
Proceedings of the 2012 Workshop on

Complex Systems Modelling and Simulation

CoSMoS 2012

Susan Stepney, Paul S. Andrews, Mark N. Read

Editors

CoSMoS 2012

Luniver Press
2012

Published by Luniver Press
Frome BA11 6TT United Kingdom

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

CoSMoS 2012

Copyright © Luniver Press 2012

All rights reserved. This book, or parts thereof, may not be reproduced
in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system,
without permission in writing from the copyright holder.

ISBN-10: 1-905986-37-8
ISBN-13: 978-1-905986-37-8

While every attempt is made to ensure that the information in this
publication is correct, no liability can be accepted by the authors or
publishers for loss, damage or injury caused by any errors in, or omission
from, the information given.

v

Preface

The CoSMoS workshops series has been organised to disseminate best
practice in complex systems modelling and simulation, with its genesis
in the similarly-named CoSMoS research project1, a four year EPSRC
funded research project at the Universities of York and Kent in the UK.
Funding for the CoSMoS project is now complete, but we have decided to
continue running the workshop series as a forum for research examining
all aspects of the modelling and simulation of complex systems. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are pleased to be running the fifth CoSMoS workshop as a satel-
lite event at the 11th International Conference on Unconventional Com-
putation and Natural Computation (UCUN 2012) at the University of
Orléans, France. UCUN explores all aspects of unconventional and natu-
ral computation, an area rich in the inherent complexity within systems,
providing a natural complement to the issues addressed by the CoSMoS
workshop.

The main session of the workshop is based on five full paper submis-
sions:

Andrews et al. explore the analogy between traditional scientific in-
struments and simulations used in scientific investigations. They
highlight the need to understand the model underpinning a simu-
lation and engineer simulations in a rigorous way to provide open
and reproducible science.

Evora et al. present an approach to improve performance when sim-
ulating power grids. Their approach uses asynchronous timing to
reduce unnecessary calculations and to allow such calculations to
execute at a natural pace.

Garnett describes how the CoSMoS process has facilitated the trans-
formation of an existing agent-based simulation developed to inves-
tigate plant development to one that examines the phenomena of
standing ovations in audiences.

Greaves et al. apply the CoSMoS process to a social-ecological case-
study. This domain raises difficult-to-model “soft element” concepts,
which have been tackled at the domain modelling stage to help clarify
and understand their interactions.

Stepney provides an overview of a pattern language that has been de-
veloped within the CoSMoS project to support the development of

1 The CoSMoS project, EPSRC grants EP/E053505/1 and EP/E049419/1,
http://www.cosmos-research.org

vi

scientifically useful and credible simulations. Several pattern and an-
tipattern examples are given.

We also invited authors to submit abstracts for discussion at the work-
shop. One abstract is presented in the proceedings:

Goltsov et al. explore linking scales in both modelling and visualisa-
tion by combining two existing blood clotting simulations to provide
immediate visualisation of tissue-scale results to cell-scale changes.

Our thanks go to all the contributors for their hard work in getting
these papers, abstracts and posters prepared and revised. All submissions
received multiple reviews, and we thank the programme committee for
their prompt, extensive and in-depth reviews. We would also like to
extend a special thanks to the organising committee of UCUN 2012 for
enabling our workshop to be co-located with this conference. We hope
that readers will enjoy this set of papers, and come away with insight
on the state of the art, and some understanding of current progress in
complex systems modelling and simulation.

vii

Programme Committee

Paul Andrews, University of York, UK

George Eleftherakis, CITY College, International Faculty of the Univer-
sity of Sheffield, Greece

Philip Garnett, Durham University, UK

Richard Greaves, University of York, UK

Colin Johnson, University of Kent, UK

Fiona Polack, University of York, UK

Mark Read, University of York, UK

Carl Ritson, University of Kent, UK

Adam Sampson, University of Abertay, Dundee, UK

Susan Stepney, University of York, UK

viii

Table of Contents

CoSMoS 2012

Simulation as a Scientific Instrument . 1
Paul S. Andrews, Susan Stepney, Jon Timmis

Asynchronous Smart Grid Simulations . 11
Jose Evora, Jose Juan Hernandez, Mario Hernandez, Enrique
Kremers

Going Around Again – Modelling Standing Ovations with a
Flexible Agent-based Simulation Framework 29
Philip Garnett

CoSMoS in the Context of Social-Ecological Systems Research . . . 47
Richard B. Greaves, Fiona A. C. Polack, John Forrester

A Pattern Language for Scientific Simulations 77
Susan Stepney

Simulating the Effects of Anticoagulant Drugs Upon Blood
Clotting Dynamics . 105
Alexey Goltsov, Gregory Goltsov, Adam Sampson

x

Simulation as a Scientific Instrument

Paul S. Andrews1, Susan Stepney1, and Jon Timmis1,2

1 Department of Computer Science, University of York, UK
2 Department of Electronics, University of York, UK

Abstract. Computer simulation approaches are starting to be
used more extensively throughout scientific investigations. Some
scientists, however, are skeptical about the benefits of simula-
tion. We present computer simulation as a scientific instrument
in order to explore issues of their construction and use, which we
believe might increase their acceptance within science. We high-
light the need to understand the model which the simulation
implements, and examine the importance of calibrating simula-
tions and presenting them in an open way to provide scientific
reproducibility.

1 Introduction

The use of predictive simulation based approaches to facilitate research
in a wide range of scientific disciplines is becoming ever more preva-
lent in the literature. The acceptance of this trend towards the use of
simulation methods, however, is by no means universal with some sci-
entists skeptical regarding the benefits of computer simulation to scien-
tific understanding [6]. We believe it is the responsibility of the people
engaged in constructing simulations to provide evidence demonstrating
why simulation results can be used to provide real insight into scientific
investigations.

In this paper we examine the analogy between computer simulators
and a view of scientific instruments expressed by [4] to show how we can
make simulation a tool more accessible to science. Computer simulations
should be subject to the same rigour that goes into constructing other
kinds of scientific instrument. They need to be calibrated to understand
how the outputs relate to the system under study, and they should be
presented in such a way that their findings can be reproduced.

2 Computer Simulation and Science

In general, Frigg and Reiss [2] state that the term simulation “refers to
the entire process of constructing, using, and justifying a model that

2 Paul S. Andrews, Susan Stepney, and Jon Timmis

involves analytically intractable mathematics”. Models do not, however,
always involve analytically intractable mathematics. For example, sim-
ulation is often used where other approaches are intractable owing to
ethical reasons (social experiments), cost, time, danger, or impossibility
(galaxy formation or climate models). Often, computer simulation is the
only way to greater insight into a system [4].

Simulators are built based on an underlying model that is used to
represent the system or domain under investigation. Simulation runs
(executing the simulator) then allow us to animate that model, exploring
its temporal behaviour, hence a “simulation imitates a (usually real)
process by another process” [1]. Models are used throughout science
as surrogates to learn about the world, revealling features of the system
the model represents. Learning takes place during both construction and
manipulation of the model that underlies the simulation. In the simplest
scenario, model construction results in computer code (the simulator),
and model manipulation takes the form of in silico experimentation.
During the former we learn about the system and gain an idea of the
questions we wish to ask of it; during the latter we explore these questions
and enhance our understanding of the model upon which the simulator
is based.

Broadly speaking computational methods serve two purposes for sci-
entists: brute-force/informatics approaches deal with large amounts of
data or numerical calculations, for example genome sequencing; and
predictive simulation aims to to explain observed natural phenomena
by capturing the underlying behavioural processes. This paper is con-
cerned with the latter, whereby simulation aims to explain real-world
phenomena rather than describe it, and the model underlying the simu-
lation provides a theory for how the components of the system interact
to produce a particular outcome [8]. The results of computer simulation
can be used for many complementary purposes, for example: to inform
real-world experimentation on the system being investigated; to validate
such experimentation; or simply to explore both concrete and abstract
hypotheses.

One of the main advantages of computer simulation approaches is
the complete control of the elements and parameters that make up the
simulation. This allows us to explore various aspects that relate to a
real-world system under study, which are otherwise difficult or even im-
possible to achieve. The flexibility of computational approaches, how-
ever, can have negative consequences. For instance, the increased access
to computational power and reliance on computer simulations may lead
to reduced levels of more expensive (but more informative) laboratory
or field experiments [4], or overly complex and heavily parameterised

Simulation as a Scientific Instrument 3

models containing poorly understood assumptions [1]. Humphreys [4]
also warns of the problems inherent in exploratory agent-based models
that aim to show how simple rules can account for complex behaviour.
It is possible to use simple models to produce patterns that have little
connection to the actual underlying mechanism. In such cases, care must
be taken not to blindly accept the explanation given by the computer
simulation.

The outputs of simulations will depend on the way in which they have
been constructed. This makes understanding the construction process
key to interpreting and presenting what the simulation shows. We need
to understand the details of the model that the simulation implements,
and show how that model then relates to the simulation outputs in order
that the outputs can be properly interpreted. This issue is true of most
computational approaches in science; for example, Nyce [7] describes how
to some radiographers, traditional x-ray images are not representations
of the underlying biological structures, but are “very much the same
kind of ‘thing’ ” that do not need to be interpreted. This contrasts with
their relationship with digital techniques, where a level of mistrust exists
because the resultant images are produced via unknown machine oper-
ations. This produces a perceived distance between the digital images
and the thing they represent.

To increase trust and confidence in computer simulations further,
their outputs need to be reproducible. Reproducibility is a key axiom of
science, and Timmer [11] reports that the increased reliance on compu-
tational methods in most areas of science has lead to an inadvertent loss
of scientific reproducibility. The examples given by Timmer [11] for the
apparent loss of reproducibility focus on the more data intensive aspects
of using computers to analyse large quantities of data. However, many
of the issues raised are equally applicable to the simulation techniques
used in the Alife community. These issues include: a complex mix of
data from both public and internally generated; data that is often quick
to become out of date; a complex pipeline of software programs used
for analysis, etc; multiple sets of parameters for each piece of software;
different software versions; and software bugs.

3 Simulation as a Scientific Instrument

We can consider computer simulation in the same terms as other tools
or instruments used by scientists in their scientific endeavours. Given
this, such simulations should be subject to the same rigour that goes
into constructing other kinds of scientific instrument. They need to be
calibrated to understand how the outputs relate to the system under

4 Paul S. Andrews, Susan Stepney, and Jon Timmis

study, and they should be presented in such a way that their findings
can be reproduced. We present here a discussion that aims to show that
computer simulations fall within a spectrum of instruments used every
day by the scientific community.

3.1 Scientific Instruments

The description presented throughout this section has been drawn from
the analysis of Humphreys [4], who examines the role of computational
models (including simulation) in science.

The role of scientific instruments is to enhance the range of our natu-
ral human abilities, such as our perceptual and mathematical capacities.
In the case of mathematics, computational devices can be used to move
beyond what is accessible naturally to the human brain, such as the
number of calculations performed, which is many orders of magnitude
greater on a computer.

Instruments of all types have been used for hundreds of years through-
out science. These range from everyday instruments such as bench micro-
scopes and optical telescopes to specialised medical imaging equipment.
Many modern day instruments incorporate explicit computational ap-
proaches in addition to physical detection to provide enhancements. For
example, magnetic resonance imaging (MRI) and computerised axial to-
mography (CAT) scanners contain various physical devices to measure
nuclear spin and radiation respectively and then use computer algorithms
to transform these readings into two- and three-dimensional images.

One thing in common with all instruments is that they are calibrated
to produce outputs that are directly accessible to the human observer.
The process of calibration relies on correctly observing and reproducing
the structure of known features measured by the instrument. This affords
confidence in using the instrument, establishing the scope of its usage
along with its accuracy, precision and resolution.

We can often take for granted familiar instruments such as micro-
scopes and telescopes, which are the product of many years of testing,
refinement and adjustment. Because of this, the user of such instruments
does not need to know the precise details of the theory behind how it
works as it has been deliberately designed to be used without need for
that knowledge. However, when dealing with contemporary research-
level instruments, the user needs to understand the instrument in much
greater detail owing to their complexity and the lack of many years of
refinement. This type of instrument may routinely malfunction and pro-
duce spurious data or need close attention to work in the desired way.
Knowing how the instrument works should help reduce the occurrence of

Simulation as a Scientific Instrument 5

unwanted artefacts increasing the instrument’s stability and highlight-
ing situations in which malfunctions take place. Another related issue
is knowing how to interpret the outputs of the instrument. It is these
issues that we tackle when calibrating an instrument. The main bene-
fit of knowing how instruments work is when they provide unexpected
outputs, whether this be because something has gone wrong or not.
Instrumental knowledge should tell us when we have gone outside the
domain of application of the instrument, and how this can be corrected.

3.2 A Spectrum of Instruments

Based on the previous description of scientific instruments, we consider
computer simulation as a technique that allows us to develop bespoke
scientific instruments. Once engineered, scientific instruments are applied
to some object/system of study, which we call the domain. Here we
explore how computer simulations relate to their domain of study in the
context of other types of scientific instrument. The purpose is to show
how the inputs and outputs of a simulation instrument might be applied
to understand its intended domain. Conceptually, an instrument takes
some form of observation as input from a domain and transforms it based
on a model of understanding that has been encoded into the instrument
during its construction. The output of the instrument is then presented
to a human observer, with the aim of extending the understanding of
the domain. Consider three different examples of scientific instruments
within the setting just described:

Optical telescope: light is passively received as a direct physical input
from the domain (the object that the telescope is directed towards).
Lenses are used to refract the light, which is emitted as the output
so that the domain appears magnified to the human observer.

