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Abstract— Boolean function design is at the heart of cryptogra-
phy, and is the subject of a great deal of theoretical research. We
have use a simulated annealing approach to find functions with
particular desirable cryptographic properties; for functions of a
small numbers of variables, results with properties as good as
(and sometimes better than) the best so far have been achieved.
The success of this approach is very sensitive to the cost function
chosen; here we investigate this property, and describe a meta-
search approach to finding the most effective cost function for
this class of problems.

I. I NTRODUCTION

A variety of desirable criteria for functions with crypto-
graphic application can be identified (balance, high nonlinear-
ity, low autocorrelation, correlation immunity of reasonably
high order, high algebraic degree etc.) The tradeoffs between
these criteria are improperly understood and have been the
subject of much research, e.g. [1], [8], [10], [13], [15], [16],
[17]. The more criteria that have to be taken into account, the
more difficult the problem. Generating artifacts that possess
several excellent properties simultaneously seems very hard.
For some individual properties, it is unclear how tight the best
theoretical bounds are, even for small numbers of input vari-
ables. Upper bounds on achievable nonlinearity have been the
subject of conjecture [5], as have lower bounds on achievable
autocorrelation [18], [8].

The work here concentrates on four criteria: (i) balance (ii)
high nonlinearity (low linearity) (iii) low autocorrelation (iv)
high algebraic degree. These criteria, in various combinations,
have proven of interest to cryptological researchers, from both
theoretical and optimisation perspectives.

II. BACKGROUND TERMINOLOGY AND NOTATION

Given a boolean function ofn variables,f : Bn → B, we
define the polar representation̂f : Bn → {−1, 1, } by

f̂(x) = (−1)f(x) (1)

where then bit numberx = x1 . . . xn. f̂ is usually interpreted
as a vector inR2n

.
A polar function is balanced if it has2n−1 elements equal

to 1 and2n−1 elements equal to−1, that is, if

2n−1∑
x=0

f̂(x) = 0 (2)

For eachω in 0 . . . 2n−1, we define a linear boolean function

Lω(x) = ω1x1 ⊕ . . .⊕ ωnxn (3)

whereω = ω1 . . . ωn and⊕ is exclusive-or. The corresponding
polar form is

L̂ω(x) = (−1)Lω(x) = (−1)ω1x1⊕...⊕ωnxn =
n∏

i=1

(−1)ωixi

(4)
These linear functions are used to form an orthonormal basis
in which we can expresŝf

f̂ =
1
2n

2n−1∑
ω=0

(f̂ . L̂ω)L̂ω =
1
2n

2n−1∑
ω=0

F̂ (ω)L̂ω (5)

F̂ (ω) is the Walsh-Hadamard function off .

III. M OTIVATION FOR A NEW COST FUNCTION

Optimisation-based work aimed at producing highly non-
linear functions has generally used linearity itself as the cost
function

CL(f) = max
ω

|F̂ (ω)| (6)

Similarly, with low autocorrelation as the target, the autocor-
relation itself has been used as the cost function

Cac(f) = max
s 6=0

∣∣∣∣∣∑
x

f̂(x)f̂(x⊕ s)

∣∣∣∣∣ = max
s 6=0

|r̂(s)| (7)

A typical optimisation approach to multi-criteria problems
is to take a weighted sum of the individual cost functions.
Increasing the number of components in the sum generally
entails a great deal of experimentation to determine optimal
settings of the component weights. In addition, although
optimisation attempts using cost function components such as
those indicated have shown promise, rarely have they caused
real surprise. This leads one to ask: Is there a more effective
way forward?

Consider Parseval’s equation∑
ω

F̂ (ω)2 = 22n (8)

This constrainsCL(f) = maxω |F̂ (ω)| ≥ 2n/2. This bound
is achieved (f has the highest possible nonlinearity) when,
for each ω, |F̂ (ω)| = 2n/2. Bent functions, discovered by
Rothaus [14], achieve this bound and are identical to Meier
and Staffelbach’s ‘perfect nonlinear functions’ [11]. (These
functions exist only for even values ofn.) If some|F̂ (ω)| are
less than this bound, Parseval’s theorem ensures that some
other |F̂ (ω)| must be greater than it. Thus, attempting to
restrict thespreadof absolute Walsh values achieved would
seem to be a possible means of achieving high nonlinearity.



As well as having the highest possible nonlinearity, bent
functions also have zero autocorrelation. Thus a cost function
like ∑

ω

∣∣∣|F̂ (ω)| − 2n/2
∣∣∣ (9)

would seem a simple candidate for attacking nonlinearity
and autocorrelation. However, functions achieving the ideal
bound have|F̂ (0)| = 2n/2, and so are not balanced (balanced
functions haveF̂ (0) = 0). Yet even if this particular cost
function is unsuitable for evolving desirable balanced func-
tions, we might generalise equation 9, and plausibly consider
cost functions of the form

CXR =
∑
ω

∣∣∣|F̂ (ω)| −X
∣∣∣R (10)

The parametersX andR provide freedom to experiment. It is
difficult to predict what the best parameter values should be:
it is far from clear what is the effect of imposing a balance
requirement, and what is the effect of an oddn.

