
Grammatical Evolution of L-systems
Darren Beaumont and Susan Stepney

Department of Computer Science, University of York, YO10 5DD, UK

Abstract— L-systems are parallel generative grammars that
can model branching structures. Taking a graphical object and
attempting to derive an L-system describing it is a hard problem.
Grammatical Evolution (GE) is an evolutionary technique aimed
at creating grammars describing the legal structures an object
can take. We use GE to evolve L-systems, and investigate the
effect of elitism, and the form of the underlying grammar.

I. INTRODUCTION AND BACKGROUND

L-systems are parallel generative grammars [1] used to
model plant development, branching tree structures, and other
iteratively-defined and fractal artefacts. Starting from an axiom
string, or seed, the grammar rules are applied in parallel to
each element of the string, for several iterations (generations).
For example, consider the following L-system:

ω : F
p : F → F [+F]F [−F]F

This has axiom F , and each iteration the production p replaces
every F in the current string by the RHS of p. So, starting
from the axiom string as iteration 0, successive iterations are:

0) F
1) F [+F]F [−F]F
2) F [+F]F [−F]F [+F [+F]F [−F]F]F [+F]F [−F]F

[−F [+F]F [−F]F]F [+F]F [−F]F
The resulting string is typically rendered graphically, by

interpreting the elements as turtle graphics commands [2][3]
(although other interpretations are possible [4]). For example,
interpreting F as ‘forward distance d, drawing a line’, ±
as ‘turn through ±27.5◦’, and [] as ‘start/end branch’, then
subsequent iterations of this example L-system render as an
increasingly-branched fractal ‘weed’ (figure 1).

Given an L-System definition, it is relatively easy to render
the resulting structure. However, given a structure, it is non-
trivial to derive a corresponding L-System.

Grammatical Evolution (GE) [5] is a grammar-based evo-
lutionary search technique. GE uses a string of numbers to
represent an individual. This genome is used to index into a
Backus Naur Form (BNF) grammar to generate a resulting
text. The genome represents an individual’s genotype, which
is manipulated by the search algorithm1 (see [5] for details).
The resulting text represents an individual’s phenotype and is
used to test an individual’s fitness.

Since L-systems are defined using grammars, GE seems an
ideal approach for evolving particular L-system descriptions.

1Note that the GE mapping process is independent of the search algorithm.
Usually a genetic algorithm is used to explore the search space (and is used
here), but it is possible to use other search techniques, such as simulated
annealing.

Fig. 1. The example L-system after 1, 2, 3, and 4 iterations. (The pictures
are scaled each iteration to make their overall size constant.)

For example, [6] use GE to evolve fractal curves described
by a particular restricted L-system grammar. Here we evolve
tree-like structures based on a more flexible BNF description
of context-free L-system grammar.

The paper is structured as follows. Section II outlines the
approach followed. A detailed set of tests and experimental
results are presented on elitism in sections III, on the effect
of changing the structure of the grammar in section IV, and
on more complex grammars in section V. Conclusions and
further work are given in section VI.

II. DESIGN AND IMPLEMENTATION

A. The default BNF Grammar

Figure 2 shows the default BNF grammar we use to capture
our context-free L-system grammar.

On decoding, each individual starts as an lsys, then each
codon number in its genome is used in sequence to index
into the BNF grammar, to determine how to expand the
productions. If there are productions remaining when the end
of the genome is reached, decoding wraps around to start from
the beginning of the string again. Decoding stops when no
non-terminal symbols remain, or when the maximum allowed
number of genome wrap-arounds is reached.

To simplify the problem of deriving an L-system we follow
[6] and initially assume the axiom is fixed as F . The default
grammar also assumes that F is the only LHS allowed in
a production. These assumptions are relaxed in section V.
As a further simplification, we fix the number of derivation
iterations, and the rotation angle.