MRI scanner: a physical input from the domain is achieved through
manipulation. A magnetic field is used to line up proton spins of
hydrogen atoms of the intended domain and a radio signal used to
disrupt this and measurements are made of the distortion. Computer
algorithms are then used to transform the measurements to create
an image of the domain that is displayed to the human observer.

Predictive computer simulation: no physical input is received di-
rectly from the domain, but a set of derived starting conditions for
computational agents is represented within the simulation. These
starting conditions then drive the dynamics of the computational
model encoded within the simulation, and may be subject to further
inputs. A representation of the model is output to a human observer
over a period of time.

6 Paul S. Andrews, Susan Stepney, and Jon Timmis

Whilst each of the three instruments just described attempts to help
us understand the domain of study, the relationship with that domain
differs. Even though all three instruments are based on models of domain
understanding, the way in which these models are encoded differs. For
example, it might be within the physical components of the instrument
and/or within a computational model. Computer simulations are at the
far end of this spectrum, based purely on a computational model with no
direct domain understanding specifically encoded within their hardware.

The way in which inputs are received from the domain also differs
with scientific instruments. As we move from instruments such as the
optical telescope to an MRI scanner, the domain input changes from
a passive observation to requiring a direct perturbation of the domain
in order to measure its effects. When we move to computer simulation,
this domain input becomes far more indirect with regard to space and
time in the sense that no direct physical input is present. In this case,
we rely more on logical connections to the domain rather than direct
physical inputs. This results in an added layer of interpretation required
to understand how the inputs of computer simulations map to the entities
of the domain under investigation.

In summary, even though different instruments are fulfilling the same
role of investigating a domain of study, the way in which instruments
interact with that domain can differ immensely. Understanding the re-
lationship between an instrument and the domain it measures is vital
to interpreting its output. This is especially true of computer simulation
instruments that fall at the far end of a spectrum of instruments, with
a reliance on computational models and an indirect relationship to their
domain of study.

4 Calibration

We have discussed in the previous section that computer simulations can
be viewed as scientific instruments. It follows that simulations should be
subject to the same rigorous process of construction as other scientific
instruments, generating an understand of how the model upon which the
simulation instrument is based relates its inputs to its outputs. In order
to help achieve this, the simulation needs to be calibrated.

Construction of a computer simulation, and any other kind of sci-
entific instrument, relies on both processes of science and engineering.
Science is employed in the development of the model upon which the
instrument will be based. Engineering is then used to implement this
model resulting in the construction of an instrument suitable for the
purpose of scientific investigation. Before the instrument can be used,

Simulation as a Scientific Instrument 7

however, it should be subjected to the process of calibration. As pre-
viously mentioned, calibration involves establishing the relationship be-
tween the output of an instrument (across a range of operating condi-
tions) and the system under observation; it lets us interpret what the
simulation is showing us.

For instruments such as microscopes and telescopes, Humphreys [4]
tells us that the calibration process relies first on correctly observing
and reproducing the structure of features that are already known. For
computational devices, calibration standards often include reproducing
analytically derived reference points. One problem is that due to the
complexity of calculations, access to results independent of the simula-
tion is often impossible, thus comparison with existing (instrumental)
techniques is required [4].

It is often the case with predictive computer simulation that we do
not have access to the types of data typically used to calibrate (for ex-
ample a set of reference standards). In this case calibration can only be
achieved by comparing simulation observations with predictions from a
pre-existing and explicitly stated model that formed the basis for sim-
ulation construction. One example would be in the case of emergent
properties such as flocking. Our model might predict that flocking is the
result of a combination of certain agent behaviours. These behaviours
would be encoded within the simulation, and then calibration would as-
certain whether or not the flocking behaviours are perceived in the actual
simulation. This emphasises that need to understand and identify what
the underlying model of a simulation is actually a model of.

A further problem with calibration and computer simulation is that
all simulators are essentially different specialised instruments that have
been constructed to answer a specific question or set of questions. The
purpose of these instruments is more often than not different, therefore
calibration is going to be different for each individual simulator. When
changes are made to the simulator (no matter how small), it may have
to be re-calibrated depending on how the change affects the encoded
behaviours.

5 Openness

Previously we highlighted the need for the results generated by com-
puter simulations to be reproducible. Whilst proper calibration would
be a first step towards this, we need to be open about further aspects
of the simulation. Timmer [11] describes the beginning of a movement
towards researchers adopting approaches to ensure that computational
tools are in line with existing scientific methods. However, whilst there

8 Paul S. Andrews, Susan Stepney, and Jon Timmis

may be a recognition that nearly everyone doing science uses some form
of computation, there are few who know what is needed to make sure
that documentation of approaches is sufficient for reproducibility.

It is probably intractable to expect complete reproducibility of a piece
of science performed using computer simulation without access to the
exact piece of computer code and all the initialising variables (parameter
settings, initial states of data). This gives support to the argument for
complete openness of code, an emotive issue amongst many who develop
computational tools. This can only be tackled by a sea-change within
research communities to require this level of openness.

There is, however, a more subtle and no less important source of
knowledge that should also be open. We have previously mentioned that
all simulations encode a model. This model is often only explicitly ex-
pressed as the computer code and is the process of much work. It contains
many different assumptions which are vital to understanding what the
model represents. This is an issue of validation (see [10]): how do you
know that you have built the right system to answer the questions you
are exploring? This is hard to express as a yes/no answer and it typically
expressed as a level of confidence. In some circumstances, for example
where outputs of a simulation instrument have a high level of critical-
ity, that a structured argument is required to express confidence in a
computer simulation (see [9] for a more in depth discussion).

6 Conclusion

There are many reasons why scientific instruments based on computer
simulation might not be accepted for use in scientific investigations. In
this paper we have suggested that if we can show how simulations relate
to more traditional scientific instruments, and highlight some important
issues regarding how they might be constructed and presented, that we
may stand a greater chance of simulation approaches becoming a useful
instrument for science. It is also important to emphasise that simulation
does not replace direct experimentation; simulation is a tool to assist
more traditional approaches. Simulation should be part of the scientists
toolkit and used where it is appropriate.

Humphreys [4] argues that when we use new instruments we need to
understand how they are built. Over time they can become more gener-
ally accepted: in the case of simulation the ‘acceptance’ is going to be the
acceptance of a class of predictive software artefacts and development
strategies rather than of an instance of one. This general acceptance is
only going to come from an increased number of instance acceptances.

Simulation as a Scientific Instrument 9

In summary, we can consider general purpose computers as physical
instruments that can be used to construct a wide variety of logical instru-
ments in the form of simulations. However, as previously discussed, the
benefit of computational approaches conceals its drawback, with many
unknowns liable to populate the simulation. In the aftermath of ‘Cli-
mategate’ [3], there should be greater scrutiny on the way in which sci-
entists use computational devices as part of their scientific process [5].
There have been calls for open-source code to enable repeatability. In
our view, this is not enough: we need to perform calibration and present
the results of this calibration to provide us with the knowledge to decode
the output of simulation and interpret in the context of the real domain
being modelled and simulated. We need to show how the simulation has
been engineered and why it is a good instrument to enhance our domain
knowledge.

7 Acknowledgements

This work is part of the CoSMoS project (www.cosmos-research.org),
funded by EPSRC grants EP/E053505/1 and EP/E049419/1.

References

[1] R. Frigg and S. Hartmann. Models in science. In E. Zalta, editor, Stanford
Encyclopedia of Philosophy. 2006.

[2] Roman Frigg and Julian Reiss. The philosophy of simulation: hot new
issues or same old stew? Synthese, 169:593–613, 2009.

[3] Roger Harrabin. Climate science must be more open, say MPs. 2010.
http://news.bbc.co.uk/1/hi/sci/tech/8595483.stm.

[4] Paul Humphreys. Extending Ourselves: Computational Science, Empiri-
cism, and Scientific Method. Oxford University Press, New York, 2004.

[5] Darrel C. Ince, Leslie Hatton, and John Graham-Cumming. The case for
open computer programs. Nature, (482):485–488, 2012.

[6] Lucas Laursen. Biological logic. Nature, 462(26):408–410, 2009.
[7] James M. Nyce. Artifice, interpretation and nature: Key categories in

radiology work. In Unconventional Computation, 8th International Con-
ference, UC 2009, volume 5715 of Lecture Notes in Computer Science,
pages 11–15, 2009.

[8] Steven L. Peck. Simulation as experiment: a philosophical reassessment
for biological modeling. Trends in Ecology and Evolution, 19(10):530–534,
2004.

[9] Fiona A.C. Polack, Tim Hoverd, Adam T. Sampson, Susan Stepney, and
Jon Timmis. Complex systems models: engineering simulations. In S. Bul-
lock, J. Noble, R. Watson, and M. A. Bedau, editors, Eleventh Interna-
tional Conference on the Simulation and Synthesis of Living Systems,
pages 482–489. MIT Press, Cambridge, MA, 2008.

10 Paul S. Andrews, Susan Stepney, and Jon Timmis

[10] R. G. Sargent. Verification and validation of simulation models. In 37th
Winter Simulation Conference, pages 130–143. ACM, 2005.

[11] John Timmer. Keeping computers from ending science’s repro-
ducibility. 2010. http://arstechnica.com/science/news/2010/01/keeping-
computers-from-ending-sciences-reproducibility.ars.

Asynchronous Smart Grid

Simulations

Jose Evora1, Jose Juan Hernandez1, Mario Hernandez1, and
Enrique Kremers2

1 SIANI, University of Las Palmas de Gran Canaria, Las Palmas, Spain,
jose.evora@siani.es, josejuanhernandez@siani.es,

mhernandez@siani.es
2 EIFER, European Institute for Energy Research (KIT & EDF), Karlsruhe,

Germany,
enrique.kremers@eifer.org

Abstract. A shift from traditional power grids to future smart
grids requires a different approach to the analysis of power grid
systems. In the smart grid conception, the system is analysed
in a dis-aggregated manner through simulations. Many objects
and relationships must be considered for a complex system to
be eventually modelled and simulated. Usually, the simulation
is performed by synchronising calculations associated with ob-
jects. The main problem of this approach is that every calcu-
lation has to be executed at the same speed in spite of objects
not requiring an update with the same frequency. So, lots of
unnecessary calculations are done, making performance worse.
With the objective of improving the simulation performance, in
this paper a new approach for simulating power grids based on
asynchronous timing is presented. This approach is orientated
towards allowing calculations to be executed at their own pace.

1 Introduction

The climate change and liberalisation of markets are pushing the energy
sector towards a new paradigm known as the smart grid. This paradigm
is characterised by the introduction in the power grids of renewable en-
ergy sources (RES), new technologies such as storage mechanisms, mas-
sive integration of sensors and decision makers distributed along the
grid. There is also a trend towards the introduction of a communication
layer for the management and control of these technologies. The smart
grid paradigm is also based on the use of the Demand Side Management
(DSM) whose objectives include the minimisation of the peak demand
and the system operation and planning improvement [10]. The system

12 Jose Evora et al.

complexity is therefore increased and new tools are needed for the anal-
ysis and design of smart grids.

Traditionally, simulators have been an essential tool for analysing
and designing power grid systems. Many simulation tools have been de-
veloped for this purpose: UWPFLOW [8], TEFTS [6], MatPower [18],
VST [15], PSAT [13], InterPSS [17], AMES [1], DCOPFJ [2], Pylon [4],
and OpenDSS [3]. However, these tools are limited to simulating smart
grids specific issues, like a communication system integrated in a large-
scale simulation. GridSim [7] was developed to deal with these problems.
GridSim is a modified version of TSAT [5] (an industry-proven transient
stability simulator) which addresses the electro-mechanic working mode
of the power grid system. GridSim is a real-time simulator adapted to
integrate sensing with a high data rate. The modelling approach of these
tools manage the production and demand in an aggregated manner.

However, smart grid simulations require the representation of both
demand and production in a dis-aggregated manner. Tafat is a tool
able to simulate smart grids that enables a bottom-up representation
which includes, not only a technical system description, but also a soci-
ological description of people interacting with the system [9]. With this
representation, it is possible to design, implement and test smart grid
simulations. All these tools execute the simulation with a synchronised
approach. Synchronous simulations have the advantage of simple time
management as all objects of the modelled system are running in the
same time instant. It forces objects to always perform calculations, in
every time step. Sometimes these calculations are unnecessary due to
the fact they cannot provide new results. For example, a washing ma-
chine is usually waiting for an agent to be turned on, considering this
as an event. Later on, it develops some washing cycles where the power
may vary along the time. Whenever the washing machine state does not
change, calculations could be avoided.

In this paper, it is proposed that an asynchronous simulation ap-
proach is included in Tafat which would allow objects to develop their
own time as desired. They could behave both event and time-based ac-
cording to their nature. Furthermore, they could use variable steps from
one calculation to another. For example, in an asynchronous simulation
where the power consumption of a washing machine is analysed, calcula-
tions would be done only when the washing machine state changes. The
advantage with respect to a synchronous simulation is clear since in the
synchronised case, calculations are done every time step.

In the context of discrete event simulation the asynchronous concept
has dual connotation. One of them consists in variable time-increment
procedures as opposed to a synchronous˝ or fixed time-increment pro-

Asynchronous Smart Grid Simulations 13

cedures for simulation control. This connotation is related to the known
concept Distributed Discrete Event Simulations (DDES) [12, 14]. For
instance, Simula [16], a simulation-oriented programming language, is
based on this asynchrony concept where the time-management is mainly
event-based. This kind of asynchrony was already considered in Tafat
through using different time steps for each mode of behaviour [9]. On
the other hand, the asynchrony can be understood as a non-sequential
processing where simulation parts may not be executed in the proper
temporal order. That is to say, later parts of the simulation may be
executed before previous ones [11]. The last connotation is the one to
which we subscribe in this paper. The objective is to apply the time-
management to each model element allowing them to be in different
time instants.