Even assuming that the cost function family of equation 10
can handle nonlinearity and autocorrelation, there is still
balance and degree to be considered. In our work, these
are handled in different ways: the search is constrained to
move between only balanced functions, and algebraic degree is
ignored during search. It would be possible to allow the search
space to include unbalanced functions, but this would require
an additional cost function component to counter imbalance;
it seems easiest to avoid it. Ignoring algebraic degree is a
conscious choice; the resulting functions have some algebraic
degree, which may turn out to be high, or may not. Fortunately,
random search typically produces functions with high degree,
and there is nothing obvious in the proposed cost function
family to drive the search towards low degree.

IV. T HE GENERAL APPROACH

We use a local search. A search starts with a balanced (but
otherwise random) function in polar form. A valid move swaps
two dissimilar vector elements, and so preserves balance: the
(equal) numbers of1 and−1 elements are maintained.

In formal terms, we define this swap move as the neighbour-
hood of the function̂f . The functionĝ is in the neighbourhood
of f̂ if

∃ x, y ∈ Bn • f̂(x) 6= f̂(y) ∧
ĝ(x) = f̂(y) ∧ ĝ(y) = f̂(x) ∧
∀z ∈ Bn \ {x, y} : ĝ(z) = f̂(z)

The approach is as follows:

1) Use an annealing-based search to minimise the value
of the cost function (suitably parametrised)CXR (equa-
tion 10). Let the best solution produced during the search
be fa.

2) Hill-climb from fa with respect to nonlinearity (or
autocorrelation) to produce the final solutionfa,hc

3) Measure the nonlinearity, autocorrelation and algebraic
degree offa,hc.

n 2nd stage X range R values α MIL MaxIL
min:max:step

5 NLT:ACT −10:10:2 2.5, 3.0 0.95 400 400
6 NLT:ACT −10:10:2 2.5, 3.0 0.95 400 400
7 NLT:ACT −6:18:2 2.5, 3.0 0.95 400 400
8 NLT −16:16:2 2.0, 2.5, 3.0 0.95 400 400
8 ACT −8:16:2 2.5, 3.0 0.97 500 500
9 NLT −8:20:2 2.5, 2.75, 3.0 0.95 400 400
9 ACT −8:20:2 2.5, 3.0 0.97 500 500

10 NLT −8:20:2 2.5, 3.0 0.95 400 400
10 ACT −8:20:2 2.5, 3.0 0.97 500 500
11 NLT −8:30:2 2.5 95 400 400
11 ACT −8:16:2 2.5, 3.0 0.97 500 500
12 NLT:ACT −8:30:2 2.5 0.98 1000 1000

TABLE I

SEARCH PARAMETERS USED

Although nonlinearity, autocorrelation and algebraic degree
are all of interest, the approach is somewhat unusual in that
Stage 1 targets none of the criteria directly, Stage 2 considers
only one of the first two, and algebraic degree is never
considered at all (it is simply measured at the end). The
motivation for Stage 1 is very approximate. Its possible use
for evolving balancedfunctions with desirable properties is
largely based onanalogywith bent function characterisations,
not theoretical analysis. Though the motivation is plausible,
there remains the question of whether the idea has any real
merit, and, if so, how to choose the parametersX andR.

V. EXPERIMENTAL RESULTS

Two approaches have used in experiments. In the first, the
second-stage hill-climbing is with respect to nonlinearity. We
refer to this approach as the NLT (Non-Linearity Targeted)
approach. In the second, the second-stage hill-climbing is
with respect to autocorrelation. We refer to this as the ACT
(Auto-Correlation Targeted) approach. For each approach,
attempts were made to evolve functions withn = 5 . . . 12. In
this section we present the best achieved results (previously
reported in [4], and summarised here to provide context).
In the next section we discuss the exploration of the(X, R)
parameter space that allowed us to achieve these results.

A. Experimental results for nonlinearity

The NLT and ACT approaches were applied over a range
of X andR values for the parameters ofCXR. Table I shows
theX andR values used, together with the parameters of the
annealing algorithm:α is the geometric cooling parameter,
MIL is the number of moves attempted in each inner loop,
MaxIL is the maximum number of inner loops for the search.
For all runs the maximum number of consecutive unproductive
(without any move being accepted) inner loops (MUL) before
the search ends was 50. 100 runs of the algorithm were carried
out for each parameter set.

Table II summarises the results obtained. The best values
obtained by theoretical construction are shown, together with
best theoretical upper bounds (based partly on a similar table
in [12]). Dobertin’s well-known conjecture (that for balanced



method 5 6 7 8 9 10 11 12
lowest upper bound 12 26 56 118 244 494 1000 2014
best known [7], [6] 12 26 56 116 240 492 992 2010
Dobertin’s conjecture [5] 26 116 492 2010
Bent concatenation 12 24 56 112 240 480 992 1984
Random - - - 112 230 472 962 1955
Random plus Hill-Climb - - - 114 236 476 968 1961
Genetic Algorithms [12] 12 26 56 116 236 484 980 1976
direct NL 12 26 56 114 236 480 974 1972
NLT 12 26 56 116 238 486 984 1992
ACT 12 26 56 116 238 484 982 1986

