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Abstract—A novel bio-inspired architecture comprising three
layers is introduced for a six-legged robot in order to generate
adaptive rhythmic locomotion patterns using environmental in-
formation. Taking inspiration from the intracellular signalling
processes that decode environmental information, and consid-
ering the emergent behaviours that arise from the interaction
of multiple signalling pathways, we develop a decentralised
robot controller composed of a collection of artificial signalling
networks. Crosstalk, a biological signalling mechanism, is used
to couple such networks favouring their interaction. We also
apply nonlinear oscillators to model gait generators, which
induce symmetric and rhythmical locomotion movements. The
trajectories are modulated by a coupled artificial signalling
network, which yields adaptive and stable robotic locomotive
patterns. Gait trajectories are converted into joint angles by
means of inverse kinematics. The architecture is implemented
in a simulated version of the real robot T-Hex. Our results
demonstrate the ability of the architecture to generate adaptive
and periodic gaits.

Index Terms—Evolution, Locomotion, Crosstalk, Oscillator,
Coupling, Adaptation.

I. INTRODUCTION

The necessity to survive causes living organisms to develop
distinct abilities to interactively adapt to their surrounding
environment. The capacity to orchestrate mechanisms to sense
and respond to the environment is intrinsically difficult. In
this respect, the role of cellular signalling in multicellular
organisms is especially significant, since it underlies the coor-
dination of complex multicellular interactions and the produc-
tion of collective and adaptive responses. Cellular signalling
is a sequence of biochemical reactions that are triggered by
a chemical signal and lead to an adaptive cellular response.
Signalling pathways are the fundamental structures connecting
the environment to the genes they regulate, in turn producing a
change in genes expression that brings about change in cellular
activity. Crosstalk leads to interactions between signalling
pathways, promoting the formation of larger biochemical
networks which induce coordinated cellular responses with
high robustness and sensitivity to environmental perturbations
[1].

Locomotion is an example of a widespread adaptive re-
sponse to environmental stimuli, permitting actions such us
chasing prey, evading predators or exploring the environment.
Locomotion is also important in robotics. Central Pattern
Generators (CPGs) [2] are a common way of modelling, and
in turn generating, locomotive gaits. Whilst they are often
implemented using biologically-motivated models, such as
feedforward neural networks [3] and artificial homeostatic
systems [4], they can also be considered as systems of non-
linear oscillators. Examples of this approach include [5],
where coupled Van Der Pol (VDP) oscillators were used to
dynamically modulate gaits in a quadruped robot; [6], which
used a network of spring-like oscillators to model a crawling
baby; and [7], where a non-linear oscillator-based CPG was
used to achieve stability in bipedal walking robots. Other
approaches include Rayleigh [8], Matsuoka [9] and Kuramoto
[10] oscillators. The majority of these oscillators display a
limit cycle, which offers resistance to small perturbations and
generates smooth and periodic solutions.

Although consideration of environmental information is
not essential in the generation of synchronised and rhythmic
locomotion patterns, it increases the adaptability of control
systems in real environments [2]. However, integrating envi-
ronmental information is a hard task, particularly when these
environmental signals come from multiple, diverse, and poten-
tially noisy sources, such as the sensors mounted on robots.
Nevertheless, it is a task that cellular signalling networks are
evidently good at solving within a biological context. In this
paper, we explore whether computational analogues of cellular
signalling networks, which we refer to as artificial signalling
networks (ASNs), can be used to solve an analogous task
within a robotic system. In particular, we use an evolutionary
algorithm to discover ASNs that, when stimulated with en-
vironmental information, modulate the parameters of a lower-
level system of coupled oscillators, producing locomotive gaits
which are then used to drive the inverse kinematics of a legged
robot. In effect, this three-layered architecture uses sensory
information to generate reactive behaviours that adaptively
switch between the stance and swing phases in stepping



movements during locomotion. We applied this approach to the
control of a simulated model of a commercial hexapod robot
called the T-Hex [11]. In particular, coordinated control of the
robot’s six legs is handled using a collection of ASNs which
are partially coupled together by crosstalk, a decentralised
architecture inspired by the interactions amongst signalling
pathways inside biological cells.

The paper is structured as follows: Section II presents
the hierarchical architecture, describing each of its layers,
Section III describes how the proposed bio-inspired controller
is evolved, Section IV introduces the robotic locomotion task
on which the robot is evaluated, Section V highlights the
results and analysis and Section VI presents conclusions and
discuses about future work.