2 Tafat asynchronous simulation

In initial Tafat framework releases, the simulation of power grids was
done following a synchronous timing approach. This paper examines
a new approach to achieve asynchronous simulations with Tafat. This
section introduces the concepts and constructions that Tafat architec-
ture includes to model power grids. Theses constructions are focused
on dependencies between objects that are massive and very relevant in a
complex system simulation. In order to properly handle an asynchronous
simulation, it is important to understand the dynamics of coupled ob-
jects. For the sake of clarity, a traced execution of objects interaction
during an asynchronous simulation is demonstrated.

2.1 Tafat system modelling

Modelling in Tafat is done by developing two views: an object oriented
description of the scenario, and a behavioural specification of these ob-
jects. The first view is the static representation of the real world objects,
where each single object is described with features (static attributes)
and variables (dynamic attributes). This representation also includes
the specification of object relations. The second view focuses on ob-
jects’ dynamic : that is, how objects should behave, emulating the way
they act in the real world (behaviour). A single object can be associated
with several behaviours. These associated behaviours are responsible for
modifying the model object variables along the time. Object variables are
encapsulated and can be only accessed and modified by their associated
behaviours.

14 Jose Evora et al.

The solution of separating objects from their behaviours, makes it
straightforward to change the method for calculating variables. In this
way, it is possible to simulate different behavioural aspects with the same
representation.

For example, a washing machine representation contains:

1. Static View
– The description of their features such as capacity, installed power

and energy labelling, and their variables such as mode (on, off),
active programme (temperature, cycle, timeout...), and active
power.

– The topological relation to the electrical installation in a house-
hold

2. Dynamic View
– The specification of the washing machine-operating mode. The

behaviour is then associated with this model object.

Washing
Machine

description

Operational
Behaviour

Fig. 1. The operational behaviour of a Washing Machine is associated with
the Washing Machine object description

Normally, a behaviour is coupled with other objects, both for query-
ing their states or sending messages in order to change their states. In
the Tafat model representation, defining behaviour which interacts with
other objects is allowed.

This representation approach consists of interfaces that should be
defined in the object which could be externally accessed. In Tafat, there
are two types of interfaces:

1. event interfaces that handle messages and are responsible for modi-
fying the object internal variables as requested, and

2. data interfaces that handle queries and provide the value of requested
attributes

Asynchronous Smart Grid Simulations 15

An example of these types of interfaces is shown in the figure 2.
On the one hand, the thermal behaviour within a household has a data
dependence with the temperature of the surrounding Outdoor. In this
case, the Outdoor temperature data is requested by the associated ob-
ject through the outdoor data interface. On the other hand, an agent
sociological behaviour wants to turn on the washing machine. Then,
this sociological agent must use the washing machine event interface to
achieve this task. The washing machine event interface would change
the washing machine mode to ON˝. The washing machine operational
behaviour would calculate the proper power consumption based on this
mode. Later on, when the cycles end, the operational behaviour turns
off the washing machine.

Outdoor

Household

Washing
Machine

Operational
Behaviour

Temperature
Behaviour

Agent

Activity
Behaviour

Activity
Behaviour

turn on Event
Interface

Data
Interface

get(Temperature)

Fig. 2. Dependencies examples between objects

2.2 A power grid simulation case

In order to consider the main issues that involve asynchronous simulation
a simulation case is proposed to show how objects interact when working
in different times (Figure: 3).

16 Jose Evora et al.

Outdoor

Household

Washing
Machine

Operational
Behaviour

Thermal
Behaviour

Agent

Activity
Behaviour

Temperature
Behaviour

turn on Event
Interface

Data
Interface get(Temperature)

Radiator

Operational
Behaviour

Data
Interface

Data
Interface

get(Temperature)

get(Power)

Fig. 3. Model composition

The objects within this simulation case are an Outdoor, a Household,
a Washing Machine and a Radiator.

– The Outdoor is the object that represents environmental conditions,
in this case, the temperature. The Outdoor temperature behaviour
is responsible for setting the temperature which can be loaded from
an external database.

– The Household works as a container of the appliances of a house-
hold, a Washing Machine and Radiator in this case. The Household
Behaviour is concerned with the thermal dynamics inside the house-
hold.

– The Electrical devices inside the Household are a Radiator and a
Washing Machine. These devices are handled by an Agent.

– Finally, the Agent represents the people living in the Household and
the associated behaviour defines the actions that these people are
performing. For example: a person turning on the Washing Machine.

The coupling in this model is represented by the dotted lines in the
figure 3. This coupling is always defined from behaviours to interfaces.
The Agent depends on the Washing Machine to change the operation

Asynchronous Smart Grid Simulations 17

mode of this device. The Radiator depends on the Household tempera-
ture, since the heat radiation is calculated based on the gap between the
Radiator reference temperature and the Household temperature. The
Household has two dependencies: with the Outdoor temperature and
with the Radiator power, since the Household temperature is calculated
by a numerical solution of a differential equation which includes these
two variables. Note that, in this case, there is a cyclic dependence be-
tween the Household and the Radiator.

2.3 Asynchronous simulation dynamics

A system simulation requires time-management to ensure that temporal
aspects are correctly represented and emulated. This temporal represen-
tation only exists during the simulation process and is referred to as
Simulation Time˝. Simulation Time is represented as a timestamp, a
long integer where a unit corresponds to a millisecond of real time.

The time-management in a synchronous simulation is centralised
while the time-management in an asynchronous simulation is distributed.
That is, an asynchronous simulation involves that every object manages
its time, so they could have different timestamps (Figure: 4).

Outdoor

Household

Agent Washing
machine

Radiator

Simulation Time

Outdoor

Household

Agent Washing
machine

Radiator

Simulation Time

Simulation Time

Simulation Time

Simulation Time

Simulation Time

Fig. 4. Synchronous vs Asynchronous simulation

In this simulation paradigm, when an object is not coupled with other
objects, its Simulation Time develops without considering other object
Simulation Times. In this simulation case, the Outdoor is completely
independent of other objects.

18 Jose Evora et al.

However, when objects are coupled, the challenge consists of cor-
rectly reproducing temporal relationships. The identified temporal rela-
tionships are as follows:

1. Coupling with a data interface
2. Cyclic coupling with data interfaces
3. Coupling with an event interface

In the following sections these relationships are discussed.

Coupling with a data interface Since an object could access a vari-
able of an external object which may be in a different time instant, every
object must keep the different states that have been calculated during the
simulation execution. So, when a variable is modified, a state snapshot
is created in order to keep the object state in this time instant.

If an object is querying for a variable value in a time instant ti,
there are two cases: the object Simulation Time is delayed or ahead
with respect to the external object Simulation Time. In the first case,
the external object is able to provide the value by retrieving the last
snapshot previous to this time instant (ti). I n the second case, the
dependent object must wait until the external object reaches this time
instant (ti).

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

data

data

Fig. 5. Household requires the external variable temperature from the Out-
door. Note that the time is vertically represented

In the figure 5, the first case is shown. The Household Simulation
Time is ti and the Outdoor Simulation Time is tj . Whenever ti is lesser

Asynchronous Smart Grid Simulations 19

or equal than tj , the requested data can be delivered since the data has
already been calculated and stored.

However, when the Household Simulation Time (ti) is greater than
the Outdoor Simulation Time (tj), the Household behaviour is blocked
(Figure: 6) until tj is greater or equal than ti (Figure: 7) delivering the
last Outdoor Temperature value stored in the last calculated snapshot.

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

Fig. 6. The Household behaviour request is blocked since the Outdoor Simu-
lation Time is delayed with respect to the Household one

:Household :Outdoor

Behaviour
Data

interface

getData(temperature, ti)

data

data

data

data

Fig. 7. When the Outdoor Simulation Time reaches the Household one the
data is delivered.

20 Jose Evora et al.

Cyclic coupling with data interfaces The cyclic dependence is a
concrete case of the data dependence. Two objects depending on each
other whose Simulation Times are different, is handled with the follow-
ing rules: the most delayed one will always retrieve the required data
while the most advanced will be blocked until the delayed reaches its
Simulation Time (Figure: 8). The mutual blocking is not possible since
objects retrieve the value for the current Simulation Time to calculate
the next Simulation Time value.

:Radiator :Household

Behaviour
Data

interface

getData(temperature, tj)

data

data

data

data

data

Behaviour
Data

interface

getData(power, ti)

Fig. 8. Radiator and Household cyclic dependence resolution

In the example shown in the figure 8, the Household requires the
power consumption of the Radiator in order to calculate the new tem-
perature value. On the other hand, the Radiator behaviour needs the
Household temperature value to modify the Radiator state, since the
reference temperature at the Radiator thermostat serves as a control
mechanism.

Coupling with an event interface The event coupling means that
an object receives external messages that contain orders for changing
its internal variables. This is the case of objects which are managed by
people that are represented as Agents in the model. The Agent interacts
with these objects by sending a message using the object event inter-
face. When the message is received by the object interface, the object
Simulation Time is developed and then, a new snapshot state is created.

It could happen that the agent develops its simulation time without
the intention of sending an order to any object. In this case, the agent

Asynchronous Smart Grid Simulations 21

data

data data

Behaviour
Event

interface

sendMessage(Mode: ON, ti)

:Agent :Washing machine

data

data data

data

data data

Event
interface

data

data

data data

Event
interface

:Agent :Washing machine

data

data data

Fig. 9. The Agent sends a message to turn on the Washing Machine

data

data data

Event
interface

data

data

data data

Event
interface

:Agent :Washing machine

data

data data

Fig. 10. The Washing Machine event interface changes the object mode to on

behaviour must send a Notification Time Message˝to the object. In fact,
when the agent simulation time develops, the agent behaviour must send
a Notification Time Message to all objects the agent is controlling. This
notification determines how long an object can develop its Simulation
Time. This type of relationship means that object’s Simulation Time
that is controlled by an agent, will never exceed the agent Simulation
Time.

Figures 9-12 show an event relationship between a social Agent that
turns on the Washing Machine. In this example, the Washing Machine
Simulation Time is always behind the Agent Simulation Time. In other

22 Jose Evora et al.

:Agent :Washing machine

Event
interface

sendMessage(NOTIFICATION_TIME, ti)

data

data data

Behaviour

Fig. 11. The Agent indicates the Simulation Time in which it is to its con-
trolled objects

Event
interface

:Agent :Washing machine

Event
interface

data

data data

Fig. 12. The washing machine receives the message. Now the washing machine
can develop its time until the temporal point indicated in the message

words, the Agent Simulation Time sets a restriction for the Washing
Machine Simulation Time.

In the case of the Washing Machine, its power consumption would be
0 at the beginning of the simulation as it’s off. Therefore, a new snap-
shot is created when the Agent turns on the Washing Machine. From
that moment, the Washing Machine behaviour will calculate the new
power consumption with the restriction that the calculations develop-
ment should not exceed the Agent Simulation Time, in case the agent
turns off the Washing Machine.

Asynchronous Smart Grid Simulations 23

Scales The dependencies explanation has been focused on the low scale
level. This is due to the fact more complex interactions take place at this
level in the demand simulation of the power grids. Scaling up from the
presented case to power grid levels demonstrates how the time would be
developed following a bottom-up approach. In the figure 13, information
flows are shown which indicate how the demand power is aggregated
from the lowest levels to the highest ones at a concrete time slice. This
aggregation is required to calculate the demand at every scale. Assuming
that every element of a level makes the same calculations, it could be
observed that each level may be delayed with respect to the lower one.
This is the typical case since the upper elements are waiting for the
information coming from the lower elements. However, it is possible for
all of them are in the same time instant. It is not possible for upper
levels to be ahead of the lower ones.

Fig. 13. Demand simulation in a higher scale

2.4 Object time management

In the previous cases, the discussion was focused on objects with a sin-
gle type of behaviour. However the time-management of an object with
several behaviours or/and several event interfaces must be dealt with.
Every time a type of behaviour is executed, it registers the Next Time
Execution, that represents when it should be executed. The object time-
manager selects the behaviour with the nearest Next Time execution to

24 Jose Evora et al.

the current Simulation time. The event interfaces are dealt with in the
same way, so that the Interface Next Time Execution corresponds with
the time defined in the last message received. Whenever a received mes-
sage concerns a variable value modification, the object behaviours will
be executed afterwards allowing a change in their Next Time Execution,
according to the new state. Therefore, objects can dynamically develop
their Simulation Times : that is, their Pace could vary from one Simula-
tion Time to the next one. To illustrate the internal time-management,
the photovoltaic cell behaviour is studied. This behaviour calculates the
generated power, based on the environmental solar radiation. Therefore,
the generation power variable will vary along the day until the sunset
when the production will become 0. Then, this variable will not change
until sunrise. According to this behaviour, three solutions can be pro-
posed to avoid systematic calculus along the night:

1. When the sunset is reached the behaviour registers the Next Time
Execution in the sunrise time, whenever this data is available.

2. When the sunset is reached the behaviour registers the Next Time
Execution of the previous known sunrise time. This temporal jump
may avoid the first solar radiation when the sunrise time is before
the already known one. Therefore, the Next Time Execution could
be the previous known sunrise time minus ten minutes.

3. The photovoltaic cell outdoors could send messages to the photo-
voltaic cell event interface whenever solar radiation changes. Fol-
lowing this, the photovoltaic behaviour could register its Next Time
Execution to infinite (sleep mode). Therefore, solar radiation changes
are received by the photovoltaic cell event interface-allowing mode
of behaviour to access this information.