TABLE II

CONJECTURED BOUNDS AND ATTAINED VALUES FOR NONLINEARITY OF

BALANCED FUNCTIONS

functions with evenn the highest achievable nonlinearity is
NL(n) = 2n−1 − 2n/2 + NL(n

2 )) is taken from [5].
For n ≤ 8, the technique rapidly achieves the indicated

theoretical bounds (often requiring only a few seconds on a
1.4 GHz PC). The interesting cases are forn = 9 . . . 12. The
annealing techniques begin to out-perform previous optimi-
sation techniques. (The genetic algorithms results of Millan
et al. [12] are the best results for other optimisation-based
approaches.) This is most dramatic forn = 12, the largest
size considered here. Indeed, the ACT approach also gives
rise to examples with nonlinearity values equal to or in excess
of previous results. The technique produces results that are
competitive with a well-known construction (the concatenation
of bent functions). However, asn increases the best known
examples are still significantly better.

The improvement over previous optimisation-based research
results would appear primarily due to the new cost function
family CXR. To confirm this, for eachn, 100 annealing runs
were carried out with the standard direct cost linearity function
CL (equation 6). A cooling rateα = 0.98 was used, together
with MIL = 1000, MaxIL = 1000 andMUL = 50. Thus, the
traditional cost function was given a far greater computational
chance to work. The performance of annealing using this direct
measure of nonlinearity followed by hill-climbing with respect
to nonlinearity (shown in Table II as ‘direct NL’) is markedly
worse than the results of either NLT or ACT.

Also, the number of moves in a loopMIL is generally very
low, especially for the largern. The approximate nature of
stage 1 enables some short cuts to be taken in this respect.1

Still, it seemed prudent to revisit this issue and carry out
some runs with considerably higherMIL, yet even a hundred-
fold increase inMIL showed no improvements on currently
achieved values.

B. Experimental results for autocorrelation

Work on lower bounds for autocorrelation is less well-
established and recent years have seen researchers make con-
jectures as well as providing constructions for highly nonlinear

1Early results published in [2] indicated that the purpose of the annealing
stage was to get the search into the ‘right area’ from which hill-climbing could
give good nonlinearity. Actually finding a global optimum for Equation 10
was somewhat secondary.

5 6 7 8 9 10 11 12
Zhang and Zheng 8 16 16 24 32 48 64 96
Maitra construction 8 16 16 24 32 40 64 80
Maitra conjecture 16 24 40 80
direct AC 8 16 16 32 56 80 128 200
NLT 8 16 16 16 40 64 96 144
ACT 8 16 16 16 40 56 88 128

TABLE III

CONJECTURED BOUNDS AND ATTAINED VALUES FOR AUTOCORRELATION

OF BALANCED FUNCTIONS

functions with low autocorrelation. The work of Zhang and
Zheng [18] is widely referenced and recent work by Maitra [8]
has considerably improved on this. Zhang and Zheng provide
constructions for functionsfn with n = 2k and n = 2k + 1
such that

Cac(fn) ≤ 2k+1 (11)

and conjecture that balanced functionsg with algebraic degree
at least3 satisfy

Cac(g) ≥ 2(n+1)/2 (12)

Since autocorrelation values for balanced functions are mul-
tiples of 8, we can round up to the next available value.
Maitra [8] conjectures2 that, for evenn, autocorrelation bounds
AC (n) for balanced functions are given by

AC (n) = 2n/2 + AC (
n

2
) (13)

Researchers report obtainingAC (3) = AC (4) = AC (5) =
8 with enumerative search; we have obtained each of these
values with annealing-based approaches.

Table III records the best autocorrelation values obtained
by recent theoretical constructions, the bounds from Maitra’s
conjecture, and by our NLT and ACT approaches. Forn ≥ 9
the annealing approach would not appear to be able to match
the conjectured or achieved bounds (Maitra has demonstrated
highly nonlinear functions at these bounds). However, forn =
8 the technique has generated a counterexample to Maitra’s
conjecture. In addition, if any of the generated functions with
an autocorrelation of16 has degree greater than2, it would
also be a counter-example to the conjecture by Zhang and
Zheng: this is indeed the case. In fact, almost all examples
generated with this autocorrelation have algebraic degree of 6.
Maitra has independently formed a counter-example to Zheng
and Zhang’s conjecture forn = 15 (based on a modification
of Pedersen-Wiedermann functions). Our previously published
NLT work [2] clearly contains counterexamples forn = 8.
These have been verified.3

With ACT autocorrelation has been deliberately targeted but
with NLT this was not the case. Here, previously unwitnessed
autocorrelation values (indeed counterexamples to conjectures)

2Maitra’s conjecture was brought to our attention by Millan, Security
Research Centre, Brisbane.

3We are grateful to Dr. Subhamoy Maitra for independently confirming the
properties of these counterexamples, and of several other functions reported
here.



NLT ACT
(5,3,12,8) (5,3,12,8)
(5,4,12,16) (5,4,12,16)
(6,5,26,16) (6,5,26,16)
(7,6,56,16) (7,6,56,16)
(8,7,116,24) (8,7,116,24)
(8,5,112,16) (8,5,112,16)
(9,8,238,40) (9,8,238,40)
(10,9,486,72) (10,9,484,56)

(10,9, 484, 64)
(11,9,984,96)

(11,10,982, 96) (11,10,982,88)
(12,10,1992,156)
(12,10,1990,144) (12,11,1986,128)

TABLE IV

BEST VALUES (n, d, nl, ac) OBTAINED USING NLT, ACT

have been generated by both techniques. The area is clearly
very subtle. Interestingly, the technique has generated coun-
terexamples for quite a small value ofn. Having broken these
conjectures pretty much by accident, it seems appropriate to
try to break some conjectures deliberately (section VII). For
the time being it may be noted that the techniques, in a small
way, have already provided something new.