II. SYSTEM OVERVIEW

We introduce a hierarchical three-layer topology (see Fig.
1) in which a decentralised controller generates adaptive gait
trajectories, which lead to rhythmical locomotion of a multi-
legged robot.
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Fig. 1: Overview of the system topology. The network of
CASNs modulates the parameters of the CPG’s network. This
generates gait trajectories, which are translated into robotic
motion using inverse kinematics.

The upper layer comprises a coupled artificial signalling
network (CASN). It receives environmental information from
the robot’s sensors and modulates the rhythmic parameters
required for robot motion. Gait trajectories are generated in
the middle layer. A network of CPG units, whose connectivity
mirrors the CASN, receives parameters from the CASN and
produces adaptive gait trajectories, one per leg. Finally, the
bottom layer is fed with periodically sampled points of the
trajectories, which an inverse kinematic model translates to
the joint angles which drive the robot’s locomotion.

A. Artificial Signalling Networks (ASN)

From a computational perspective, signalling networks have
a number of interesting properties [12]. From the perspective
of robotic locomotion, of particular significance is their ability
to trigger robust, efficient and specific responses to environ-
mental perturbations. A number of researchers have previously
looked at how computational models of signalling networks
might be applied to computational tasks [13], [14]. This

includes a number of approaches which have used evolutionary
algorithms to design the topology of the networks [13], [15].

In our previous work, we looked at the properties of a
particular computational representation of signalling networks,
and showed how this artificial signalling network could be
used to solve chaos control tasks within numerical dynamical
systems [16], [17]. This ASN is an abstraction of the patterns
of interaction occurring between the molecules that constitute
cellular signalling pathways. In addition to this, there is a focus
on computational efficiency—most notably through the use of
discrete time dynamics—and on computational expressiveness,
notably through the use of continuous-valued functions and
state variables.

Formally, an ASN consists of an indexed set of enzyme-
analogous nodes, E, and a set of directed connections repre-
senting inhibitory and excitatory biochemical reactions, ±R.
Each ei ∈ E has a set of substrates Si, a set of products Pi

and a substrate-product mapping function, mi. We used the
Michaelis-Menten equation to regulate the kinematic reactions
between enzymes, m(ci) = vci(k − ci). It is an hyperbolic
function where v ∈ [0, 1] is its asymptotic threshold, k ∈ [0, 1]
its gradient and ci ∈ Pi. Each reaction calculates its product
concentration based on the substrate concentration of a set of
enzymes. This approach extends the artificial metabolic net-
work model described in [18]. The execution of an ASN starts
with the random initialisation of its enzyme concentrations (Si

and Pi). External inputs are delivered to the network by setting
the substrate concentrations of nominated enzymes. At each
time step, each enzyme ei applies its mapping function mi to
the current concentration of its substrate Si to determine the
current concentration of its product Pi. This new concentration
is the mean output of all different contributing enzymes.
For multiple inputs, ci =

∑
ej∈Eci

c
ej
i /|Eci |, where Eci is

the set of enzymes for which c
ej
i is the output value of

ej ∈ E. Negative ci values indicates inhibition, modelled as
c−i = 1 − ci. After iterating the network a specified number
of times tS , the outputs are extracted from the final product
concentrations of nominated enzymes. For more detail, see
[17].

B. Coupled Artificial Signalling Networks (CASN)

Biological responses are commonly the result of dynamical
interactions amongst pathways, rather than the isolated action
of an individual pathway. Motivated by this observation, a
number of authors (including ourselves) have investigated
the use of computational architectures based on models of
interacting biochemical pathways [19]–[21]. Interactions can
occur both between pathways of the same kind, and between
pathways of different kinds. An example of the latter, which
we explored in [19] in the context of robotic control, is
the interaction between a metabolic pathway and a genetic
pathway. However, in this work, we focus on interactions
of signalling pathways with other signalling pathways, since
this is the principal route through which biological organisms
handle environmental interactions.



Crosstalk is an important mechanism underlying the joint
response of signalling pathways. In the biological community,
there has been a growing interest in crosstalk, stemming from
the view that it acts as the glue in the development of complex
interactive networks [22]. In [17], we considered a coupled
ASN, in which nodes of different ASNs are connected through
crosstalk. Formally, this CASN consists of an indexed set
of ASNs and a set of crosstalk probabilities, Cp, each of
which indicates the probability of exchanging information be-
tween neighbouring ASNs. Crosstalk connections can be either
excitatory or inhibitory, and enzymes involved in crosstalk
have their product concentration asymptotically reduced to
half of their maximum value, mimicking the low reaction
rates in crosstalk reactions within cells. The first time the
CASN is executed, its chemical concentrations are randomly
initialised and the crosstalk rates also randomly established,
remaining constant during network execution. External inputs
are delivered to designated ASNi by setting the substrate
concentrations of nominated enzymes. After a given period
of time tSi

, outputs are captured from the final product
concentrations of nominated enzymes in each network.