2.5 Implementation

In this section, architectural methods to implement this approach are
presented. This architectural proposal takes into account the previously
described requirements for simulating a power grid, using an asynchron-
ous approach.

A Tafat Thread represents the execution of a single Model Object and
from this point of view describes the execution state, awake or sleeping,
and the simulation time in which it is (Figure: 14). During the execution
of the whole simulation, Tafat Core request awake Tafat Threads to be
executed. After this execution, a Model Object will have changed its
simulation time and/or its state. In order to improve the performance,
Tafat Core keeps a list of the awake threads and it is listening for state
changes in threads to update this list.

Asynchronous Smart Grid Simulations 25

A single Model Object has many controllers that can modify the Sim-
ulation Time. A controller factor could be either Behaviour or an Event
Interface. These controllers, that implement the Develop Time interface,
participate in the Model Object simulation, each of them proposing dif-
ferent Next Simulation times. When the Next Simulation Time of any
of these controllers is undefined, the Tafat Thread that represents the
Model Object turns into a sleeping mode. Once, the Next Simulation
Time of all the Model Object controllers are defined, the thread will
wake up. Next Simulation Time of Develop Time Controllers could be
set to undefined or a value that should be greater than the current Model
Object Simulation Time. A feasible value for a Next Simulation Time
could be infinite, meaning that Behaviour is suspended, pending an ex-
ternal event.

Fig. 14. Tafat asynchronous simulation architecture

For example, the Next Simulation Time of a Washing Machine Be-
haviour can be infinite, so that the washing machine is off and therefore,
it is waiting to be turned on (Figure: 15). On the other hand, the Next
Simulation Time of this Washing Machine Event Interface is undefined
until other Model Object Behaviours that use it, set the Next Time Sim-
ulation. Since the Washing Machine depends on the Social Agent to be
modified, the Social Agent must inform this device of this. This Current
Time is transmitted through a message which arrives at the Washing
Machine Event Interface. When the Social Agent Current Time arrives,
the Washing Machine Event Interface will modify its Next Simulation
Time from an undefined value to the one which has arrived in the mes-
sage. Whenever an event for modifying the state of the Washing Machine

26 Jose Evora et al.

arrives, the Washing Machine behaviour will be executed once, allowing
to it to calculate its Next Simulation Time based on this new state.

Fig. 15. The Washing Machine Event Interface Next Simulation Time turns
from undefined to a defined value when the behaviour of the Social Agent
sends its Current Time. On the other hand, the Washing Machine behaviour
Nex t Simulation Time turns from infinite to a reachable time when its state
is changed to ON by the Agent

Another improvement from the performance point of view is based
on the Snapshots removing. A concrete Model Object may have de-
pendences for requesting data or set values in external Model Objects.
Similarly, other Model Objects could require this one to be accessed.
For this reason, the Model Object must keep the snapshots for all the
Model Objects which request data. As this Model Object knows the
data requesters, it is able to find out the time in which the requesters
are and, therefore, it could delete the Snapshots which are previous to
the Current Time of the most underdeveloped Model Object requester.

3 Conclusions and outlook

Going towards asynchronous complex system simulations involves a re-
conceptualisation. This re-conceptualisation affords objects interaction
issues which could come from both data and event dependencies. In a
synchronised execution environment, every object of the system is in the
same time slice and the time-management is usually handled using a
single clock. The main advantage of this approach is, among others, the
simplicity when accessing or modifying an object since all of them are
in the same time slice. However, the main disadvantage of the execution
of object calculations, is that some of them are unnecessary because the
execution is not going to produce any different output.

The use of an asynchronous approach for simulating complex systems
provides flexibility in the object evolution. Objects can freely develop as

Asynchronous Smart Grid Simulations 27

far as their dependencies are satisfied. Furthermore, object behaviours
can be both event and time-based which provides the possibility of hav-
ing sleeping behaviours. This sleeping behaviour could change their sta-
tus to active by receiving external events. The behaviour step may vary
from one execution to the next at a dynamic speed. Both sleep mode
and dynamic speed are important features to avoid the systematic cal-
culations at fixed steps which produce the same values. Finally, we think
this approach may facilitate the parallel complex simulation execution.

4 Acknowledgment

This work has been partially supported by Agencia Canaria de Investi-
gación, Innovación y Sociedad de la Información of Canary Islands Au-
tonomic Government through the PhD grant funding to José Évora with
reference TESIS20100095 and also through the project Framework para
la Simulación de la Gestión de Mercado y Técnica de Redes Eléctricas
Insulares basado en Agentes Inteligentes. Caso de la Red Eléctrica de
Gran Canaria˝, with reference SolSub200801000137.

References

[1] AMES Market Package. http://www.econ.iastate.edu/tesfatsi/
DCOPFJHome.htm.

[2] DCOPFJ Package. http://www.econ.iastate.edu/tesfatsi/
DCOPFJHome.htm.

[3] OpenDSS. http://sourceforge.net/projects/electricdss/.
[4] Pylon, Power system and energy market analysis with Python.

http://pylon.eee.strath.ac.uk/pylon.
[5] TSAT - Transient Security Assessment Tool.

http://www.powertechlabs.com/software-modeling/dynamic-security-
assessment-software/transient-security-assessment-tool/.

[6] TEFTS Program, University of Waterloo, 2000.
http://www.power.uwaterloo.ca.

[7] David Anderson, Chuanlin Zhao, Carl H. Hauser, Vaithianathan Venkata-
subramanian, David E. Bakken, and Anjan Bose. A virtual Smart Grid.
IEEE Power and Energy Magazine, 2012.

[8] C.A. Cañizares and F.L. Alvarado. UWPFLOW Program, University of
Waterloo, 2000. http://www.power.uwaterloo.ca.

[9] Jose Evora, Enrique Kremers, Susana Morales, Mario Hernandez,
Jose Juan Hernandez, and Pablo Viejo. Agent-Based Modelling of Elec-
trical Load at Household Level. In ECAL 2011: CoSMoS - Proceedings
of the 2011 Workshop on Complex Systems Modelling and Simulation,
page 12, 2011.

28 Jose Evora et al.

[10] A. Gabaldon, A. Molina, C. Roldan, J.A. Fuentes, E. Gomez, IJ Ramirez-
Rosado, P. Lara, JA Dominguez, E. Garcia-Garrido, and E. Tarancon.
Assessment and simulation of demand-side management potential in ur-
ban power distribution networks. In Power Tech Conference Proceedings,
2003 IEEE Bologna, volume 4. IEEE, 2003.

[11] Jay B Ghosh. Asynchronous simulation of some discrete time models. In
Proceedings of the 16th conference on Winter simulation, WSC ’84, pages
466–469, Piscataway, NJ, USA, 1984. IEEE Press.

[12] Fred J Kaudel. A literature survey on distributed discrete event simula-
tion. SIGSIM Simul. Dig., 18(2):11–21, 1987.

[13] F. Milano. An Open Source Power System Analysis Toolbox. IEEE
Transaction on Power System, vol. 20, no.3, 2005.

[14] Jayadev Misra. Distributed discrete-event simulation. ACM Comput.
Surv., 18(1):39–65, 1986.

[15] C. Nwankpa. Voltage Stability Toolbox, version 2, Cen-
ter for Electric Power Engineering, Drexel University, 2002.
http://power.ece.drexel.edu/research/VST/vst.htm.

[16] R J Pooley. An introduction to programming in SIMULA. Blackwell
Scientific Publications, Ltd., Oxford, UK, UK, 1987.

[17] M. Zhou. InterPSS. http://www.interpss.org.
[18] R.D. Zimmerman and D. Gan. Matpower, Documentation for Version

2, Power System Engineering Research Center, Cornell University, 1997.
http://www.pserc.cornell.edu/matpower/matpower.html.

Going Around Again – Modelling

Standing Ovations with a Flexible

Agent-based Simulation Framework

Philip Garnett

Department of Anthropology, Durham University, Dawson Building, South
Road, Durham, DH1 3LE. UK philip.garnett@durham.ac.uk

Abstract. We describe how we have used the CoSMoS process
to transform a computer simulation originally developed for the
simulation of plant development for use in modelling aspects
of audience behaviour. An existing agent-based simulator is re-
factored to simulate a completely different type of agent in 2D
space. This is possible and desirable because the original sim-
ulator was designed with the intention that it could easily be
use to model a variety of different agents interacting in 2D and
3D space. The resulting simulation will be used to simulate the
phenomena of standing ovations in audiences as a model system
of tipping point behaviour. Continued development of this simu-
lator, assisted by the CoSMoS process, has resulted in a general
purpose lightweight simulation framework.

1 Introduction

The dynamics of standing ovations incorporates many interesting as-
pects of human behaviour and even with a simple computer simulation
there are many things to explore. The collective desire of an audience
(or at least some parts of an audience) to display their appreciation
of something is interfered with by that very human desire to not em-
barrass oneself. On the face of it this sounds like a difficult system to
understand. There are complex individual decisions about how much you
want to stand up and clap, or stay firmly rooted to your seat. There is
also the behaviour of your immediate neighbours to consider. If the peo-
ple sitting next to you start standing up, what do you do? Does that
overcome your reluctance to get up? Or if you stand up and they don’t,
what then? Sit down and shrink back into your seat? Then there is the
pressure to conform with the wider audience. If everyone on the other
side is standing do you spring up to get your side going, or wait to see if

30 Philip Garnett

the enthusiasm diffuses round to your section? From the perspective of
the individual agents (or people) there is a lot of complex decision mak-
ing going on. However, at the population level could there be a simple
set of rules that are governing the global behaviour of the system? In
this paper we describe the process of re-factoring an existing simulator
that was built to be a flexible agent-based modelling platform, but with
a focus on a particular use, to allow us to model standing ovations as
an emergent behaviour. During the re-factoring process the simulation
framework has become increasingly modular and generalizable.

A simulation must be developed using a rigorous process of design,
implementation, and validation if it is to be scientifically respectable,
understandable and reproducible. As we aim to maintain flexibility, the
simulation tool will need to be upgraded and enhanced in a principled
manner as its requirements change, and we use it to address new research
questions. This helps ensure that we fully understand the foundations of
the platform before we build something new on top. The CoSMoS (Com-
plex Systems Modelling and Simulation) process [1] provides a flexible
approach designed to support the modelling and analysis of complex
systems, including the design and validation of appropriate computer
simulations.

We have previously used the CoSMoS process to guide the initial
development of a simulation of an abstract tissue level model of plant
cells [8]. We then used the CoSMoS process to enhance that existing
model to produce a more capable and efficient version of the simula-
tion [7]. Here we present work using the same process [1] to guide mod-
ification of the basic simulation framework to produce a new simulation
of standing ovations in simulated audiences. This work is further evi-
dence that the CoSMoS process can be used in an incremental manner
to assist in the reuse of existing simulation code.

In §2.1 we overview the CoSMoS process as used for modelling, de-
signing, and implementing simulations of human behaviour. In §2.2 we
discuss the use of UML as a suitable modelling language to support this
process. We then use the CoSMoS process components to structure the
remaining sections. In §3 we introduce the Research Context. In §4 we
summarise the standing ovation Domain Model. In §5 we discuss how
the Platform Model was developed using the CoSMoS process. In §6
we conclude with a discussion of our experiences and some preliminary
results.

Modelling Standing Ovations 31

Domain

Model

Platform

Model

Simulation

Platform

Results

Model

Domain
Research

Context

Fig. 1. The components of the CoSMoS process [1, fig.2.1]. Arrows indicate the
main information flows during the development of the different components.
There is no prescribed route through the process, in so far as going back a
step at any point in the process is allowed and often useful.

2 Background

2.1 CoSMoS Process: The modelling lifecycle

For this work we use the CoSMoS process as described in detail by An-
drews et al. [1], and used in our earlier work [7, 8]. The CoSMoS process
provides a systematic approach to building models and simulations of
complex systems, and here we apply it to modelling human behaviour.
The CoSMoS process is an inherently incremental process without a
defined end point. It therefore lends itself to producing a series of sim-
ulations aimed at answering a particular question. This flexibility also
allows for taking an existing simulation down a new path to answer dif-
ferent questions. We [7, 8] and others [4, 13, 14] have successfully used
this process to assist in the production of simulations of complex bio-
logical systems. Summarised in figure 1, the version of the process used
here contains the following components (summarised from [1], and the
description of the process is taken from [7]):

Research Context : the overall scientific Research Context. This in-
cludes the motivation for doing the research, the questions to be
addressed, and the requirements for success.

Domain Model : conceptual “top-down” model of the real world sys-
tem to be simulated. The Domain Model is developed in conjunction
with the domain experts, with its scope determined by the Research

32 Philip Garnett

Context. The model may explicitly include various emergent prop-
erties of the system.

Platform Model : a “bottom up” model of how the real world system
is to be cast into a simulation. This includes: the system boundary,
what parts of the the Domain Model are being simulated; simplify-
ing assumptions or abstractions; assumptions made due to lack of
information from the domain experts; removal of emergent proper-
ties (properties that should be consequences of the simulation, rather
than explicitly implemented in it).

Simulation Platform : the executable implementation. The develop-
ment of the simulator from the Platform Model is a standard software
engineering process.

Results Model : a “top down” conceptual model of the simulated
world. This model is compared with the Domain Model in order to
test various hypotheses. This part of the process is on-going research.

2.2 Modelling human behaviour and simulations with UML

UML (Unified Modelling Language) [12] is a suite of diagramming nota-
tions designed to aid in the development of large object-oriented software
engineering projects by groups of developers working in teams. Ordinar-
ily it is used in conjunction with an object-oriented programming lan-
guage; it has been shown to be well suited to agent-based modelling [11],
and the production of agent based models [6–8, 14]. Here “agents”, rep-
resenting humans, map naturally to agents that can be described using
UML. This allows for much of the structure of the behavioural simula-
tion to be represented in UML. We have also found that UML is suitable
for capturing simiplified human mental states that are significant to the
model (see §4.1).