VI. T HE EFFECT OF VARYINGX AND R

Here we discuss the amount of searching in the(X, R)
parameter space necessary to achieve these results.

It is instructive now to examine thejoint values of nonlin-
earity and autocorrelation achieved (and to note the algebraic
degrees). Table IV records the best functions obtained byany
run of the NLT and ACT approaches. The quadruples in the
tables record the number of inputsn, the algebraic degreed,
the nonlinearitynl , and the autocorrelationac.

An immediate observation is that both NLT and ACT gen-
erate functions with very high algebraic degree, even maximal
degree,n − 1 for a balanced function. This may be regarded
as a bonus since degree was ignored as part of the search.
However, attaining high algebraic degree is very much the
general trend of the annealing approaches taken.

For n ≤ 8, there is no difference in the properties of the
best functions achieved. Asn increases it would appear that
NLT has an edge with respect to nonlinearity and ACT an edge
with respect to autocorrelation, but this seems marginal, and
to be expected. There would appear to be some interesting
potential tradeoffs being made, e.g. forn = 5 relaxing the
autocorrelation requirement (from 8 to 16) would appear to
raise the achieved algebraic degree (from 3 to 4). Similarly
for n = 8, there would appear to be a potential tradeoff
between nonlinearity and autocorrelation. It may simply be
that our particular search techniques are incapable of finding
(5, 4, 12, 8), (8,−, 116, 16), (8, 6, 112, 16) etc.

Table IV records the extremes that were generated but does
not indicate how easily the functions were generated (i.e. how
often). Tables V, VI and VII show how the value of the
parameterX radically affects the functions produced. Here
(n, d, nl, ac) indicates for functions ofn inputs an algebraic
degree at leastd, nonlinearity at leastnl and autocorrelation

R = 3.0 X
(n, d, nl, ac) −10 −8 −6 −4 −2 0 2 4 6 8 10
(5,−, 12,−) 76 92 95 100 100 100 100 100 100 100 100
(5,−,−, 8) 10 36 69 80 0 0 0 0 0 0 0
(5,−, 12, 8) 10 36 69 80 0 0 0 0 0 0 0
(5, 3, 12, 8) 10 36 69 80 0 0 0 0 0 0 0
(5, 4, 12, 8) 0 0 0 0 0 0 0 0 0 0 0
(5, 4, 12, 16) 0 4 0 0 100 100 100 100 100 100 100
(5,−, 12,−) 6 4 14 100 100 100 100 100 100 100 44
(5,−,−, 8) 14 18 12 74 0 0 0 0 68 67 31
(5,−, 12, 8) 2 3 10 74 0 0 0 0 68 67 30
(5, 3, 12, 8) 2 3 10 74 0 0 0 0 68 67 30
(5, 4, 12, 8) 0 0 0 0 0 0 0 0 0 0 0
(5, 4, 12, 16) 0 0 0 0 100 100 100 100 0 0 0

TABLE V

n = 5, PERCENTAGE SUCCESSFUL RUNS, NLT (UPPER), ACT (LOWER)

R = 3.0 X
(n, d, nl, ac) −10 −8 −6 −4 −2 0 2 4 6 8 10
(6,−, 26,−) 0 0 0 90 88 89 90 99 100 98 6
(6,−,−, 16) 1 3 3 94 100 100 100 100 100 39 10
(6,−, 26, 16) 0 0 0 84 88 89 90 99 100 37 1
(6, 5, 26, 16) 0 0 0 9 10 39 41 59 51 11 0
(6, 4, 26, 16) 0 0 0 80 84 83 84 95 97 33 1
(6,−, 26,−) 0 0 0 0 0 76 91 99 100 30 0
(6,−,−, 16) 72 80 82 100 100 100 100 100 100 100 83
(6,−, 26, 16) 0 0 0 0 0 76 91 99 100 30 0
(6, 5, 26, 16) 0 0 0 0 0 44 46 49 52 12 0
(6, 4, 26, 16) 0 0 0 0 0 67 88 96 93 25 0

TABLE VI

n = 6, PERCENTAGE SUCCESSFUL RUNS, NLT (UPPER), ACT (LOWER)

at mostac. A ‘−’ indicates no restriction. The number of
runs in all cases was 100. Thus the first column of Table V
indicates that 76 runs atX = −10 produced functions with
nonlinearity of 12 (which is actually the highest achievable),
10 had the (lowest possible) autocorrelation value of 8. The
following three entries indicate that all 10 with autocorrelation
of 8 actually had nonlinearity of 12 and degree of 3.