In [17], this model was applied to a difficult control task.
A key observation was that different inputs, although co-
dependent, could be processed by different networks, with
crosstalk interactions then enabling a joint response. This is a
pattern of behaviour that seems particularly appropriate for
robotic control, in which there are often many, potentially
dependent, inputs. Figure 2 shows an example of an evolved
CASN used in the upper layer of our three-layered architec-
ture, showing how different groups of inputs are delivered to
different ASNs and also the pattern of connections between
ASNs which underlies their joint response.

C. Central Pattern Generator

The middle layer of the proposed topology models a CPG
network that generates the rhythmic motion patterns needed
for locomotion. The network is randomly initialized, and its
parameters are modulated by the outputs of the CASN.

The movement of each limb is independently controlled by
the x and z variables of the single nonlinear Hopf oscillator
[23] as follows:

ẋi = α(µ− r2i )xi − ωizi (1)

żi = β(µ− r2i )zi + ωixi

where xi and zi are state variables, ri =
√
x2i + z2i , the

amplitude of the oscillator is given by A =
√
µ and the

frequency of the oscillator (in rad · s−1) is governed by ωi.
α and β are positive constants that determine the velocity of
convergence to the limited cycle. Figure 3 gives an example
of a trajectory generated by a Hopf oscillator.

From our perspective, this oscillator has two prominent
benefits. First, it is able to generate smooth, stable and
cyclic trajectories in the presence of small perturbations to
its parameters [24]. Secondly, the generated trajectory can
be exclusively modulated by changing its amplitude, µ, and

Fig. 2: Representation of a Coupled-Artificial Signalling Net-
work. The network is composed of six independent ASNs,
one per robot limb. Each network contains four inputs (low-
numbered nodes) and three outputs (high-numbered nodes).
Crosstalk is illustrated by the arcs connecting two neighboring
ASNs.
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Fig. 3: Generated ẋi (upper graph) and żi (bottom graph)
outputs of a Hopf oscillator, where ω = 4 rad · s−1, µ = 1,
α = 5 and β = 50. The ascending and descending phases
have the same frequency.

frequency, ω, whilst preserving the other parameters. This
parameter separation eases their optimisation by evolutionary
algorithms [25]. For example, in [26] the authors used an EA
to optimise the gait parameters of a quadrupedal robot based
on the robot’s on-board sensors.

Compared to the work of [27], where the trajectory of a 3-



DOF limb is uniquely controlled by applying the ẋi solution in
the i-th coxa joint, we consider both solutions of the nonlinear
oscillator, ẋi and żi, to control the x- and z- coordinates
respectively of the tip of each 4-DOF limb. This means that
the tip of each limb mimics the generated trajectory of the ith
oscillator.

The oscillator described in Eq. 1 produces an oscillatory tra-
jectory where the ascending (swing) phase and the descending
(stance) phase (see Fig. 3) have equal frequencies. In order to
independently modulate the frequency of these parts, we utilise
the following expression [6]:

ω =
ωst

e−szi + 1
+

ωsw

eszi + 1
(2)

where ω switches between two different values, the stance
frequency, ωst, and the swing frequency, ωsw, based on the
sign of zi. The switching velocity is determined by the value
of s. In general, it is possible to obtain a desired gait by
independently modulating both frequencies.

In this work, we achieve inter-limb rhythmical synchro-
nization by non-diffusive coupling the nonlinear oscillators.
Coupling has a positive impact on the stability of the oscillator
frequency, and eases synchronisation in the presence of noise
[28]. The coupling amongst neighbouring oscillators is as
follows:[

ẋi
żi

]
=

[
α(µi − r2i ) −ω

ω β(µi − r2i )

] [
xi
zi

]
+

[
0∑

kij(zi + λijzj)

]
(3)

where i, j ∈ {L1, L2, L3, R1, R2, R3}, kij ∈ [0, 1] is the
diffusive coupling term and λij is the coupling coefficient that
defines the effect of the ith oscillator on the jth oscillator,
which establishes phase relationships between them [25]. The
value of λij is set to 1 if the oscillators excite each other
and to −1 if the oscillators inhibit each other [5]. We chose a
coupling such that the tripod gait is stable. Figure 4 illustrates
the generated ẋi and żi trajectories of such oscillator-based
network.