3 The Research Context

Although we are modelling standing ovations we are interested in the
wider phenomena of tipping points and emergence in human behaviour.
We use the standing ovation as a simplified case of tipping points in social
systems. Human behaviour on both the individual and population level
is very complex. People can frequently behave in unpredictable ways, of-
ten doing things that may seem counterintuitive or unexpected. People
also have the capacity to consciously go against, or follow the crowd,
making predicting an individual’s behaviour very difficult. At the popu-
lation level however human behaviour becomes more predictable. A herd
mentality (the desire to belong) may mean that in the short term at least

Modelling Standing Ovations 33

it is possible to predict a future state of a group (or herd) of people [15].
However, it is often the unexpected shifts in population behaviour that
we would like to be able to predict or detect. These tipping points are the
focus of our wider research and the model presented here was designed
as a simplified model of tipping point behaviour.

In the context of wider society social tipping points are very interest-
ing [2, 3, 9]. Even when a human system appears to be relatively stable
it could go through a tipping point and change state completely. Here
we define a tipping point in a system as when it moves rapidly from
one stable state to another state which may or may not be stable. We
therefore allow our definition to include reversible changes, so even if the
system goes back to its initial state we consider it to have gone through a
tipping point. Of particular interest to us are systems that appear to be
stable but have the potential to go through a tipping point. In order to
understand these systems we must identify the triggers and thresholds
that indicate the point at which the system tips.

Modelling an individual human would be extremely difficult but at
the population level it might be possible to break the behaviours thought
to be of importance in a system down into a set of simple rules. The
model can then capture the abstract simple behaviours between agents
that when simulated produce the overall systems behaviour as an emer-
gent property. In the model the synchronised human behaviour of stand-
ing ovation is an emergent property of the combination of the basic rules
of the system, and the interaction between the agents in their environ-
ment.

Standing ovations have been used as a model system for synchronised
human behaviour in a number of different contexts [5, 10, 16]. We focus
on standing ovations as a model system for a social tipping point, paying
particular attention to how the system is triggered; what constitutes a
trigger; at what point can a system be considered to have tipped; and
does that allow us to predict the outcome of a system?

4 The Domain Model: the standing ovation

Standing ovations capture many interesting aspects of synchronised hu-
man behaviour. Individual members of an audience are influenced by
how good they thought a performance was, and by the behaviours of
the people around. Depending on the relative influence of these factors
individuals might jump up and start clapping, with little regard to what
others might think, or wait to see if others are going to stand up first.
In fact there are many possibilities for both showing appreciation, or
dissatisfaction. In §4.1 we outline in more detail the aspects of stand-

34 Philip Garnett

ing ovations that we are going to capture in the simulation. In §4.2 we
summarise how we capture these behaviours in UML.

4.1 The Mental Domain

A standing ovation is an emergent property of the relative influences
on individuals in an audience. We break the influences down into three
simple parts:

– The individuals own personal enjoyment of the performance. If their
enjoyment is very high and they are likely to stand without paying
much attention to the rest of the audience. Similarly, if it is very low
they are likely to remain seated. The interesting social effects in the
system will operate mainly on the people who are somewhere in the
middle.

– The behaviour of an individual’s immediate neighbours will modify
this background likelihood of standing to either suppress it so they
remain seated, or activate it causing the individual to stand.

– The final influence on an individual is the room size. We assume that
an individual can make an assessment of the larger space and that
this acts on their background likelihood of standing in a similar way
to the neighbour interactions.

We will also look at what affect an individual being able to stand up
again has on the behaviour of the system.

4.2 Domain Model UML

In order to re-factor the simulator for its new use we start the process at
the Domain Model UML to get a sense of which parts of the simulator can
remain and which need to be wholely removed or significantly altered.

Domain Model use cases. During the development of the biological
models use case diagrams were used to capture the higher level interac-
tions that were to be included in the simulation [8]. For re-factoring the
simulation for a new use we didn’t find it advantageous to revisit the use
case diagrams as we have come to the conclusion that all of the relevant
interactions can be captured in the description of the domain class and
state domain diagrams. Therefore unless it is the case the application of
the process would benefit greatly from use case diagrams, they will not
be used.

Modelling Standing Ovations 35

Fig. 2. Domain Model class diagram.

Domain Model class diagram. This captures the different aspects
of the system that are required as classes. At this point in the process
is it desirable to take forward only the parts of the Domain that we be-
lieve to be absolutely necessary. The classes map directly to either the
required spatial elements of the system that we need to include in order
to simulate standing ovations, or the agents that exist in this space. This
includes the Venue, and the Seating within the Venue, which together de-
fine the space the system exists in. There is also the class, PersonAgent,
which is a simplified representation of the people in the simulation. We
also capture the required aspects of the performance in the Performance
class. These classes provide enough structure to allow us to model a
standing ovation. We also capture the emergent property of a stand-
ing ovation SO. At this point it is a desired outcome of the interaction
between the Venue, Performance and PersonAgent classes (See figure 2).

Domain Model state diagrams. When describing a biological pro-
cess state diagrams prove very useful as they can easily show the different
states that biological objects can exist in and how they move between
states [7]. In figure 3 we can see that in this model the number of physi-
cal states the PersonAgents can be in is very limited, Sitting or Standing.
We therefore propose that in the case of modelling human behaviour (or

36 Philip Garnett

any behaviour that is not manifested in a physical change) it is advanta-
geous to also model more abstract mental states that are of importance
to the model. These can then be included in the diagrams which assists
communication of important parts of the simulation. In the mental state
diagram, mental states provide information about what needs to be cap-
tured by the model in order for the PersonAgents to transition from the
Sitting to the Standing state. Figure 4 shows the mental state diagram for
a PersonAgent. When a PersonAgent changes state they can go through a
loop of mental state transitions before they commit to either remaining
in the same state or transitioning to a different state. This loop incor-
porates what the individual is considering doing, the state that their
neighbours are in, and the different states that the wider audience is in.
In figure 3 it is possible to clearly label the state transitions as Stands
and Sits. However, when the mental processes are included the transi-
tions are more difficult to label as the physical state might not change
even though the PersonAgent has gone through a process of assessing
whether it is going to change state.

In some sense what we are attempting to capture by including mental
states in the Domain Model state digrams is an agents abstract individ-
ual tipping point. The point at which an agent is required to make the
decision to change state they (for a short time) are no longer simply pas-
sively Sitting or Standing, but instead are in a separate state of making
a mental decision. The outcome of this rather abstract mental state is
either the Sitting or Standing, but during the process a transition has
occurred.

Upon entering the venue people are standing. A mental process then
occurs during which individuals assess what they want to do, taking into
account the state of the wider audience and their neighbours, in order to
find their seat. Throughout the performance this process will continue
as there are a number of possible reasons why a person may have to
transition from a Sitting to a Standing state. For the purposes of this
simulation we are only interested in people’s behaviour at the end of the
performance.

5 The Platform Model

The Platform Model includes all the extra components that allow the
simulation to run. This includes all the processes required to get the
simulation to a point where it is able to start, and the components iden-
tified in the Domain Model that are important to allow the behaviours
of interest to occur. Also included are any additional behaviours that
are required for the model to function but that might not be of explicit

Modelling Standing Ovations 37

Fig. 3. Domain Model PersonAgent state diagram.

Fig. 4. Domain Model mental PersonAgent state diagram.

interest to the Research Context. These can be implemented with a view
to producing an efficient simulation rather than system fidelity. Finally,
we need to include aspects of a simulation that are not part of the Do-
main but are required in order that simulation results may be observed
and documented.

5.1 Platform Model UML

The platform model UML bridges the gap between the Domain Model
UML and the final implementation of the model in code.

38 Philip Garnett

Fig. 5. Platform Model class diagram: included are the four main components
of the system being models, the Venue, PersonAgent, Seating and Performance.

The Platform Model class diagram. The is produced from the Do-
main Class diagram, with all emergent properties (such as a standing
ovation, SO) removed. Shown in figure 5 this is a high level diagram
and includes the four main components of the system, the Venue, Per-
sonAgent, Seating, and Performance. There is only one Venue, we assume
that it has at least one Seating. That Seating can either be unoccupied
or have one PersonAgent in it. A Venue is assumed to have at least one
Performance.

The Platform Model class diagram, implementation level. This
diagram represents the structure of the underlying code of the simulation
by including implementation level data structures and any generalisable
classes. Figure 6 shows the implementation of the classes carried for-
ward from the Domain model. Seating is a child of the Area class. In this
simulation each Area can only hold 0 or 1 PersonAgents, which is im-
plemented as a specific class. The Areas are stored in the Space, and to
improve the performance of the simulation can either be (in conjunction
with a suitable programming language) separate threads of execution or
grouped together in the separate executable buckets of Areas (executable
buckets are used in the Java implementation but left out of figure 6 to
improve readability). Structuring the Space in this way has advantages
for investigating the affect of the interaction between agents and the

Modelling Standing Ovations 39

Fig. 6. Implementation level Platform Model class diagram: The Venue has
one Space, at least one Performance, and at least one SeatingZones. The Space
and is composed of many Areas which can be one of the two child classes
EmptyArea or Seating. Seating belongs to one SeatingZones.

spacial environment, and allows easy reproduction of interesting spaces
(see §5.3 and §6).

Space has at least one SeatingZones, and a SeatingZones has at least
one Area. There are also EmptyAreas which are used for Space that are
not processed by the running simulation. The Space, Performance and
SeatingZones are stored in the Venue class. The purpose of the Person-
Agent class is to contain the current state of the PersonAgent. The Per-
sonAgent’s interaction with the wider system is mediated via the Seating
and SeatingZones classes. In its current implementation the Performance
is almost unnecessary but in the future when we extend the simulation
to include more interaction between the performance and the audience
the complexity and importance of this class will increase. The Venue
class acts as a container for the simulated system. It could also fulfill
any more abstract requirements that the venue might have.

40 Philip Garnett

5.2 Comparing two models

The inclusion, during redevelopment, of a flexible Space makes it easier
adapt the simulation to its new purpose. The original modelling frame-
work had at its centre a flexible and extendible class that is the basis for
all the different types of space in the system [7]. This flexibility allows for
the many different types of space to be described. In this simulation the
Area class that is held in the Space class is extended to describe seating
(child class Seating). Each area of Seating contains within it one agent
representing a single person, PersonAgent. The Seating class connects
that agent with this environment. Via the Seating class the agent can
contact its neighbours, it can also sample from all of the Seating areas
of the simulation to gather information about any of the agents in the
system. Figure 7 shows the Platform Model class diagram for the auxin
simulation model described in [7]. By comparing this diagram with fig-
ure 6 is it possible to see how at the implementation level very little of
the underlying structure of the model needed to be altered for its new
purpose.

The behaviour of the model is controlled by running a method within
the extended Area classes called ‘process’. This processes any agents held
in this part of the space. What the different agents do is controlled by
their implementation. This structure means that no assumptions about
how the agents are behaving in space are transferred from one model
implementation to another. What does remain the same is the chan-
nels through which the agents get information about their environment.
However because this is ultimately determined by the extended Area
classes the exact information that flows is also specific to each model.
To move from an auxin transport model to a standing ovation model the
Area class was extended to describe the Seating in the Venue. The auxin
model’s Plant class, which is a general holding class, providing function-
ality similar to a database, was simply renamed as Venue. The Cell class
in the auxin model implemented an abstract collection of different Areas
(three different types, Cytoplasm, Membrane, and Vacuole, see figure 7).
For the standing ovation model this class is completely reimplemented
as SeatingZones. SeatingZones is equivalent to Cell as it is a collection of
areas of Seating that can be considered as ‘together’ in the space, and in-
formation may flow differently between different zones or within a zone.
Currently these spatial zones are not generalised from a parent class and
therefore for this model the class was rewritten from the ground up to
ensure it provided the correct functionality.

During the process of reimplementation it became clear that the Cell
and SeatingZones classes share a number of common features. We are
now working on two generalizable classes, SpatialNetwork and AgentNet-

Modelling Standing Ovations 41

Fig. 7. Implementation level Platform Model class diagram for the original
auxin simulation:

work. SpatialNetwork provides a basis for the implementation of abstract
collections of spatial Areas, which Cells and SeatingZones are examples
off. AgentNetwork provides a basis for abstract collections of agents. In
the case of our standing ovation model this could be men and women
PersonAgents for example. These should not be confused with the exe-
cutable buckets of Areas mentioned in §5.1. It would however be useful to
implement the multi-threaded execution of the simulation with these ab-
stract collections if that seems feasible and desirable. The generalizable
form of the future framework is shown in figure 8. The introduction of
these higher level collections brings this framework closer to the frame-
work described in [4, 13] (which the author was involved in developing).
The modular design is deliberate as it helps to make clear what the foun-
dations of the simulator are, these foundations can be extended helping
avoid the reusing code implemented for old models that are not suit-
able for the new purpose. The modeller is encouraged to start from the
generalizable classes not a previous implementation.

Platform Model state diagrams. These remain the same as the
Domain Model State Diagrams.

42 Philip Garnett

Fig. 8. The class diagram of the generalisable simulation framework.

5.3 Space from Templates

The original auxin model was designed to allow for cell tissues to be
loaded into the simulation from a section through a real tissue [7]. This
feature allows the standing ovation model to load in approximations of
real seating plans. These seating layouts are read from template images
into the simulation when it starts. The template provides information on
the position of all the seats in the system, and how they are arranged in
2D space. Including any empty areas or gaps between different sections
of the audience.