A context-free non-probabilistic L-system requires each
symbol (here, variable) to appear as the LHS in at most

<lsys> ::= <axiom> <productions>

<axiom> ::= F

<productions>
::= <lhs> <str>
| <lhs> <str>

<productions>

<lhs> ::= <variable>

<str>
::= <symbol>
| <branch>
| <symbol><str>

<branch> ::= [<str>] | [<str>]<str>

<symbol> ::= <variable> | <rotate>

<variable> ::= F

<rotate> ::= + | -

Fig. 2. Default BNF grammar used

one production. With our BNF, a genome could potentially
derive an L-system grammar where more than one production
has the same LHS symbol. We therefore require the L-system
turtle renderer to use only the first production with a given
LHS, and ignore all subsequent productions with that LHS.
(This allows easy future extension to probabilistic L-systems,
where multiple productions with the same LHS are permitted.)

We ensure automatic scaling of the rendered images (as in
fig 1), to ensure that the phenotypes being assessed all have
the same size.

B. Cost function

The ‘cost’ is the difference of the candidate image from the
target image, as measured on an image rendered on a fixed
size canvas. If an individual has a cost of zero, then every
pixel of the individual’s and target’s tree are identical (at the
given rendering resolution; it may be that a finer resolution
could distinguish them).

We want branches that are close in position to the target
branches to have a low cost, so we calculate the cost function
in terms of the distance apart of corresponding pixels. To
calculate the difference of image1 from image2, we consider
every ‘on’ pixel in image1, find the Euclidean distance to the
nearest ‘on’ pixel in image2, and sum these distances. The cost
is the difference of image1 from image2, plus the difference
of image2 from image1. (If we calculated this difference in
only one direction, either any image would perfectly match
a black target, or a black image would perfectly match any
target.) Figure 5 shows a range of different cost results: lower
cost trees do indeed look more similar to the target than higher
cost trees.

If an individual’s L-system draws nothing (e.g. one with a
production F→[+]) then there are no nearest pixels to those

parents unfit

next population

replaced by
crossover
parents

carried
through

carried
through

carried
through

mutation m%
fusion f%
elision e%

elite

current population

order by cost value

parents unfit

next population

replaced by
crossover
parents

carried
through

carried
through

carried
through

mutation m%
fusion f%
elision e%

elite

current population

order by cost value

Fig. 3. The breeding process

on the target tree. In this case each pixel in the target tree is
assigned a nearest distance equal to the maximum of the width
or height of the window. (See appendix A for pseudocode.)
Hence individuals with L-systems that draw something (no
matter how poor) are favoured over those with L-systems that
draw nothing. For our image size, a simple ‘stick’ figure has
a cost of 518257: this is the worst outcome (highest cost) of
our experiments.

The cost function also punishes individuals that reach the
maximum number of genome wraps (and hence do not have a
complete L-system grammar) with a high cost values (the Java
maximum integer value, 231 − 1). This attempts to minimise
the number of invalid individuals in each generation.

C. Genetic Operators

A genome is a string of codons. Following [6], a codon is
an integer (rather than a bitstring, say). A new generation is
created from the current generation as follows (summarised in
figure 3):

1) Selection: We use a simple selection strategy. Individu-
als in the population are ordered according to their cost value
with the fittest (cost value closest to zero) first, down to the
least fit. A percentage of the best individuals are identified
as parents, while a percentage of the worst individuals are
replaced.

2) Breeding: We use one point crossover to generate
new individuals from the parents, to replace the removed
individuals. Each new individual is created thus: randomly
select two parents; randomly select a crossover point on each
parent’s genome (these may be different points); cross over
the genomes at these point to create a new child genome.

Our crossover may randomly choose the same genome for
both parents. Whereas [6] use the same crossover point on
both parents’ genome, we allow the crossover point of each
parent’s genome to be different, to allow greater variation in
the genome length of children.

3) Mutation: Elitism allows a certain number of the fittest
individuals to go through to the next generation without being
mutated.

cost evaluations time (mins) time/eval (secs)
1,000 5.9 0.354

10,000 100 0.60
Fig. 4. Mean time taken to perform cost evaluations

Mutation lets each codon be mutated to a new integer
value with some user defined mutation rate. Appendix B gives
pseudocode for the mutation function.