Following the CASN distribution previously introduced, we
propose a decentralised CPG network composed of six CPG-
units. Each is immediately connected with its corresponding
upper-level ASN, whose outputs represent the amplitude of the
oscillator µ, the swinging frequency, ωsw, and the stance fre-
quency, ωst. The CPG network mimics the coupling between
ASNs and the crosstalk probability, Cp, becomes the diffusive
coupling term kij . Using this approach the behaviours arising
in the CASN are directly translated into gait trajectories (see
Fig. 5).

D. Inverse Kinematics

Since our interest focuses on the mechanisms that underpin
the generation of adaptable gait patterns, we aim to reliably
convert rhythmic gait trajectories into limb movements. This
section describes the bottom layer of the proposed architecture,
which employs inverse kinematics to calculate the joint angles
of a 4-DOF limb (see Fig. 6) from sampled points of a gait
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Fig. 4: Generated ẋi (upper graph) and żi (bottom graph)
trajectories of an oscillator-based network. The network is
composed of six non-diffusive coupled oscillators. Trajectories
obtained for aleatory kij and constant ωst = 2 rad · s−1,
ωsw = 2 rad · s−1, µ = 1, α = 5 and β = 50. Notice that non-
diffusive coupling favours entrainment between oscillators.
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Fig. 5: Each unit-ASN takes sensory information and outputs
a set of parameters that modulate the generated trajectory of
each nonlinear oscillator unit. Likewise, the kinematic layer
samples each trajectory to obtain every joint angle and thereby
controls the hexapodal locomotion.

trajectory. These points describe the position and orientation
of a limb’s tip in Cartesian space. The sampling rate sr
determines the number of points used to map a gait trajectory
during a cycle.

The transformation of gait trajectories into joint angles must
consider a number of factors:

• The height of the robotic leg remains constant during the
stance (descending) phase.

• The y-axis orientation of the robot in rhythmical and
synchronized gait trajectories, where the duration of the
stance and swing phase have equal duration, is 0.

• The oscillation frequency and amplitude modulate the
gait’s height and length respectively.

With these assumptions the global orientation of the robot
stems from the amplitude and the relationship among the
stance and swing phases of every robot leg. In order to achieve
independence between the gait’s height and length, we control
the trajectory of the ith coxa joint (gait length) using the
generated ẋi solution and the trajectory of the ith femur, tibia
and tars joints (gait height) using the generated żi solution.
Sampled points are expressed as (xi, 0, zi) to accomplish the
inverse kinematics. Figure 7 shows the rhythmic gait trajectory
used in the inverse kinematic layer.
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Fig. 7: Modulated ẋ and ż solution of the L1, L3 and R2
nonlinear oscillators. Trajectories obtained for aleatory kij and
constant ωst = 2rad · s−1, ωsw = 2rad · s−1, µ = 1, α = 5 and
β = 50. The green and yellow coloured areas are the swing
and stance phases respectively. During the swing phase the
robotic limbs move forward (upper graph) while describing
an elliptical arc (bottom graph), which starts at ẋ = −1 and
reaches its peak at ẋ = 0. Likewise, the limb returns to the
stance phase when ẋ = 1. On the contrary, the robotic limbs
collide with the ground (ż = 0) while moving backwards along
the stance phase.

III. EVOLVING COUPLED ARTIFICIAL SIGNALLING
NETWORKS

CASNs are evolved using a standard generational evolution-
ary algorithm with tournament selection (size = 4), uniform
crossover (rate = 0.3), and point mutation (rate = 0.05). A
multi-chromosomal encoding is used to evolve CASNs. This
representation counteracts problems with growing complexity
and increases modularity. In particular, this enables complex
problems to be divided into smaller tasks, which improves the
evolution of complex structures [29] and permits the inclusion

of independent and different computational representations
[30].

