficients. Accordingly, a
excellent properties that are never reached by the techniquemid cooling schedule was used £ 0.9).
even for the smaller). If they did so, better results should A feature of this approach is the fitness of the coefficients
have been obtained for higher numberof input variables. is actually stochastic (since the annealing algorithm itself is
(Recall that much computing power was expended to gastochastic). This was catered for by aborting the search only
optimal values fom = 9 andn = 10.) after three consecutive cycles through all the coefficients failed

The parametric flexibility of the cost function family isto give an improvement on the current best average obtained.
pretty much essential for difficult optimisation problems. Fdn addition, after a full failing cycle the STEP distance by
smallern it has proven possible to find parameters so that cashich coefficients were altered was halved.



nons ) max % rugzx"ﬁh :f:rt:ée runs The power of meta-heuristic search is significantly greater
8 50| 116 100 116.0 24 than currently evidenced in publicly available literature. The
9 50 238 100| 2376 1 nonlinearity and autocorrelation values attained using the
10 ruiz :ﬁ: A Wi(:] b:;‘;‘cz run: methods d.es.cribed 'he.re 'match or i'mprove on those .docu-
ac min ac | average mented existing optimisation-based literature. By adopting a
8 50| 16 100 20.8 7 somewhat indirect approach, it has proved possible to obtain
9 50| 32 2 400 11 high nonlinearity and low autocorrelation via a single cost
10 S0 %6 100 632 4 function family. Indeed, the ability to achieve such good
TABLE XIV

results leads to the possibility of a malicious designer planting
trapdoors [3].

Unusual cost function families can act as approximations
to the actual cost surfaces of interest. Higher-level optimisa-
tion (searching the parameter space) can be used to extract

RESULTS FOR HIGH LEVEL OPTIMISATION RUNS

Table XIV gives the results fon = 8,9 when the target is
high nonlinearity. The results show marked improvements o
the results achieved so far in terms of efficiency. Thuspfer
8 our higher level optimisation has produced final values for
cost function coefficients that achieved a nonlinearity i in [1]
all ten runs (24 of the 50 runs of the higher level optimisation
produced coefficients with this property). This contrasts with2]
the results presented in Table IX where the highest achieved
average wad15 (for X = 10 and R = 3.0). Similarly, for
n = 9 the results in Table X the best average nonlinearity wasl
36.72 (for R = 3.0 and X = —4,10). The highest average
for n = 10 (general table omitted) wass3.84 (for R = 3.0
and X = —6,2). Thus, for all values considered higher levell4]
optimisation leads to more efficient cost functions. However,
no improvements on the best values achieved were recordesj
Similar results hold for autocorrelation, but here we see that
the technigue has found some functions with better (Iower[)i]
autocorrelation than previously found & 9, AC = 32).

(7]

B. Commentary

Higher level optimisation, a common technique in thel®
optimisation world, does not yet appear to have been applied to
any modern-day cryptological problem, and can obviously b&]
made more sophisticated than that discussed here. Paramefi
cost functions do come at a price: search is typically required

table members of these families for particular problems of

cryptographic interest.
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