We use two further mutation operators, based on those used
by [6]. The first is fusion, which adds one codon to a random
point in the genome. The second is elision, which removes one
codon from a random point in the genome. Elision is applied
only if the resulting genome has length greater than 0.

4) Default parameter values: All of these genetic operators
are controlled via parameters. Parameters allow settings to be
turned on and off, while controlling the degree to which an
operator is used. For example, parameters give the percentage
of individuals in the population that are replaced by crossover
and the percentage of individuals which can used as parents
from which to create children. An instance of the parameter
file can be seen in appendix C.

D. Performance Issues

A quick initial experiment was run to check the speed of
execution, and to enable estimates on the amount of time an
experiment would run. Figure 4 shows the mean time taken
over 10 random runs, with population sizes of 100. Note that:

cost evaluations = pop size × # generations

At 0.6 seconds per evaluation, 10,000 evaluations have a 41%
increase in time per evaluation taken over 1,000 evaluations:
the more evaluations we do, the longer the average time
to perform an evaluation. This is because there is more
opportunity for extremely long evaluations: 94% of evaluations
occur in under 0.2 seconds, while 2% take in excess of 1.0
second. These long evaluations are ones involving a large
number of variables in the production. Consider the example
of applying the production F → F [+F]F to a word with 10
F s in it. After one cycle the word has 30 F s; after two cycles
it has 90 F s; after 3 cycles, 270 F s, and so on. After n cycles,
the number of F s in a derived string equals

(# F s in the axiom) × (# F s in the production)n

We do not want our processing time dominated by these poten-
tially exponentially long evaluation-time individuals. Rather
than limit the number of symbols allowed in a production
(as done by [7]), we limit the maximum time allowed for
parsing and rendering an individual. The default value used is
1.0 second. Once an individual reaches the maximum allowed
time, it is terminated, and assigned a high cost value, as if it
had rendered a blank image.

E. Experimental parameters

The costs of evolved individuals were measured. Algorithm
parameters are factors affecting these costs. The experimental

design used here changes parameter values (or combinations
of parameter values) in isolation and keeps other parameters
constant.

Experiments use the genetic operators in section II-C. Un-
less otherwise stated, all experiments use the default parameter
values given in appendix C. To summarise these defaults, a
total of 10,000 cost function evaluations were performed per
run. For the experiments in section III-A and III-B a default
population of 50 individuals was run for 200 generations.
Results from further experiments (not reported here) resulted
in the default values being revised to a population size of
40, run for 250 generations for later experiments. Mutation,
elision and fusion rates are based on the values used in [6];
these values may not be optimal, but provide a sound basis for
the investigations. A mutation rate of 5% per codon is used,
with fusion affecting 25% of genomes and elision affecting
5% of genomes. The choices are made independently, so
an individual’s genome may be affected by any combination
of mutation, fusion, and elision. The least fit 25% of the
population are removed and the fittest 25% of the population
are used as parents to generate new individuals. Initially
elitism is set to 0. The effect of elitism is investigated in
section III-B and subsequently the default value for elitism
is set to 20% of the population size.

This experimental design exposes the effect that these
particular parameter changes have on the GE outcomes; it
does not necessarily find optimal parameter sets. Because we
have not fully investigated the parameter space, we draw fairly
cautious conclusions about our results. For example, we are
not claiming that 20% elitism is necessarily the optimal value,
but it does gives good results for the other default parameter
values used.

Due to the stochastic nature of GE, and evolutionary algo-
rithms in general, multiple runs of the same program (identical
except for different random seeds) produce different responses.
To ensure reliable statistics, a minimum of 50 runs were
conducted for each experiment.

With the exception of section V-C all experiments aim to
evolve the target tree shown in figure 1 after 4 iterations. The
result of a run is the best individual at the last generation.