A CASN is encoded as an indexed sequence of chromo-
somes, each of which defines an ASN. We used an standard-
ised genetic encoding for all ASNs (see Fig. 8). This represents
the ASN as an indexed sequence of enzymes followed by
timing information. Crossover points lie between enzyme
boundaries and chromosome shuffling is not permitted. In a
attempt to reduce the complexity of the networks the number
of enzymes of each ASN was fixed at 10. Inputs and outputs
(Si and Pi) are represented by their absolute indices. Chemical
concentrations and mapping parameters are described using
floating-point numbers and mutated using a Gaussian func-
tion with its centre at the current value. Continuous values
introduce two main advantages. First, they ease the coupling
with the external environment, thus inputs and outputs do
not require an alternative encoding. Second, they discourage
fast convergence to static orbits by permitting an infinite state
space (within the limits of representation). This underpins the
emergence of more complex network dynamics and increases
expressiveness. Finally, mutation is restricted to the operations
described in [31], to embrace biochemical plausibility in the
evolution of interaction graphs.

ASN0 ASN1
...

Fig. 8: Genetic Encoding of a coupled artificial signalling
network.

IV. CONTROLLING LEGGED ROBOT LOCOMOTION

A simulated model (see Fig. 9) of the real robot T-Hex
is used to evaluate our architecture [32]. The T-Hex is a 24
DOF hexapod robot developed by Lynxmotion. This robot
has four joints per leg connected by actuators at the corner.
In this work we follow the limb conventions introduced in
[33]. Limbs on the left (L) and right (R) sides of the hexapod
are numbered from front to rear starting at 1. The robot is
initially configured using the tripod gait, which has a duty
factor of 0.5. On each segment, contralateral limbs are 180o

out of phase. Adjacent limbs on each side are also 180o out of
phase. Hence, three legs moves simultaneously in each step.
The limited adaptability of the tripod gait is used to assess
the capacity of our system to adaptively modulate locomotion
patterns using environmental feedback.



The robot was simulated using the Open Dynamics Engine
(ODE) physics engine, with a step size of ∆t = 0.01, friction
of 100N , CFM (an ODE parameter) of 10−5, and standard
gravity. Actuators have maximum angular velocity of 4ms−1

and a maximum torque of 45Nm. Their movements are
limited in both the z-axis plane for the coxa joint and the x-axis
plane for the femur, tibia and tar joints, to a maximum rotation
of 90o and a minimum of −90o. The robot is complemented
with six contact sensors, on the tip of every leg, and six
ultrasound sensors, which are located above each leg in an
elliptical base on top of the robot body. These values are
sufficient to mimic the characteristics of the real robot. In
addition, a rough terrain is simulated by a set of box-like
shapes. Each shape is randomly created with a maximum
height of 0.11 ODE units and rotation of 45o.

Fig. 9: Simulated T-Hex robot in Open Dynamics Engine.

The coupled oscillators are randomly initialized and numer-
ically integrated using the fifth-order Dormand-Prince method
with a step size of ∆t = 0.01. The generated gait trajectory
is scaled to a maximum height of 70mm, a maximum length
of 60mm, with a sampling rate of sr = π/2 (≈ 80 integration
time steps). These values prevent legs collisions. The CASN is
executed every 22 simulation steps (time the simulated robot
needs to perform each movement).

We use a rough terrain to test the performance of our model.
The task was to evolve CASNs capable of controlling the
robot when walking over rough terrains. The main purpose
of this task is to determine the ability of the CASN to express
different behaviours to generate adaptive gaits trajectories. The
population size is 500, with a generation limit of 200. The
fitness of the robot controllers is the Euclidean distance moved
in a straight line during a period of 2000 time steps.

Each ASN in the CASN has four inputs, corresponding to
the leg contact sensor and the three lateral ultrasound sensors,
and two outputs, which are used to modulate the frequency
and amplitude of a CPG unit between each CASN update. To
compensate for the lack of lateral walks, ultrasound sensors
feed the ASNs with noise readings in the interval [0.9, 1.0].
All outputs are linearly scaled in the ranges [0, 2] for the
amplitude and [1, 8] for the frequency. The inputs of the ASNs
are delivery through substrate concentrations.

V. RESULTS

When the signalling network layer is not used (i.e. the
oscillator parameters are kept constant), the furthest distance
achieved by the robot in the evaluation period was 3.47
ODE units on the uneven terrain using maximum amplitude
and a frequency of ω = 4 rad · s−1. Figure 10 shows, by
comparison, the fitness distributions over 30 runs for robots
controlled by evolved CASNs. From this plot, it is clear that
evolved controllers can move significantly further over uneven
terrain than a non-adaptive controller. Figure 10 also shows
the best distances achieved by random solutions from the
first generation in each of the 30 runs, suggesting that this
performance improvement does not come about through the
use of modulation alone, but rather through specific evolved
patterns of modulation. An example of a robot being controlled
by an evolved CASN in shown in Figure 11.
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Fig. 10: Controlling legged robot using evolve and non-
evolved CASN when facing rough terrains. Summary of
statistics for 30 runs are shown as box plots.