The effect of theX parameter is enormous. Forn = 5
there are clear differences between NLT and ACT. For ACT,
the profile of production of(5, 4, 12, 16) contrasts starkly with
those involving autocorrelation of 8 above it. Perhaps the most
interesting results here are those forn = 8 in Table VIII. Here,
the effect of theR parameter is seen to have significant effect.
For R = 2 few functions of interest are derived. This simply

R = 3.0 X
(n, ad, nl, ac) −6 −4 −2 0 2 4 6 8 10 12 14 16 18
(7,−, 56,−) 35 60 50 51 57 55 47 53 9 0 1 0 0
(7,−,−, 16) 2 20 26 27 26 24 31 29 0 0 0 0 0
(7,−, 56, 16) 2 4 6 6 7 4 3 3 0 0 0 0 0
(7, 6, 56, 16) 0 2 1 2 0 0 2 2 0 0 0 0 0
(7, 5, 56, 16) 2 4 6 6 7 4 3 3 0 0 0 0 0
(7,−, 56,−) 11 8 1 6 6 9 10 8 4 0 0 0 0
(7,−,−, 16) 13 87 82 87 82 82 78 76 5 0 0 0 0
(7,−, 56, 16) 0 1 0 1 2 0 2 3 0 0 0 0 0
(7, 6, 56, 16) 0 1 0 1 1 0 2 2 0 0 0 0 0

TABLE VII

n = 7, PERCENTAGE SUCCESSFUL RUNS, NLT (UPPER), ACT (LOWER)



NLT X
(n, ad, nl, ac) −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16
(8,−, 116,−) 25 22 8 3 1 1 3 1 2 1 57 59 28 11
(8,−,−, 16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8,−, 116, 24) 0 0 0 0 0 0 0 0 0 0 8 1 0 0
(8,−, 112, 16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8, 5, 112, 16) 0 11 13 21 16 13 11 15 18 22 0 0 0 0
(8, 7, 116, 24) 0 0 0 0 0 0 0 0 0 0 8 0 0 0
(8,−, 116,−) 0 0 0 22 2 1 4 3 0 0 52 34 28 13
(8,−,−, 16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8,−, 116, 24) 0 0 0 0 0 0 0 0 0 0 10 1 1 0
(8,−, 112, 16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8, 5, 112, 16) 0 0 0 8 10 15 13 11 10 7 0 0 0 0
(8, 7, 116, 24) 0 0 0 0 0 0 0 0 0 0 8 1 0 0
(8,−, 116,−) 0 0 0 0 0 0 19 11 18 15 11 7 17 10
(8,−,−, 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8,−, 116, 24) 0 0 0 0 0 0 1 0 0 0 1 0 1 0
(8,−, 112, 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8, 5, 112, 16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(8, 7, 116, 24) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE VIII

n = 8, PERCENTAGE SUCCESSFUL RUNS, NLT, R = 3.0 (UPPER), R = 2.5

(MIDDLE ), AND R = 2.0 (LOWER)

emphasises how crucial experimentation is for these sorts of
problems. ForR = 3.0 and R = 2.5 it would appear that
the ranges ofX for which (8,−, 116, 24) and (8,−, 112, 16)
functions are generated are disjoint. It is interesting to note for
eight inputs performance using the ‘ideal’ bound (X = 16)
is actually pretty poor. AllowingX to vary considerably is
clearly a good idea.

Some features emerge when one considers the average non-
linearity and autocorrelation values attained for each(X, R)
pair. For eight and nine input variables these are shown in
Tables IX and X. Forn = 8 we can see that the lowest
average autocorrelation and highest average nonlinearity do
seem in conflict. This simply reflects the ability to obtain
(8,−, 116, 24) and (8,−, 112, 16) but never(8,−, 116, 16).
No (8,−, 116, 16) functions have never been published.4 For
n = 9 the two desirable properties seem broadly in harmony.
Indeed, forn = 9 and R = 3.0 the 236.72 and 51.44 (for
X = −4) are the highest nonlinearity and second lowest
autocorrelation averages attained. Forn = 9 most parameter
choices give rise to nonlinearity averages better than the best
result achieved by random, hill-climbing or genetic algorithms
with a direct cost function (of which the best for nonlinearity
is 236).

VII. T HE INTENTIONAL GENERATION OF

COUNTEREXAMPLES

Zhang and Zheng [18] offer a sum-of-squares measure as
a desirable characteristic. For a Boolean functionf , σf is
simply the sum-of-squares of the auto-correlation functions
(see equation 7):

σf =
2n−1∑
s=0

r̂2(s) (14)

4Informal correspondence indicates that one such function has just been
attained.

R = 2.0 R = 2.5 R = 3.0
X nl ac nl ac nl ac

−16 106.22 84.72 108.32 73.68 111.56 59.28
−14 106.24 86.64 108.54 71.68 111.88 56.72
−12 106.08 84.88 109.0 67.12 112.68 49.6
−10 105.86 85.12 109.9 65.92 114.46 41.04
−8 106.08 86.0 111.26 59.84 113.26 28.48
−6 105.78 85.92 112.08 51.84 112.48 25.84
−4 106.28 84.4 113.44 32.08 112.16 24.48
−2 106.02 88.16 112.28 27.12 112.18 24.72

0 110.12 61.36 112.42 27.2 112.16 25.52
2 113.1 36.32 112.28 26.24 112.22 26.08
4 113.0 34.8 112.26 27.92 112.12 24.56
6 113.28 36.48 112.28 27.68 112.18 23.68
8 113.22 36.08 112.12 27.2 112.38 23.84