F. Statistical Analysis

We wish to investigate the effect of several factors on the
GE process, such as the effect of elitism, or of changing the
underlying BNF grammar in certain ways. To this end, we
cast various null hypotheses, that the changes in fact have no
effect, and attempt to refute these using statistical tests. We
test whether the distribution of final best fitnesses over several
runs (usually 50 or 100 runs) are significantly different at the
95% confidence level.

It is common to use a t-test to test whether two distribu-
tions differ. However, this test assumes that the underlying
distributions are normal. As can be seen from later plots, our
distributions are highly skewed, and so not normal. So we
use non-parametric tests [8]. Non-parametric statistics include
the median (and the corresponding interquartile range) of the

data, rather than the more usual mean and standard deviation
(which are more suited to an underlying normal distribution).

We use notched box and whisker plots2 to present the
results of the experiments. We use the Wilcoxon rank-sum
test (also known as the Mann-Whitney U test) to test whether
the medians of two samples are significantly different, using
Matlab’s ranksum function. If the p-value is less than 0.05,
we can say that the null hypothesis is rejected at the 95%
confidence level because the medians differ. In cases where
this test fails to reject the null hypothesis (so we cannot state
that the medians differ significantly) we also perform a two-
sample Kolmogorov-Smirnov (KS) test, to test whether the
distributions of the two samples are significantly different in
any way, using Matlab’s kstest2 function. If the p-value is
less than 0.05, we can say that the null hypothesis is rejected
at the 95% confidence level because the distributions differ in
some way.

III. BASIC EXPERIMENTS

A. Can GE find a simple branched L-system?

The aim is to minimise the cost value, with a target cost of
zero. Using the cost function in section II-B and the default
parameter values detailed above, our GE approach successfully
evolved a range of zero cost L-systems. These perfect solutions
include:

• F [+F]F [−F]F
• [F+F]FF [−F]F
• F [+F]F [−[F]]F
• [[[F]F [+]F]FF][F]F [[[F [F][[−F]]]+F]][+]FF−+
• F [[++]+[[F]]]F [−F]F
• F [F−−+F][[[FF]−+]][+F][[−]]FF

As is often the case in evolved solutions, some of these
are non-intuitive. There is nothing in our cost function to
encourage parsimonious solutions.

Imperfect solutions with cost values as high as 6433 or 8074
superficially look like the target structure (figure 5), but on
closer inspection it becomes apparent that branches are slightly
higher, lower, or longer, or display other subtle differences.

The higher the cost, the less the evolved structure looks like
the target, although all are clearly approximations to it. (This
also serves to validate our choice of fitness function.)

B. The effect of elitism

In order to establish the effect of elitism on the default
parameters described in section II-E, we carried out nine
experiments, using a different number of elite individuals, e,
in each experiment: e ∈ {0, 1, 2, 4, 6, 8, 10, 12, 14}. All exper-
iments comprised 50 runs. The distribution of data of each
experiment is denoted De, for e ∈ 0, 1, 2, 4, 6, 8, 10, 12, 14.

2These plots illustrate the spread of values in a sample. A box is drawn
between the quartiles Q1 and Q3, with a midline marking the median Q2.
Whiskers are drawn from the box to cover all the data within 3/2 of the
interquartile range Q3 − Q1. Data points outside this range (outliers) are
shown by dots. If the notches of two boxes do not overlap, this indicates that
their medians differ at the 95% confidence level (although a rank-sum test
should be performed to test this).

Fig. 5. Example evolved solutions and their costs:
(a) target, cost = 0; F [+F]F [−F]F
(b) 6433; FFF [[FFF [[F]−F]]+F+−]
(c) 8074; FF [[F [[+][F]]F [−F−]F][+F]][F]F
(d) 29240; FF [+FF]FF [−[F]−[+F [F][−]+[F+][+]+]+]F [F]
(e) 52056; F [FF [[F [+F]FFFF−F−−]]]FF
(f) 66009; FFFFF [[FF−[+]F [F][+[+F]][F++F]]][+−++F]
(g) 137734; [[F]][F]F [FF−F][F [F]F][−]F [+F][−]F [F]
(h) 257518; F [[F−[F]]]FF

The null hypothesis H0 is: elitism has no effect on the
evolution; that is Di and Dj (for i 6= j ∈ 1, 2, 4, 6, 8, 10, 12, 14)
have the same distributions.