Notably, CASNs appear able to dynamically express differ-
ent behaviours when faced with changing environments, such
as when moving from the flat part of the terrain to the uneven
section. This is important as it confers the robot the ability
to adjust its dynamics in the presence of strong perturbations
(i.e. rough terrain), increasing its adaptability. This behaviour
reflects the capacity of cellular signalling pathways to produce
coordinated and adaptive responses when interacting with one
another.

An example of the gait trajectories of an evolved CASN
controller on rough terrain is shown in Figure 12. The os-
cillator trajectories maintain periodicity and synchronisation
despite being independently modulated. Although it is a con-
sequence of the tripod coupling of the CPG-units, this also
emphasises the role of parameter modulation in order to obtain
effective gaits. In general, the ratio between the stance phase
and the swing phase leads to different type of gaits. This is
a consequence of subtle changes in the swing phase duration
while keeping the stance phrase practically constant. We can
observe a similar behaviour in Figure 13.

Figure 11 illustrates how adaptive modulation of the loco-
motion parameters affects the robot when travelling to and



Fig. 11: Sequence of walking of the simulated robot on an uneven terrain. There is an interval of 400ms between each snapshot.

then over an uneven terrain. Initially, the robot must stabilise
its internal dynamics in order to achieve forward locomotion.
After 344 ms, the left front leg of the robot contacts the terrain,
(leg L1), which changes the robot’s internal behaviour. This
mainly occurs in legs L3 and R2 (see Fig. 12). The robot
manages to fully stand on the terrain at simulation time of
t ≈ 1000ms (equivalent to ts ≈ 30). Once the robot starts
walking over the terrain, changes in the amplitude and swing
frequency denote alteration in the robot’s internal dynamics
(see Fig. 13 after the ≈ 35− th modulation).
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Fig. 12: Examples of CPGs trajectories modulated by an
evolved CASN. The top three and bottom three patterns
correspond to the left and right legs respectively. The blue
vertical line indicates the time step where the robot (leg L1)
contacts the uneven terrain (ts = 17.2). At this time, the leg
L1 finishes its swing (ascending) phase and commences the
stance (descending) phase.
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Fig. 13: ASN5 inputs (four upper graphs) and outputs (three
bottom graphs) after begin updated. The inputs are used to
modulate the locomotive trajectory L5 in Figure 12. Note that
the networks are updated every 22 ms.

VI. CONCLUSION

In this paper, we have shown that coupled artificial sig-
nalling networks can be evolved to generate the locomotion
patterns of a six-legged robot. Our approach is inspired by
cellular signalling pathways, the biochemical mechanisms
which transduce changes in a cell’s environment into changes
in a cell’s activities. In particular, we used a three-layer archi-
tecture to translate control directives into joint movements. An
upper layer comprised a coupled artificial signalling network,
which translates sensory information into internal parameter
changes. These parameters then modulate the behaviour of
the middle layer, which generates rhythmic gait trajectories
by combining the x and z solutions of a network of coupled
Hopf oscillators. The final layer calculates the desired joint



angles by solving the inverse kinematic problem for the robot.
We have illustrated the utility of this architecture by showing
how it improves the locomotion of a simulated robot over
an uneven terrain, using an evolutionary algorithm to design
coupled artificial signalling networks with suitable behaviours.
Analysis of the resulting controllers suggests that these net-
works show sensitivity and robustness to sensory stimuli in
slow-changing complex environments.

This work also shows how coupled artificial signalling
networks can decompose problems in which variables have a
strong dependence, reducing them to smaller, weakly-coupled,
tasks. Motion in legged robots is one of these problems, since
limbs need to coordinate with each other in an specific manner
in order to achieve locomotion. We explored this property
through a decentralised controller where each artificial sig-
naling network and CPG unit was responsible for each leg’s
motion.

Additionally, we found that coupled signalling networks are
able to dynamically adjust the gait pattern of each leg based
on sensory feedback. Without limiting the modulation of the
stance and swing phase, the network was able to maintain
constant the swing phase while adjusting the stance phase. In
future work, we plan to use a real robot to test our architecture,
and apply this approach to robotic control within complex real-
world environments.
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