This allows us in future to explore the effect of boundary conditions in
the system. Not only those at the edge of the seating, but also boundaries
within the seating. It is possible that the probability of a standing ovation
fully taking hold might be affected by the seating in many venues being
in sections. The small breaks in the seating may alter the dynamics of
system, and the flow of information within the system, changing how
the audience responds as a whole. It might be that the sectioning of
the audience encourages a greater degree of autonomy (I’m part of this
group, the people overthere are a different group), reducing the ability
of a standing ovation to spread over the entire system, or perhaps giving
small sections of the audience the confidence to act alone.

Modelling Standing Ovations 43

(a) A real seating plan of a lecture the-
atre.

(b) A template approximated from the
real plan. For this simulation we chose
not to use seating zones but they could
have been used to produce a more
faithful plan.

(c) A still from the running simulation. The light grey area of the seating indi-
cates that the PersonAgent is standing.

Fig. 9. By allowing the use of real seating plans we can compare real data
with simulations allowing the investigation of effect of changing the layout of
the venue on the system.

44 Philip Garnett

6 Discussion

We have been able to show that the CoSMoS process can be used to
assist with the implementation of an existing model in a new area of
scientific study. This is in some ways an inherently dangerous method
of producing a simulation. There is the potential to use code that when
originally written had at its foundation assumptions that are not suitable
for the new purpose. Where the CoSMoS process becomes valuable is
that it insists that the model implementation starts from a suitable place:
the Domain. Starting at the domain and working forward provides useful
information about which parts of the original model can be safely reused.
Once the unsuitable parts of the system are removed the process can then
be followed as normal to produce the new simulation.

This systematic process has two added benefits. Simply casting a
simulation into UML along with using the CoSMoS process can often
highlight possible improvements that can be made to the model and re-
sulting simulator. Good examples include the identification of code that
has been put in the wrong place, and the discovery that parts of the sys-
tem that have been excluded from the Domain Model or not explicitly
identified when they need to be. One example is that there is a tempta-
tion to include aspects of agent behaviour in both the Area and Agent
classes which could be a source of confusion further on in the develop-
ment process. Avoiding this potential confusion also increases the mod-
ularity of the simulation by encouraging consistency in the placement
of methods. Increasing the modularity of the simulator has helped in
the development of an efficient generalizable multi-threaded agent-based
simulation framework. In fact the generalizable framework emerged from
the process. The adherence to the CoSMoS approach has also ensured
that its development has been systematic and well understood. At each
stage of the process effort has been made to understand and acknowledge
the decisions that have been made and why, and many of the decisions
are recorded.

It is true that the simulation framework produced is not completely
generalizable and could not be used to produce any agent-based simula-
tion. It is unlikely that any such tool could be produced. We are also of
the opinion that the attempt should not be made. A completely gener-
alizable framework would either be susceptible to bloat in both size and
complexity, resulting in a tool that was difficult to maintain, fully un-
derstand, or apply appropriately. Or it would become such light-weight
collection of extendible classes that it would be of greater advantage to
develop a system of patterns instead. There then remains the question
of how do you determine when a general tool should be used over a one-
off efficient simulator? This is not an easy question as this framework

Modelling Standing Ovations 45

started as an efficient one-off simulator and has developed into a more
generalizable tool. The CoSMoS process has a lot of offer as a way of as-
sisting this decision making process. Even though we intuitively believed
that the foundations of simulation of auxin transport were suitable for
modelling another 2D agent-based system, following the CoSMoS pro-
cess assisted in determining which parts could remain and which needed
to be rewritten or simply removed. The CoSMoS process should there-
fore allow the developers and domain experts to determine if there is a
suitable existing tool (as long as they actually understand what the tool
has to offer), or if a new simulator is required.

Acknowledgements

We gratefully acknowledge the financial support from the Leverhulme
Trust who funds the Tipping Point project based in the Institute of
Hazard, Risk and Resilience at Durham University. We would also like
to thank the developers of the CoSMoS process. Finally we would like to
thank the reviewers for their detailed and very helpful comments, and
Lauren Shipley for her assistance with proof reading.

References

[1] Paul S Andrews, Fiona A C Polack, Adam T Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS Process version 0.1: A process for the
modelling and simulation of complex systems. Technical report, Univer-
sity of York, 2010.

[2] M Batty. Discontinuities, tipping points, and singularities: the quest for a
new social dynamics. Environment and Planning B: Planning and Design,
35(3):379–380, 2008.

[3] William A Brock. Tipping Points , Abrupt Opinion Changes , and Punc-
tuated Policy Change by. PhD thesis, University of Wisconsin, 2004.

[4] Alastair Droop, Philip Garnett, Fiona A C Polack, and Susan Stepney.
Multiple model simulation: modelling cell division and differentiation in
the prostate. In Susan Stepney, Peter Welch, Paul S Andrews, and Carl G
Ritson, editors, Proceedings of the 2011 Workshop on Complex Systems
Modelling and Simulation, Paris, France, August 2011, pages 79–111.
Luniver Press, 2011.

[5] Fernando Eesponda, Mat́ıas Vera-Cruz, Jorge Tarrasó, and Marco
Morales. The complexity of partition tasks. Complexity, 16(1):56–64,
2010.

[6] S. Efroni, D. Harel, and I. R. Cohen. Towards rigorour comprehension of
biological complexity: modeling, execution, and visualization of thymic
T-cell maturation. Genome Res, 13(11):2485–2497, 2003.

46 Philip Garnett

[7] Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Us-
ing the CoSMoS Process to Enhance an Executable Model of Auxin
Transport Canalisation. In S Stepney, P Welch, P. S. Andrews, and A. T
Sampson, editors, CoSMoS 2010, pages 9–32, 2010.

[8] Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an Exe-
cutable Model of Auxin Transport Canalisation. In W P Stepney Susan,
Polack Fiona, editor, CoSMoS 2008, pages 63–91. Luniver Press, 2008.

[9] Suzanne B. Goldberg. Constitutional tipping points: Civil rights, so-
cial change, and fact-based adjudication. COLUMBIA LAW REVIEW,
106(8):1955–2022, 2006.

[10] John H Miller and Scott E Page. The standing ovation problem. Com-
plexity, 9(5):8–16, 2004.

[11] J Odell, H Parunak, and B Bauer. Extending UML for agents. In AOIS
Workshop at AAAI, pages 3–17, Austin, 2000.

[12] OMG. Maintainer of the UML Standards., 2012.
[13] Fiona A C Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu, and

Susan Stepney. Simulation validation: exploring the suitability of a simu-
lation of cell division and differentiation in the prostate. In Susan Stepney,
Peter Welch, Paul S Andrews, and Carl G Ritson, editors, Proceedings
of the 2011 Workshop on Complex Systems Modelling and Simulation,
Paris, France, August 2011, pages 113–133. Luniver Press, 2011.

[14] Mark Read, Jon Timmis, Paul S. Andrews, and Kumar Vipin. Using
UML to Model EAE and its Regulatory Network. In Paul S. Andrews,
Jon Timmis, Nick D. L. Owens, Uwe Aickelin, Emma Hart, Andrew Hone,
and Andy M. Tyrrell, editors, Proceedings of 8th International Conference
on AIS, volume 5666 of Lecture Notes in Computer Science, pages 4–6–6,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[15] E.M. Rogers. Diffusion of Innovations. Free Press, New York, 1962.
[16] Miklos N Szilagyi and Matthew D Jallo. Standing ovation: an attempt to

simulate human personalities. Systems Research & Behavioral Science,
23(6):825–838, 2006.

CoSMoS in the Context of

Social-Ecological Systems Research

Richard B. Greaves1,2, Fiona A. C. Polack1,2, and John
Forrester1,3

1 YCCSA, University of York, UK, YO10 5DD
2 Department of Computer Science, University of York, UK
3 Environment Department, University of York, York, UK.

Fiona.Polack@york.ac.uk

Abstract. Social-ecological systems are an innately complex
interaction among social systems and ecosystems. Computer
modellers have been working with the WD-NACE social-ecologi-
cal systems research project to develop useful models, following
a principled approach to complex systems modelling and simula-
tion (the CoSMoS process). Key considerations include compre-
hensibility by domain scientists; software engineering rigour; and
consideration of soft elements in the context of physical struc-
tures and behaviours. In social sciences, there is an unresolved
problem in the modelling of soft elements and the structures and
behaviours that underlie soft elements. There is a need to model,
and simulate, systems that include soft elements, not least to in-
form policy and decision options. Focusing on the domain model
provides a context for understanding the interaction of soft and
hard elements, and helps to clarify what sort of soft-element
representation would be appropriate in a computer simulation.

1 Introduction

In social-ecological systems research, modelling and simulation are often
proposed as support tools for decision making. However, a tradition of
ad hoc modelling and simulation focused on exploration of theoretical
hypotheses (such as the Schelling model [27] and its variants e.g. [4]) does
not offer sufficient real-world understanding of case study scenarios. In
developing models and simulations for use as tools in scientific research
(e.g. immunology, bio-medicine4), we have shown that fit-for-purpose
modelling needs an understanding of how to map from domain concepts

4 see www.cosmos-research.org/publications

48 Richard B. Greaves et al.

to model concepts. To do this, we must pay attention to the semantics
of domain concepts and to the modelling-notation (model) semantics.

In this paper, we bring ideas from the modelling and simulating of
complex scientific domains to the social-ecological systems context (Sec-
tion 1.1). First, we outline some ways in which social scientists have
addressed modelling, identifying as a key issue the problem of integrat-
ing soft elements and physical structures and behaviours (Section 1.2).
We then outline the principled CoSMoS approach to modelling and sim-
ulation (Section 2). Taking inspiration from the CoSMoS process and
philosophy, we determine a purpose for the modelling. We identify that
the requirement for a single, overview model of the domain (the Kenyan
southern coastal social-ecological system) can be addressed through CoS-
MoS domain modelling activities. In Section 3, we outline the process of
developing a domain model, and present some of the diagrammatic ele-
ments of this model. We also show how systematic software-engineering
checking of diagram consistency can expose modelling flaws and miss-
ing detail. The modelling exercise provides some clarification of the soft
element representations needed in the system, but it is apparent that
further conceptual work and understanding is needed to fully address
soft aspects of the modelled domain. Section 4 provides some commen-
tary on features of the CoSMoS process and philosophy in the context of
such social ecosystems modelling. The paper does not reach any definite
conclusions, but we believe that it helps to clarifies the “problem” of
integrating soft elements in models.

1.1 The WD-NACE Project

This paper reports modelling work done in association with researchers
on the WD-NACE project. WD-NACE (Whole Decision-Network Analy-
sis for Coastal Ecosystems) is part of a UK-government initiative to sup-
port development of local systems of governance in developing countries,
as a route to alleviation of poverty through ecosystems management.
WD-NACE brings together social scientists and ecologists, in the UK
and in the field. The project focuses on two coastal production systems:
this paper concerns wild fisheries and the reef ecosystems of southern
Kenya. WD-NACE also considers shrimp aquaculture in the Sundarbans
mangrove delta of Bangladesh. In the Kenyan and Bangladeshi study ar-
eas, fragile ecosystems support millions of people, and over-exploitation
of coastal resources threatens many livelihoods. The underlying philos-
ophy of WD-NACE is that management of sustainability needs to be
underpinned by knowledge of why people choose to use resources in a
particular way.

CoSMoS in the Context of Social-Ecological Systems 49

The WD-NACE project is attempting to provide support, or the un-
derstanding of how to provide support, for people to make choices that
may reduce poverty and protect ecosystems. WD-NACE is collecting
information from stakeholders at many levels, such as national policy
makers, local government, regional authorities, and local decision tak-
ers such as individual farmers and fishers. The project aims to try to
understand social drivers of ecosystem change, with a long-term goal
to develop simulators that support testing and analysis of policy and
decision options.

WD-NACE has three internal modelling strands. The Stockholm En-
vironment Institute Oxford (SEI Oxford) has created an individual-based
model of the social systems, which has not yet been validated by the
domain researchers. Separate ecosystem models are being developed by
Kenyan and Bangladeshi local researchers: the ecosystems models are de-
scribed using STELLA [5], an equational modelling package that has a
graphical visualisation5. In the future, the WD-NACE researchers would
like to integrate models into a simulation platform to support policy and
decision options.

The work presented in this paper arises from a collaboration between
WD-NACE researchers and independent software engineering modellers.
The goal of the collaboration is to to create a meaningful overview model
that can express the complexity of viewpoints of the different actors in-
volved at different levels. A key requirement is that the model be com-
prehensible to significant stakeholders and the full research team, so that
it can be checked and agreed as a suitable representation of the domain.

1.2 Modelling in a Social Science Context

WD-NACE is studying social-ecological systems. A social-ecological sys-
tem is a multi-dimensional complex system. Information collected in a
social-ecological research project such as WD-NACE includes concrete,
factual material on the structures (fish, people etc.) and behaviours that
are observable in the social and ecosystems contexts. In addition, social-
ecological information includes soft elements, such as opinions, decisions,
social interactions etc., and measures such as “wealth”. The soft elements
may be intangible, and may not be easily represented in a quantifiable
or computational form.

There is a significant literature on the incorporation of soft elements
in social science modelling. A common approach in social science is to
consider only the soft dimension, avoiding mathematical or computa-
tional approaches. For example, modelling by Barron et al. [2] is used

5 www.iseesystems.com/softwares/education/stellasoftware.aspx

50 Richard B. Greaves et al.

to attribute economic benefit to soft elements such as institutional and
human social capital. de Vries and Peterson [8] propose a systematic
approach to soft element modelling, which starts by analysing people’s
interpretation of sustainability problems in terms of value orientations
and beliefs; the resulting worldviews are translated into narrative sce-
narios which provide a basis for (qualitative) investigation of risks, op-
portunities and robustness of policy options [8].