10 113.08 36.56 114.74 33.12 115.0 33.6
12 112.72 36.0 113.98 35.2 114.9 34.96
14 113.24 35.2 113.78 36.16 114.02 36.96
16 112.94 36.16 113.28 37.92 113.38 38.16

TABLE IX

n = 8, AVERAGE nl AND ac RESULTS

R = 2.5 R = 2.75 R = 3.0
X nl ac nl ac nl ac
−8 233.56 73.2 236.5 52.8 236.6 50.56
−6 236.08 55.76 236.68 52.56 236.62 52.16
−4 236.46 52.48 236.44 51.68 236.72 51.44
−2 236.3 51.28 236.3 51.92 236.64 51.84

0 236.12 51.76 236.32 52.0 236.36 52.24
2 236.06 51.68 236.34 51.12 236.46 51.92
4 236.1 51.92 236.4 50.96 236.54 51.52
6 236.22 52.64 236.4 50.88 236.7 51.6
8 236.14 52.08 236.42 51.44 236.56 52.88

10 236.04 53.52 236.38 51.84 236.72 52.0
12 236.06 52.96 236.46 52.96 236.66 52.96
14 235.9 52.72 236.16 52.4 236.46 52.88
16 235.8 54.08 235.92 53.68 236.2 53.44
18 235.66 56.8 235.9 56.8 235.86 55.6
20 235.36 57.2 235.52 56.72 235.54 57.68

TABLE X

n = 9, AVERAGE nl AND ac RESULTS

This measure treats allr̂(s) equally. In contrast, criteria such as
the Strict Avalanche Criterion (SAC), or Propagation Criteria
of various ordersk (PC(k)) are deemed to have a ‘local’
flavour. For example, SAC requireŝr(s) = 0 only for vectors
s of Hamming weight1 and places no constraints on the
values of other vectors. The sum-of-squares is offered as
one of two ‘global’ avalanche characteristics (the other being
the maximum of the autocorrelation functions, equation 7).
Constructions are proposed for balanced functions on even and
odd numbers of input variables and the sum-of-squares values
provided. For evenn = 2k the sum of squares indicator is

σf = 24k + 23k+3 − 23k+1 (15)

The authors note that the lower bound of24k is met only when
f is a bent function (i.e.̂r2(0) = 24k), and conjecture that

the functionf . . . with σf = 24k + 23k+3 − 23k+1

achieves nearly optimal sum-of-squares avalanche
characteristic of balanced functions onV2k



n Son et al. GAC-σf Annealing + Hill-climbing
bound bound minimum average maximum

5 1280 2048 1664 1664 1664
6 4608 7168 6784 6784 6784
7 17408 32768 23936 24550.4 24704
8 67584 90112 86656 89931.5 101248
9 266240 524288 379904 389273.6 404864

10 1056768 1245184 1535488 1550272 1566592

TABLE XI

SUM-OF-SQUARES CONJECTURED BOUNDS AND RESULTS

For oddn = 2k + 1 the sum of squares indicator is

σf = 24k+3 (16)

The authors state:
the sum-of-squares avalanche characteristic of the
function is extremely good. Again we conjecture that
it achieves the lowest possible value for balanced
functions onV2k+1

The statement ‘nearly optimal’ for then = 2k case is a little
unclear. The statement forn = 2k + 1 is unequivocal.

A. Experiments with Sum-of-Squares as the cost function

We have generated functions for even and oddn with lower
σf values than those conjectured minimal, usingσf as the
cost function forf . The search was restricted to move over
the space of balanced functions with the same move strategy
as before. A cooling parameterα = 0.95 was used together
with MIL = 200, MaxIL = 400 andMUL = 50.

For 5–10 input variables100 runs of the annealing algorithm
were carried out followed by hill-climbing (with the same cost
function). The results are given in Table XI and show the
GAC conjectured bounds together with the minimum, average
and maximum values achieved over all runs. As can be seen,
many runs of the algorithm generated counter-examples to the
conjectures. Forn = 10 no counter-example was generated. In
some cases the conjectured values are markedly sub-optimal.
Average time per run is also shown, indicating the speed with
which conjectured bounds were broken (e.g. forn = 7 all
100 runs produced a counter-example taking on average 1.25
seconds for each run).

This is clearly a very simple task to carry out. Yet opti-
misation is not yet established in professional cryptography.
Optimisation has the potential to provide confidence in or
counter-examples to conjectures like the above. It can do so
very efficiently. Furthermore, this is not just an exercise in
counter-example generation. If low sum-of-squares really is
desirable then heuristic optimisation is obviously a good tool
to derive better functions.

Global avalanche characteristics are beginning to receive
more attention from researchers. Son et al. have published
lower bounds onσf for balanced functions [15]. They show
that σf ≥ 22n + 2n+3 (and also give upper bounds on
nonlinearity of balanced functions in terms ofσf ). The bounds
on σf are also shown in Table XI. It can be seen that there is
still considerable distance between the obtained values and the

provided bounds but no functions or methods of construction
were actually exhibited by Son et al. and the results presented
here are the best demonstrated. Sung et al. have improved the
lower bound for functions satisfying a propagation criterion
for a number of vectors [16]. Maitra [9] addresses the bounds
on global avalanche criteria for correlation immune functions.