Figure 6 shows the box plots. The rank-sum test results
are shown in figure 7. The case of no elite individuals is
significantly different from all other cases, and one elite
individual is significantly different from 6 or more elites, all
at the 95% level. The KS test (figure 8) marginally increases
the number of significant differences.

These tests may suggest three different classes of elitism:
no elites, a few elites, and several elites. The box plots reveals
that more elitism is helping. With no elitism (e = 0) more than
75% of L-systems produced are ‘sticks’. (In this case, the best
cost values seen throughout all generations are significantly
better than these final best solutions. This suggests elitism is
required to ensure that good solutions are kept and built on, not
lost or mutated in the next generation.) Using the interquartile
range in figure 6 we can see that when elitism is 6 or more,
25% of the runs result in a close match to the target tree.

Following these experiments, elitism is incorporated into the
default parameters, with elite individuals representing 20% of
the population.

Fig. 6. Best cost values of final generation (divided by 105), against the
number of elite individuals (50 runs each)

1 2 4 6 8 10 12 14
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.174 0.059 0.000 0.001 0.016 0.001 0.001
2 0.648 0.054 0.040 0.306 0.055 0.058
4 0.154 0.099 0.596 0.145 0.154
6 0.697 0.544 0.856 0.902
8 0.360 0.819 0.747

10 0.496 0.555
12 0.943

Fig. 7. Rank-sum test for elitism, p values. Bold values reject the null
hypothesis at the 95% confidence level.

1 2 4 6 8 10 12 14
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.199 0.041 0.006 0.000 0.006 0.003 0.003
2 0.935 0.452 0.022 0.308 0.123 0.123
4 0.452 0.022 0.308 0.123 0.123
6 0.625 0.801 0.935 0.935
8 0.625 0.935 0.801

10 0.935 0.935
12 1.000

Fig. 8. KS test for elitism, p values. Bold values reject the null hypothesis
at the 95% confidence level.

IV. BNF GRAMMAR BASED EXPERIMENTS

[9] say that the structure of a GE algorithm’s BNF grammar
can have a significant effect. Here we explore this claim in the
context of evolving L-systems. All experiments use the default
parameter values, and are each repeated for 100 runs. Only the
BNF grammars are changed between experiments. The default
BNF grammar (figure 2) is used as the control grammar, g0.
Each run returns the best cost value in the final generation.

A. Order of productions

The default BNF grammar builds lists (of productions, of
symbols) from left to right. Here we test whether building lists
from right to left is any different. The revisions to the default
grammar are:

Fig. 9. Best cost values of final generation (divided by 105), for different
grammar modifications, 100 runs

<productions>
::= <lhs> <str>
| <productions>

<lhs> <str>

<str>
::= <symbol>
| <branch>
| <str><symbol>

<branch> ::= [<str>] | <str>[<str>]

The null hypothesis H0 is: the revised r2l grammar and
default grammar g0 produce the same distribution.

Figure 9 shows the box plots for the default grammar g0 and
the revised order grammar r2l. The rank-sum test p = 0.020
so the null hypothesis, H0, is rejected at the 95% confidence
level. This effect may be due to the left-to-right order of
expanding the productions in the GE process.

B. Size of the Grammar

Here we test whether the number of productions in the
grammar affect the solutions. The default grammar treats ter-
minal symbols used for rotation (±) separately from terminal
variables. So the default grammar allows a terminal symbol
in a production to be a variable with a probability of 0.5
and to be rotation symbol with probability 0.5 (governed by
the parity of the relevant codon). With only one variable
compared to two rotation symbols it could be argued that the
default grammar has a bias towards the variable over individual
rotation symbols.