Coulthard et al. [7] argue that the subjective focus on social concep-
tualisation ignores many other dimensions of what needs to be under-
stood. Soft systems modelling approaches (after Checkland’s soft systems
method [3]) allow informal visualisation of many dimensions and of both
soft and physical elements of a system, accommodating actors’ percep-
tions and how actors formulate ideas about the system. For instance,
Powell and Osbeck [26] use rich pictures to express a human activity
system (actors, rules, power structures, norms) governing resource use
and interaction. Étienne [12] extends such approaches in his compan-
ion modelling, which attempts to enable simulation of complex social
systems. Companion modelling uses visual representations of the views
of multiple stakeholders, creating cartoon models (that is, models in a
notation without a rigorous semantics). The cartoon models are used
as a heuristic aid to communication, to promote social learning among
stakeholders, but they can also be used to inform scenarios that in turn
inform agent-based modelling.

It is far from obvious how soft systems modelling of beliefs and actor
perspectives can be aligned with ecosystems modelling concepts in a sim-
ulator. Kemp-Benedict et al. [18] attempt to align social and ecosystems
views by using actors’ perceptions of the linkage of social and ecosystems
concepts: they systematically deduce knowledge-representation rules thr-
ough interactive questioning. This approach, which rewrites ecosystem
models in social terms, makes it difficult to interface with traditional
ecosystem models or to interpret results to an ecosystems context. Thus,
traceability between reality and social model concepts is enhanced, but
traceability to ecosystem concepts is jeopardized. Furthermore, soft sys-
tems approaches to social ecosystems do not provide an easy starting
point for software engineering. It is hard to know how to quantify and
accommodate soft elements, which are usually highly interdependent. In
approaches such as companion modelling, it is hard to trace from agent-
based models back to the domain concepts, in order to interpret observed
model behaviours.

CoSMoS in the Context of Social-Ecological Systems 51

1.3 Modelling in a Software Engineering Context

Faced with a significant amount of information about societies and eco-
system impacts, collected from all levels of the decision-making hierarchy
in the field, the WD-NACE researchers approached software engineers
at York Centre for Complex Systems Analysis (YCCSA) who have ex-
perience of modelling complex systems with emergent properties, and of
principled development and use of complex systems simulation in scien-
tific domains. The WD-NACE context differs from the scientific domains
in that it includes soft elements, such as power and influence, wealth and
well-being.

The software engineering challenge in modelling the WD-NACE sys-
tems is to identify what is relevant to the purpose of the model, and
what abstractions are appropriate. This means that participants in the
modelling exercise need to understand the purpose of the model, the
level of abstraction, and the rationale and implications of the abstrac-
tion. Modelling needs to be sufficiently realistic for realistic emergent
behaviours and properties to emerge. However models should not be so
complicated that traceability and understanding are lost.

WD-NACE researchers are interested in creating agent-based sim-
ulations. Agent- or individual-based simulation is now widely used in
the social science and ecology (e.g. [10, 14]). The motivation for simu-
lation is usually to try to provide support for hypotheses about how a
system functions, to generate predictions about the effects of some per-
turbation to the system, or to assist in policy formulation. There are
many software engineering approaches that seek to guide development
of agent-based simulations (e.g. [22]), or support the implementation of
agent-based simulation (e.g. [19]). However, there is little guidance on
principled development of fit for purpose simulations (see [23]).

Ecological researchers have developed standards that support doc-
umentation of developed simulators (e.g. ODD and TRACE [16, 17]).
However, the standards document the actual simulation, its parameter-
isation and results (analogous to the way that a scientist documents the
set-up and results of a laboratory experiment), rather than recording
the design decisions and rationale for the simulator construction or ev-
idence of software quality. Design decisions and quality are important
in understanding the credibility of results, and thus important in policy
formulation and decision making. Since complex domains are impossible
to fully understand and represent, and change continuously, it is never
possible to give an absolute guarantee of correctness for a model or a
simulator.

52 Richard B. Greaves et al.

The engineering of simulations of complex domains is addressed in
the CoSMoS process6. The CoSMoS process is often assumed to repre-
sent a particular style of modelling, and, indeed, this was what attracted
WD-NACE researchers to the approach. However, CoSMoS provides a
philosophy of complex systems modelling and simulation, not a sim-
ple technique, and in applying CoSMoS-style modelling to the Kenyan
coastal ecosystem, other benefits of the CoSMoS approach became evi-
dent. In the next section, we summarise the CoSMoS process. We then
(section 3) present the domain modelling for the Kenyan coastal ecosys-
tem. After this (section 4), we reflect on the CoSMoS approach and its
advantages or disadvantages for this sort of social science project.

2 The CoSMoS Process

In this section, we present an overview of the CoSMoS process [1, 24],
then consider the aspects that were important to making progress in
WD-NACE.

Fig. 1. Overview of the phases of the CoSMoS process, from [1]

6 http://www.cosmos-research.org/

CoSMoS in the Context of Social-Ecological Systems 53

Fig. 2. Overview of models in the CoSMoS process, from [1]. Arrows represent
flow of information. Note that, as in most software-engineering lifecycles, any
and all steps can be iterated. The arrows can also be associated with validation
activities.

CoSMoS provides a principled approach for creation of a fit-for-
purpose simulator, for use in engineering or scientific research. CoSMoS
assumes a collaborative project involving domain experts and software
engineers [24]. The CoSMoS process comprises three phases: discovery,
development and exploration (figure 1). Each phase is associated with
particular models (figure 2), and has a specific relationship to the project
goals and roles [1]. Here we focus on simulation as a tool supporting re-
search in a (social) scientific context.

During the discovery phase (figure 1), the collaborators in the simu-
lation project are engaged in developing mutual understanding. The pur-
pose, scope, scale and potential impact of the simulator and simulation
results are carefully explored. Once it is apparent that the collaboration
is working and that there is a reasonable expectation of feasibility, the
development phase focuses on interpreting the Domain (figure 2) from its
research description – papers, cartoons, research models, domain expert
commentary, and so on – to an abstract software engineering description,
referred to as the Domain Model (figure 2).

The domain is the preserve of the domain expert, and represents the
research area in which the simulator is expected to be used. An im-
portant aspect of the CoSMoS approach is that the software engineers
(modellers and developers) are guided by the domain expert on all ques-
tions relating to interpretation and representation of the domain. The
software engineers do not become involved in, for instance, choice of

54 Richard B. Greaves et al.

domain theory or academic decisions that relate to the concepts of the
domain.

The domain model is the responsibility of the software engineers.
In developing a domain model, the software engineers are taking infor-
mation from the domain expert (such as information from published
research, diagrams and other models of the domain) and interpreting it
into a consistent format that is still amenable to checking and review by
the domain expert. The ideal is an internally-consistent abstract model
that uses the language and concepts of the domain, but which is capable
of supporting subsequent systematic software engineering development.
One way to achieve the aims of the domain model is to use existing
well-defined software modelling notations.

From the domain model, the software engineers (modellers) develop
a Platform Model (figure 2), which is a software-engineering design for
the simulator. From the platform model, the software engineers (imple-
menters) implement a Simulation Platform (figure 2), which should be
verified and validated appropriately as a software engineering artifact.
The simulation platform should be calibrated against existing domain
data.

In the exploration phase (figure 1), simulated experiments are run
on the calibrated simulation platform. The experiments are designed in
a similar way to the simulator: the domain experts determine what ex-
periments would assist their research; these are mapped to simulator
experiments through collaboration with the software engineers, and sim-
ulation experiments are run on the simulation platform. The simulated
experiments produce Results. These are simulation results, not real ex-
perimental results. It is important that these are carefully interpreted,
and not assumed to represent the real system directly. Interpretation uses
the Research Context, a repository of shared knowledge from all phases
of the project, about the domain and the development (abstractions,
design decisions, motivations, assumptions).

Purpose and Fitness for Purpose In a CoSMoS development, it is
explicit that a simulation platform is developed for a specific purpose,
and that any validity of the simulation platform relates only to the spe-
cific purpose. Thus, a simulator is considered fit for purpose if: the team
(domain experts and software engineers) is satisfied that the model of
the domain is adequate for the intended purpose; the software engineer-
ing quality is such that the simulator can be “trusted”; and the results
produced by the simulator are consistent with expectation. To keep track
of the collaborators’ understanding of the suitability and quality of the
simulator, CoSMoS proposes arguments of fitness for purpose (discussed

CoSMoS in the Context of Social-Ecological Systems 55

in, e.g. [15, 24, 25]). A typical approach is to instantiate a generic high-
level argument, as shown in figure 3, for the appropriate domain and
engineering approach. Each claim is then elaborated using appropriate
strategies, until either the participants agree that the argument is suf-
ficient to record their confidence in the simulator, or each lowest-level
claim is substantiated by evidence.

Simulation results are
consistent with results
of <scientific activity>

CLAIM 1.3

CONTEXT 1

Intended research and purpose

Context and <reference sources

(a) <domain science>
(b) software engineering
(c) results

Argued over
STRATEGY 1

CLAIM 1
Simulation of <simulation
subject>
is suitable for intended
research

of simulator defined in Research

of Research Context and Purpose>

<Domain science> of
simulation subject> is
adequately modelled

CLAIM 1.1

Software engineering of
simulator is of sufficient
quality to trust the
simulation results

CLAIM 1.2

Simulation results are
consistent with field
observation and theory

CLAIM 1.3

CONTEXT 1

Intended research and purpose

Context, according to shared
of simulator defined in Research

understanding of WD−NACE project

Simulation of Kenyan
coastal ecosystem
is suitable for intended
research

CLAIM 1

(a) ecosystem modelling
(b) software engineering
(c) results

Argued over
STRATEGY 1

concepts are
adequately modelled

CLAIM 1.1

Software engineering of
simulator is of sufficient
quality to trust the
simulation results

CLAIM 1.2
Ecosystem and society

Fig. 3. Instantiating a generic fitness-for-purpose argument for the WD-NACE
model of the Kenyan coastal ecosystem. Rectangles represent claims. Parallelo-
grams are strategies. Black-headed arrows indicate the successive elaborations
of a claim. White-headed arrows here indicate context, but can also link in
assumptions or justifications. Diamonds indicate whether the claim has been
developed further (black) or not (white).

56 Richard B. Greaves et al.

3 Modelling the Kenyan Southern Coastal
Ecosystem

In this section, we present the process and results of arriving at a domain
model that gives an overview of the Kenyan southern coastal ecosys-
tem, as viewed by the WD-NACE project researchers. We show some
modelling iterations, but do not attempt a chronological account of the
modelling process.

WD-NACE researchers seek to understand how autonomous people
interact to generate, share and select knowledge and act on it, and how
multi-scale social and ecological interactions produce feedbacks that af-
fect the sustainability of ecosystems services and the livelihoods of those
that depend on them. The initial plan of the modelling collaboration
was to create an integrated model by translating social and ecosystems
models prepared by the WD-NACE researchers into a common soft-
ware engineering notation and identifying concept mappings across the
three models. However, only the Kenyan ecosystem model was easily
available, and the modelling goal was changed to creation of a single
overview model of the Kenyan southern coastal ecosystem. Since the ex-
isting descriptions of the ecosystem represent interaction between the
local population and the ecosystem, the overview model inherently inte-
grates social and ecosystem concepts.

3.1 The domain

WD-NACE has collected a wealth of information on the Kenyan south-
ern coastal society and ecosystem over a number of years. The complex
interactions of the domain are summarised by Forrester’s sketch, figure 4,
which shows the principal feedback loops and interactions between peo-
ple and ecosystem services. People’s behaviour impacts the environment
and potentially degrades it; changes in the ecosystem affect people’s be-
haviour. At the same time, changes to the ecosystem may lead directly
to further changes in the ecosystem; and people’s changing behaviour
may bring about changes in the behaviour of others.

At a more detailed level, the information collected by WD-NACE
researchers is expressed informally in figure 5. This sketch is the start-
ing point for development of the Kenyan ecosystem STELLA model.
STELLA [6] provides a graphical interface to sets of differential and lin-
ear equations that describe stocks and flows. Because the model is based
on equations, it can be simulated to determine consequences of specified
flows on stocks. The role of equational models in guiding policy, and par-
ticularly in analysing decision options across multiple scales, is limited,

CoSMoS in the Context of Social-Ecological Systems 57

Fig. 4. Forrester’s schematic representation of the WD-NACE project domain

since only general trends can be analysed and it is impossible to map
the effect of individual inputs or actions.

The domain researchers need a model and simulator that allows more
flexibility and better insight into the interactions of the systems than is
possible in the STELLA approach. WD-NACE researchers have pro-
posed to use agent-based modelling, with its emphasis on individual
behaviour and interaction, as a basis for understanding the influence of
policies and decisions on the complex behaviours of the integrated social
and ecological systems.

Fig. 5. Obura’s sketch model of stocks and flows in the Kenyan ecosystem
model. The notation is informal, but clouds represent stocks, thick arrows
represent flows. Shaded boxes and ovals are things that are recognised as in-
fluences the stocks and flows, with thin arrows showing where influence is
known. The shading has no significant semantics.