Metaheuristic searches are well-known for handling vast
search spaces where other techniques break down. Here they
have generated counter-examples at small values ofn. The
practical importance of the results shown here is that counter-
examples to conjectures were demonstrated with considerable
ease. Only forn = 10 did any run fail to produce a function
achieving or bettering the GAC-conjectured bounds.

B. Revisiting the Past

The functions generated during the NLT and ACT experi-
ments of section V were revisited, and their sums-of-squares
measured. Forn = 5 . . . 10 functions had been generated with
sums-of-squares as low as the minima generated by the direct
experiments in this section. Additionally, forn = 9 a function
with sum-of-squares value of 376832 had been generated and
for n = 10 one with value 1534720 had been generated. Both
are lower than the results obtained by the direct use of sum-
of-squares as a cost function. This is not so surprising, since
the functions generated earlier had very low autocorrelation for
lowern and so at least a moderately low sum-of-squares might
be expected. Given a suitable histogram of spectral values an
excellent value might be attained. For example, some functions
with n = 7 and autocorrelation of 16 satisfy|r̂(s)| = 0 for up
to 66 non-zero values ofs. This alone is sufficient to break
the conjectured bound of 32768.

C. What are these results telling us?

Our initial work was largely targeted at nonlinearity; low
autocorrelation was a secondary concern. The ACT technique
was adopted only after it was noticed that the NLT approach
generated functions with low autocorrelation. However, the
breaking of conjectured autocorrelation bounds, and the ease
with which the sum-of-squares bounds were broken, suggests
that a more autocorrelation-focussed effort might well pay
dividends. The sum-of-squares cost function uses the auto-
correlation spectral valueŝr(s), implicitly targeting the ‘ideal’
valuer̂(s) = 0 (for non-zeros). As before, only bent functions
(on even numbers of variables) achieve this, yet our focus is
balanced functions (of both even and oddn). By analogy with
the cost function of equation 10, the following cost function
family suggests itself

C(f̂) =
∑

s

∣∣∣|r̂(s)| −X
∣∣∣R (17)

With X = 0 andR = 2 this reduces to the sum-of-squares
cost function. AsR increases large values ofr̂(s) are clearly
discouraged. Experiments were carried out using the parameter
values given in Table XII. Fifty runs were carried out for each
parameter setting (except forn = 12 where only ten runs
were attempted). Table XIII shows the best results obtained



n X range R values α MIL MaxIL no.
min:max:step runs

5 −4:4:1 3.0 0.90 400 400 50
6 −4:4:1 3.0 0.90 400 400 50
7 −4:4:1 3.0 0.90 400 400 50
8 −4:4:1 3.0 0.95 400 400 50
9 −4:4:1 3.0 0.95 400 400 50

10 −8:8:1 3.0 0.95 400 400 50
11 −8:20:4 3.0 0.95 400 400 50
12 −8:20:4 2.5 0.95 800 800 10

TABLE XII

SEARCH PARAMETERS USED

best functions no. runs total no. runs
giving best value

(5,3,12,8) 450 150
(5,4,12,16) 300
(6,5,26,16) 450 450
(7,6,56,16) 450 2
(8,7,116,24) 450 1
(9,8,236,32) 450 4
(10,9,484,56) 850 18
(11,10,984,80) 400 1

(12,11,1988,120) 80 2

TABLE XIII

AC-CUBE RESULTS: (n, d, nl, ac)

by this method. The small amount of experimentation has
already led to improved results. In particular, for the first
time an autocorrelation of32 has appeared forn = 9. For
n = 11 the (11, 10, 984, 80) is the best profile achieved to
date (see table IV). Similarly,(12, 11, 1988, 120) has the best
autocorrelation achieved to date forn = 12.

VIII. O PTIMISING THE COST FUNCTIONS

The preceding sections have proposed plausibly well-
motivated cost functions, and the results have shown that they
are capable of providing highly nonlinear balanced Boolean
functions with low autocorrelation and high algebraic degree
(with different emphases depending on the cost function used).

That the approach generates functions with high algebraic
degree is perhaps not so surprising. Functions of low algebraic
degree are actually extremely rare. Unless the properties
sought actually force the search to move towards low algebraic
degree there is little chance that it would.

It is also fairly clear that the cost functions used do not char-
acterise highly desirable functions (judged by our criteria), or
even characterise what it means to be ‘close’ to such functions
(or even, for that matter, close to some particular ‘family’
of such functions: there may well be other functions with
excellent properties that are never reached by the technique,
even for the smallern). If they did so, better results should
have been obtained for higher numbersn of input variables.
(Recall that much computing power was expended to gain
optimal values forn = 9 andn = 10.)