This test combines productions in the default BNF grammar
to produce a shorter BNF grammar with more options for each
production. Three shorter variations of the default grammar are
tested. The revised grammars are:

a Combine all terminals into the symbol production
<lhs> ::= <symbol>
<symbol> ::= F | + | -

b Combine the branch production into the str production

g0/a g0/b g0/c a/b a/c b/c
W 0.418 0.252 0.537 0.751 0.896 0.595

KS 0.000 0.344 0.000 0.000 0.794 0.000

Fig. 10. Wilcoxon rank-sum test, and KS test, for different grammar sizes:
p values. Bold values reject the null hypothesis at the 95% confidence level.

<str>
::= <symbol>
| [<str>] | [<str>]<str>
| <symbol><str>

c Combine revisions 1 and 2
<lhs> ::= <symbol>
<str>

::= <symbol>
| [<str>] | [<str>]<str>
| <symbol><str>

<symbol> ::= F | + | -

The null hypothesis H0 is: the revised grammar Xg (g ∈
{a, b, c}) and default grammar g0 have the same distributions.

Figure 9 shows the box plots for default g0 and revised
grammars a, b, and c. Figure 10 shows the p values for the
rank sum test, and the KS test. Although the medians are not
shown to be significantly different, the KS test nevertheless
shows that some distributions are significantly different.

C. Introns
The default BNF grammar defines a way to create match-

ing brackets, and thus syntactically legal individuals, in the
successor of a production. When a set of brackets are to be
inserted (with one or more symbols inbetween) into the L-
system grammar, two options can occur: the L-system word
terminates with the brackets, or the brackets are followed by
one or more symbols. In biology an intron is a segment of
a gene which is removed before forming the eventual gene.
In GE, an intron is used to skip over a codon in the genome
and performs no operation to the derivation of the grammar.
This experiment alters the design of the BNF grammar, and
introduces introns to the structure of bracket. A bracket is
preceded and succeeded by zero or more symbols, dependent
on the value of the codon. If the codon is odd, then an intron
is used before/after the brackets so that no symbols are added.

The aim of this experiment is to discover whether introns,
used in this context, help build ‘useful’ grammars which
converge on a solution quicker and find more solutions. The
revised intron grammar is:

<str>
::= <symbol>
| <symbol><str>
| <pstr>[<str>]<pstr>

<pstr> ::= <str> | ‘ ’

The null hypothesis H0 is: the revised intron grammar and
default grammar have the same distribution.

Figure 9 shows the box plots for the default grammar g0
and the intron grammar. The rank-sum test gives p = 0.641,
and the KS test gives p = 0.961. Thus the null hypothesis
H0 is not rejected at the 95% confidence level and we cannot
conclude that introns help the evolution.

Fig. 11. Best cost values of final generation (divided by 105), for grammars
that evolve the LHS and axiom, 100 runs

g0/lhs g0/ax lhs/ax
W 0.917 0.311 0.001

KS 0.000 0.000 0.001

Fig. 12. Wilcoxon rank-sum test, and KS test, for evolving the LHS and the
axiom: p values. Bold values reject the null hypothesis at the 95% confidence
level.

V. EXPERIMENTS EVOLVING L-SYSTEM COMPONENTS

A. Evolving the LHS

The default BNF grammar specifies that the LHS of a
production must be a variable, and hence can only be F .
This experiment extends the grammar so that a LHS can be
any terminal symbol (F,+,−). The aim is to discover what
effect increasing the search space by allowing productions to
be evolved has on the frequency and speed of convergence of
solutions. The extended grammar is:

<lhs> ::= <symbol>

The null hypothesis H0 is: the extended grammar and default
grammar have the same distribution.

Figure 11 shows the box plots, and figure 12 shows the
tests. A rank-sum test does not reject the null hypothesis, but
the KS test does reject it, at the 95% confidence level.