The parametric flexibility of the cost function family is
pretty much essential for difficult optimisation problems. For
smallern it has proven possible to find parameters so that cost

function minima sometimes (or often) are good places from
which to hill-climb (with respect to a particular property) to
desirable functions. In addition, the cost surface is sufficiently
navigable to allow these extrema to be reached via guided
search. So what prevents the approach getting better results?
Consider now the current family and its possible limitations.
The cost functions are of form

C(f̂) =
∑
ω

∣∣∣|F̂ (ω)| −X
∣∣∣R (18)

Assume, for explanatory purposes,R = 3. For eachω the cost
function contribution is

|G3 − 3XG2 + 3X2G−X3| (19)

whereG = |F̂ (ω)|. But this is restrictive. A more general cost
function is:

C(f̂) =
∑
ω

∣∣∣∣∣
m∑

i=0

biG
i

∣∣∣∣∣ (20)

That is, adopt the absolute value of some polynomial in
|F̂ (ω)|. Thus we allow arbitrary order and arbitrary coeffi-
cients. This model is more flexible than the cost functions
chosen so far. (Consideration of non-integralR leads to even
further flexibility.) But this flexibility comes at a price. There
is no obvious relationship between the coefficients of, say,
a quintic polynomial inF̂ (ω) whose minima are reached by
functionsf̂ with desirable properties! What is important is that
there should exist some appropriate values of the coefficients
for which this is the case, and that we should be able to find
them. A means of achieving this is discussed next.

A. Hill-climbing on Cost Function Parameters

The approach uses higher level optimisation on the poly-
nomial coefficients. For any particular set of coefficients, ten
runs of annealing were carried out minimising the the cost
function defined by those coefficients. This was followed by
a second stage hill-climb with respect to nonlinearity. The
average nonlinearity of the functions resulting from those runs
was taken as a fitness measure for the set of coefficients. With
this fitness measure a hill-climb was carried out on the set of
coefficients.

A random set of coefficients was used to initialise the cost
function. Each coefficient fromb0 to bn−1 was increased or
decreased (by some specified amount) in turn (bn = 1 always).
Only moves that improved the average value obtained were ac-
cepted (thus a form of hill-climbing has been used). Evaluating
10 runs of annealing is very costly in computational terms for
a single fitness evaluation of the coefficients. Accordingly, a
rapid cooling schedule was used (α = 0.9).

A feature of this approach is the fitness of the coefficients
is actually stochastic (since the annealing algorithm itself is
stochastic). This was catered for by aborting the search only
after three consecutive cycles through all the coefficients failed
to give an improvement on the current best average obtained.
In addition, after a full failing cycle the STEP distance by
which coefficients were altered was halved.



n runs max % runs with bestnl runs
nl max nl average

8 50 116 100 116.0 24
9 50 238 100 237.6 1

10 30 486 40 484.2 4

n runs min % runs with bestac runs
ac min ac average

8 50 16 100 20.8 7
9 50 32 2 40.0 11

10 50 56 100 63.2 4

TABLE XIV

RESULTS FOR HIGH LEVEL OPTIMISATION RUNS

Table XIV gives the results forn = 8, 9 when the target is
high nonlinearity. The results show marked improvements on
the results achieved so far in terms of efficiency. Thus, forn =
8 our higher level optimisation has produced final values for
cost function coefficients that achieved a nonlinearity of116 in
all ten runs (24 of the 50 runs of the higher level optimisation
produced coefficients with this property). This contrasts with
the results presented in Table IX where the highest achieved
average was115 (for X = 10 and R = 3.0). Similarly, for
n = 9 the results in Table X the best average nonlinearity was
36.72 (for R = 3.0 and X = −4, 10). The highest average
for n = 10 (general table omitted) was483.84 (for R = 3.0
andX = −6, 2). Thus, for all values considered higher level
optimisation leads to more efficient cost functions. However,
no improvements on the best values achieved were recorded.
Similar results hold for autocorrelation, but here we see that
the technique has found some functions with better (lower)
autocorrelation than previously found (n = 9, AC = 32).

B. Commentary

Higher level optimisation, a common technique in the
optimisation world, does not yet appear to have been applied to
any modern-day cryptological problem, and can obviously be
made more sophisticated than that discussed here. Parametric
cost functions do come at a price: search is typically required
to find good parameter values to use. The more that cost
functions are used as anindirect means of characterising
desired points, the more necessary search over the parameter
space becomes.

IX. CONCLUSIONS

Meta-heuristic search is a powerful tool for modern-day
cryptological research. As far as we are aware, counterex-
amples to cryptological conjectures by theoreticians have not
previously been demonstrated using optimisation techniques.
Optimisation can provide a very efficient means of gaining
confidence in conjectures, or else disproving them.

Numerical conjectures on cryptographic properties seem ob-
vious candidates for optimisation approaches. Our counterex-
amples to the autocorrelation and sum-of-squares values were
generated without any significant computational effort. Where
theory is not well developed, exploration via an optimisation
based approach may well be a useful means of providing
confidence in ones conjectures.

The power of meta-heuristic search is significantly greater
than currently evidenced in publicly available literature. The
nonlinearity and autocorrelation values attained using the
methods described here match or improve on those docu-
mented existing optimisation-based literature. By adopting a
somewhat indirect approach, it has proved possible to obtain
high nonlinearity and low autocorrelation via a single cost
function family. Indeed, the ability to achieve such good
results leads to the possibility of a malicious designer planting
trapdoors [3].

Unusual cost function families can act as approximations
to the actual cost surfaces of interest. Higher-level optimisa-
tion (searching the parameter space) can be used to extract
suitable members of these families for particular problems of
cryptographic interest.
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