Inspection of the box plots shows that the extended grammar
finds far fewer good solutions that the more constrained
grammar, but also finds rather fewer very poor solutions.

Inspection of the L-systems produced by individuals which
are solutions, reveals that only F s appear as a LHS in the
grammar. Thus although the search space has been increased,
it does not appear that new potential solutions have been found
that would not have existed with the default grammar.

B. Evolving the Axiom

To simplify the derivation of L-systems, the axiom of
previous tests is assumed to be F . This experiment considers
whether a revised BNF grammar will allow the algorithm to
evolve the correct axiom from the full set of terminal symbols.

Fig. 13. Evolving the axiom

The grammar is adapted to allow the axiom to be any (single)
terminal symbol. Additionally the LHS of a production is
defined to allow any terminal symbol, to allow the system
to recover if the ‘wrong’ axiom is used.

<axiom> ::= <str>
<lhs> ::= <symbol>

The null hypothesis H0 is: the new grammar and default
grammar have the same effect.

Figure 11 and figure 12 show the results. The KS test rejects
the null hypothesis at the 95% confidence level. Inspection of
the box plots again shows that this extended grammar finds
far fewer good solutions that the more constrained grammar,
but again also finds rather fewer very poor solutions.

The algorithm can evolve the axiom. Out of the 200 runs,
2 runs returned ‘perfect’ individuals that drew the target tree.
Both solutions identified the correct axiom, F , with respective
productions:

F → F [[+[F]]]F [−[F]]F
F → F [+F]F [−F]F [[−]−]

Some individuals produced similarities towards the target tree
for a different axiom. The best such individual had a cost value
of 44893, using axiom + and productions:

+→ F−
F → F [+F][F][F [F]−]F
− → [[[−]]F [−[−]F]F]−++

Figure 13 shows the rendered version of this L-system. It is
clear that although the L-system shares the same basic shape
as the target tree, the individual evolved lacks detail. This
individual has a genome length of 437 codons. The average
genome length of solutions found in this experiment was 145.

C. Evolving More Complex Trees

The final experiment examines whether the techniques dis-
cussed above can be applied to larger and more complex
problems. All trees evolved thus far involve only one variable
terminal symbol. This section aims to evolve a target tree
involving two terminal variables, F and X.

Fig. 14. Evolving L-systems containing two variables.

<axiom> ::= <variable>
<variable> ::= F | X

The target L-system for this experiment can be seen in figure
14a. This target tree is defined with axiom X, an angle of
rotation of 20◦, with the L-system derived for 7 iterations.
The target L-system uses two productions:

X → F [+X]F [−X] + X
F → FF

Introducing more variables increases the size of the search
space since there are a greater number of potential L-systems
that can be produced from the grammar. To allow for greater
exploration of the increased search space the population size
was increased to 50 with 1000 generations used. In total
50,000 cost evaluations were run, compared to the default of
10,000. All other parameters used the default values. Over 200
repeat runs did not generate any perfect solutions. The best
individual produced is shown in figure 14b, evolving axiom
X and productions:

X → XFF
F → [[[[+][X] + X[[−−F]]]]]

This best individual clearly has the correct shape, but lacks
precise detail.

In response to these results the population was doubled
to 100 individuals, and the number of generations increased
to 2000, leading to a maximum of 200,000 cost evaluations
to be performed. Due to the increased time required to run
each experiment (several CPU-days), only 30 repeat runs
were performed. The revised experiments returned two perfect
solutions, found on average in generation 891. Both solutions
evolved axiom X , with one evolving the production set:

X → F [F [+X]−[+]X][[[+X]]F]+
F → FF

and the other evolving the productions set:

X → [F]F [+X+]F [+X+]−[[−+]X]
F → FF

Once again this highlights how the size of the population

and number of generations the GE algorithm is able to explore
the search space is a decisive factor in finding solutions.

VI. CONCLUSION AND FURTHER WORK

We have successfully used GE to evolve simple L-systems.
In our evolutionary set-up, elitism provides a significant
advantage to finding solutions. We have performed simple
experiments in altering the BNF grammar being used, and
found certain alterations have a significant effect on the results,
in line with the experience of [9].

[5] state that GE needs applying to larger scale problems
with real-world applications. Here GE has struggled to derive
simple two-variable L-systems for the parameter settings we
used.

We have also successfully evolved the number of iterations
(not reported here). Future work should investigate evolving
the branching angle, and multi-symbol axioms. This will likely
involve more generations and bigger population sizes.

More sophisticated L-system grammars should be evolved.
In particular, context sensitive, parametric, and stochastic L-
system grammars should be investigated. For stochastic L-
systems, a more sophisticated cost function would be required,
to assess statistical similarity of evolved and target structures.

ACKNOWLEDGEMENTS

We thank Tim Clarke for some early interesting discussions
of this work. We thank Simon Poulding for a detailed discus-
sion of the statistical tests.

REFERENCES

[1] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer, 1996.

[2] A. L. Szilard and R. E. Quinton, “An interpretation for D0L systems by
computer graphics,” The Science Terrapin, vol. 4, pp. 8–13, 1979.

[3] P. Prusinkiewicz, “Graphical applications of L-systems,” Proceedings of
Graphics Interface ’86 / Vision Interface ’86, pp. 247–253, 1986.

[4] P. Worth and S. Stepney, “Growing music: musical interpretations of L-
systems,” in EvoMUSART workshop, EuroGP 2005, Lausanne, Switzer-
land, March 2005, ser. LNCS, F. Rothlauf et al., Eds., vol. 3449.
Springer, 2005, pp. 545–550.

[5] M. O’Neill and R. Conor, Grammatical Evolution : Evolutionary Au-
tomatic Programming in an Arbitrary Language. Kluwer Academic
Publishers, 2003.

[6] A. Ortega, A. A. Dalhoum, and M. Alfonseca, “Grammatical evolution to
design fractal curves with a given dimension,” IBM J. Res. Dev., vol. 47,
no. 4, pp. 483–493, July 2003.

[7] B. Runqiang, Y.-P. P. Chen, K. Burrage, J. Hanan, P. Room, and J. Bel-
ward, “Derivation of L-system models from measurements of biological
branching structures using genetic algorithms,” in IEA/AIE, ser. LNCS,
T. Hendtlass and M. Ali, Eds., vol. 2358. Springer, 2002, pp. 514–524.

[8] G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed. Iowa
State University Press, 1989.

[9] C. Ryan and M. O’Neill, How To Do Anything With Grammars.
AAAI, July 2002. [Online]. Available: http://www.grammatical-
evolution.org/gews2002/howto.ps

APPENDIX

A. Cost function pseudocode
cost := 0

for each canvas {
for each pixel in canvas {

if canvas[pixel] is ON {

cost := cost +
findNearestPixel(pixel,otherCanvas)

}
}

}
return cost

function findNearestPixel(p,oC) {
width,height := size of oC

for d = 0 to max(width,height) {
for each otherPixel at dist d from p

if oC[otherPixel] is ON
return d

}
return max(width,height)

}

B. Mutation pseudocode
for each codon in a genome {

x := randfloat(0 .. 1)
if x < mutationRate {
codon := randint(0 .. maxCodonValue)

}
}

C. Default parameter settings
GE settings
populationSize = 50 (later, 40)
numGenerations = 200 (later, 250)

hence 10,000 evaluations
numberOfRepeatRuns = 50 (later, 100)

mutation settings
mutationRate = 0.05
fusionRate = 0.25
elisionRate = 0.05

selection settings
crossoverRate = 0.25

proportion of worst individuals
to remove

crossoverFromRate = 0.25
proportion of best individuals
to use as parents

elitism settings
elitism = 0 (later, 20)

Genome Information
initialNumberOfCodons = 15
maxCodonValue = 255
maxWrap = 15

Individual Settings
axiom = F
numCycles = 4
angle = 27.5