3.2 The Domain Model

In CoSMoS, the domain model is an abstract (conceptual) representation
in a form that can be understood by domain experts but also used to

58 Richard B. Greaves et al.

engineer a concrete (implementational) software system. To support the
eventual development of an agent-based model, the domain model needs
to interpret the existing information, such as the sketches in figures 4 and
5, into a software engineering model in a well-defined design language.
To help the process of interpretation, we need an idea of the purpose of
the domain model. Here, the purpose is to capture the structures and
processes that affect (a) the decision of individuals to fish or not to fish;
(b) the effect of fishing on a reef ecosystem; (c) the effect of the health
of the reef ecosystem on fishing.

Apart from the need to support subsequent software engineering,
CoSMoS provides no guidance on the choice of modelling language for
the domain model. Here, the UML language (from [13]) was chosen based
on the experience of the lead modeller (Greaves). The development of a
domain model considered adequate by the domain experts and modellers
requires many iterations. The first model was derived from Figure 5 (with
domain-expert input from Forrester), and comprises a class diagram, the
state diagram for objects of one class, and two simple activity diagrams.
WD-NACE researchers reviewed these diagrams and helped to elaborate
and extend the model; each subsequent iteration was similarly reviewed
and extended.

Initial domain model The first iteration undertaken by software en-
gineering modellers is based on careful analysis of the existing STELLA
model, which incorporates social as well as ecosystem stocks and flows,
and offers hints to an underlying structure for an agent-based model.
Components identified at this stage are:

1. the reef, the ecosystem health of which is central to the project;
2. the fish stock, representing the fish population living in associa-

tion with the reef;
3. the community, which represents the body of people living in the

coastal area described by the ecosystem model;
4. the fishers, whose interaction with the community results in fishing

practices that may be benign or may have negative consequences
such as destruction of the reef and depletion of fish stocks.

These concepts are represented as classes in a UML class diagram
(figure 6). From Figure 5, reef, fish stock and community would rep-
resent singleton classes, but the class model admits the possibility of
adding further reefs, communities or fish stocks in future. In the UML
notation, associations enable communication (message passing) between
objects. The associations represent the reef ecosystem helping or hin-
dering fish stock replenishment; the ecosystem enhancing or diminishing

CoSMoS in the Context of Social-Ecological Systems 59

the personal wealth of the fishers; and the fishers negatively impacting
fish stocks and reef ecosystem health.

ecosystem health
improveHealth()
damageHealth()

Reef

Fisher
wealth

decideToFish()
doFishing()

Fish Stock
population

increasePop()
decreasePop()

Community
wealth

calcWealth()
promptFishDecision()

0..*

depletes

0..*

damages

0..*

0..*

impacts wealth
affects Population

Fig. 6. Preliminary UML class diagram. Association multiplicities are omitted
on ends where a singleton class is implied in Figure 5.

From Figure 5 the relevant states of a fisher are deduced as fishing
or not fishing, but there is little information about the determinants
and drivers of fishing activity.

Extending the class model The initial class model was reviewed
by domain experts in Kenya and UK. It was agreed that social parts
of the model need to be more detailed. Domain experts also proposed
enrichment drawn from a PhD thesis [20] and a study of the effects
of fishing gear on the ecosystem [21]. The revised diagram is shown in
Figure 7. The model subclasses fish stock into food and non-food

stocks (that is, fish sought and caught to be eaten, and other fish, which
may be caught accidentally), with an association between the subclasses
modelling the possibly-asymmetric interplay of these populations.

The social structure representations added to the class diagram are
considered important in influencing the number of fishers and extent of
fishing at any time. However, many are soft elements (above), and the
domain model does not attempt to give a concrete realisation for these
concepts. For instance, there is no detail of the modelling of wealth, its
adjustment or calculation, and there is no indicator of how kin, house-
hold, village or community influences the decision to fish.

State diagrams A UML state diagram is a software engineering design
model that allows expression of the relevant and distinguishable (compu-

60 Richard B. Greaves et al.

ecosystem health
improveHealth()
damageHealth()

Reef

Fish Stock
population

increasePop()
decreasePop()

Food Non−Food

Village
wealth

calcWealth()
promptFishDecision()

Community
wealth

calcWealth()
promptFishDecision()

Household
wealth

calcWealth()
promptFishDecision()

depletes

damages

affects Population

affects Population affects Population

0..*0..*
Person

wealth
role
fishing

changeRole()
decideToFish()
doFishing()

0..*

0..*

influences
influences

influences

0..*
impacts wealth

0..* 0..*0..*

0..*

0..*

influences
kin

Fig. 7. Extending the UML class diagram of the Kenyan coastal ecosystem

tationally) states of the objects of a class (from a UML class diagram).
It is a software engineering design decision as to what states and transi-
tions are relevant. A state diagram for Person is shown in Figure 8. The
model uses nested and parallel states to capture the selected relevant
transitions that can arise (in the model) for all “alive” person objects,
as follows.

– The Child state is for infants and children who are not yet available
for work. The domain model makes no assumptions about age, simply
about activity.

– The Student state is for those studying for qualifications and not
available to work. People may enter and re-enter study at any age.
The model makes no distinction between forms of education, but
to enter the student state in the model, the household or individual
must be able to afford the education offered (this may be a monetary
fee, or may be a soft measure of cost, such as not being “needed”
domestically).

– The Unpaid state represents people who could be in paid work but
are not so currently. The sub-states are:

• Domestic, for those who work in the home without pay.

CoSMoS in the Context of Social-Ecological Systems 61

Farmer

Fisher

Trader

Child

Student

Domestic

Labourer Tourism

No Entry Barrier Work

Career
Ill/dependent

Alive

Low Status Work

[has boat/gear]
[has stock]

[has boat/gear]Unpaid

[household can pay]

[can pay][can pay]

Paid Work

[has stock]

[has boat/gear]

[has land]

[has land] [has stock]

[has qualifications]

[has qualifications]

[has qualifications]

[has land]

[has qualifications]

Fig. 8. Person state diagram: layered states are used both to map domain
concepts, and to simplify capture of the transitions among states – an object
that transitions to a super-state can enter any sub-state, subject to meeting
any entry condition.

• Ill/Dependent, for those who could work but for illness, old age,
disability or other incapacity, which forces them out of paid em-
ployment. A person in this state may be temporarily incapac-
itated by a short illness, or may be permanently outside paid
employment.

– The Paid Work state captures relevant employment; it comprises
sub-states as follows:
• Career represents the state of any individual who is in employ-

ment and whose job requires educational qualifications. This
would cover, for instance, tourism managers, government offi-
cials etc. Given the purpose of the model, it is not useful to
sub-divide this category.

• No Entry Barrier Work is used for people who are currently
doing a paid job with no specific entry requirement. The choice

62 Richard B. Greaves et al.

of sub-states (Labourer and Tourism) is determined by the need
to distinguish different influences on the decision to fish: e.g.
labourers might fish when agricultural demand is low, whilst low-
status tourism employees might fish outside the tourist season.

• Low Status Work is distinguished from other states by physical
entry barriers: a Farmer must have control over land; a Fisher
must have access to a boat and fishing gear; a Trader must have
access to stock.

State diagrams for Fish Stock and the Reef objects were also cre-
ated in collaboration with the field expert in Kenya. The diagrams are
not shown here: the states of Fish Stock and Reef are arbitrary, and
the determining characteristics and transition triggers need to be worked
out with domain experts.

– Fish Stock distinguishes states, overstocked, unexploited, sustain-
ably exploited and over-exploited. Transitions between the states in
this order are known to arise as a result of fishers using net designs
that adversely affect stocks; pollution; predation (assumed to include
removal of fish by fishers); or poor reef health. In the reverse order,
improvement in fish stocks is ascribed to stock management. These
factors cannot be expressed directly in a UML state diagram.

– The state diagram of Reef distinguishes ecosystem health states:
unspoilt, slightly damaged, heavily damaged, deteriorating and dy-
ing. Degrading transitions are known to arise as a result of physical
damage by fishing gear, whilst improvement in reef ecosystem health
arises if the reef is allowed to recover from such damage. Again, these
factors cannot be captured directly in a state diagram.

Adding activity diagrams The interrelated processes of degradation
of the reef ecosystem and depletion of fish stocks cannot be captured
directly on state diagrams that model possible states and transitions of
objects of individual classes. The connected behaviours can be expressed
in UML activity diagrams, which include notations for activities and
guarded choice, as well convergence of inputs to (or divergence of outputs
from) an activity. Figure 9 shows activities associated with reef damage
and repair, whilst Figure 10 shows activities associated with fish stock
depletion and recovery. The activity diagrams draw on the description of
stocks and flows, and, extensively, on the advice of the domain experts
in the field.

Figure 9 concerns degradation to the reef through damage by fishing
gear, as well as the effects on the reef of other coastal activities (tourism,
farming). The reef health may start to recover if fishing ceases or the reef

CoSMoS in the Context of Social-Ecological Systems 63

Catch fish

Unsustainable fishing

Reduce reef health

Stop fishing

Improve reef health

Cause pollution, damage

Develop agriculture, tourism

non−sustainable

sustainable

reef protected

reef not protected

social pressure

no social pressure

damaging gear

ok gear

reef not dead

reef dead

Fig. 9. Activity diagram for reef ecosystem destruction and recovery

is protected by legislating and policing a marine reserve. This activity
diagram also models social pressure driving fishing activity.

Figure 10 focuses on depletion and recovery of fish stocks. The factors
are similar but not identical. For instance, depletion of fish can be caused
by using techniques that deplete not only adult stocks but also juveniles
(seining, gill nets, big traps and hand-lining). Fish stocks may recover if
fishing ceases or through active stock management programmes, with or
without legislation.

The two activity diagrams are, in effect, two simultaneous views on
the fishing activity, and can be combined on the shared activities (catch
fish, stop fishing and unsustainable fishing). Differences in nam-
ing between the two diagrams are deliberate: for instance, in Figure
9, develop agriculture, tourism relates to activities that cause the
physical destruction of the reef or its environment, whereas in Figure 10,

64 Richard B. Greaves et al.

Cause pollution, damage

Do farming, development

Reduce fish stock

Increase fish stock

Stop fishing

Unsustainable fishing

Catch fish

fish erradicated

fish exist

fish stock managed

fish stock not managed

food fish
no food fish

non−sustainable

sustainable

ok techniques

techniques that take too
many juvenile fish

Fig. 10. Activity diagram for fish stock depletion and recovery

do farming, development relates to activities that cause the forms of
pollution and damage that impact directly on fish stocks.

Apart from capturing the concurrent activities and effects on fishing,
fish stocks and reef health, these diagrams begin to illuminate how soft
elements would be used in a computer simulation. For instance, we need
variables that relate to the quality of the reef and the fish stocks – these
could be represented ultimately as quantities or enumerations, depending
on what is considered most appropriate by the domain experts.

The activity diagrams can also help to separate the social ecosystem
from the social system that it supports and sustains. Thus, we can en-
visage a separate model that provides the “social pressure” conditions to
drive fishing activity, and another separate model that provides inputs
on the development, agriculture and tourism aspect. Understanding the

CoSMoS in the Context of Social-Ecological Systems 65

interplay of separable models would be important in determining design
decisions in taking the domain model forward into a simulation develop-
ment.

Checking the model Checking the domain model can contribute to
confidence in fitness for purpose of both the modelling and the software
engineering basis of the simulator (see Figure 3). Consistency checking
also helps to remove from the software engineering model features of the
domain that are not relevant or at the wrong abstraction level relative
to the purpose of the model. Here, we also check that the domain model
uses UML concepts to represent domain concepts in a way that can be
used to develop software in a principled manner: we check for consistency
between diagrams, and review the semantics expressed in the diagrams.

Consistency checking for the diagrams presented above requires us
to check that the state diagrams are consistent with the class diagram.
For example, all actions implied in Figure 8 must be either explicitly
represented as operations in the Class diagram, Figure 7, or clearly as-
sociated to external events. Tables 2 to 4, in the Appendix, summarise
the consistency analysis of Person.

In relation to soft elements, consistency checking of the domain model
cannot be exhaustive. Since the domain model does not define mecha-
nisms and representations for concepts such as wealth and influence,
reef health and fish stock, consistency checking only points to fac-
tors that will be required in concrete representations of these elements
in the platform model and simulation engineering.

4 Commentary on CoSMoS Use

The WD-NACE project was well-advanced before the need for “CoSMoS
modelling” was identified. The CoSMoS process has been used to guide
development of the domain model. The development leads to identifi-
cation of further modelling needs, such as ways to model the processes
needed to express wealth and influence. This section is a retrospective
commentary on aspects of CoSMoS that were useful in developing the
model.

Software engineering roles: CoSMoS proposes use of roles. The key
function of a software engineering role is to determine responsibilities.
Each role can be taken by many researchers, and each researcher can take
many roles. The domain expert role here, as in other projects, expresses
the involvement of many individual domain researchers. In WD-NACE, a

66 Richard B. Greaves et al.

lot of data had already been collected by the various domain researchers.
It is not generally constructive, or relevant, for most of the individual
domain researchers to be involved in software engineering modelling, but
all researchers must be able to contribute to the domain understanding,
and, potentially, must be able to interpret simulation results. As in other
projects [9, 25], it proved useful to designate a spokesman for the domain
experts (John Forrester) who was responsible for liaison with the other
WD-NACE researchers and interpretation of domain concepts.

The role of modeller was led by Richard Greaves, with input from
Fiona Polack. Again, providing a lead modeller facilitates interaction
and decision making, whilst allowing software engineering discussion to
take place.

Discussion is currently under way about the role of implementer. In
simulation development, the implementer is often the same person as the
modeller, but this is not necessary, and is often not the case in software
engineering. Separating modelling and implementation roles necessitates
careful adherence to modelling and documentation standards, plus ongo-
ing validation. A commitment to seamless development, or clearly docu-
mented mappings across abstraction levels, is crucial. It is essential that
the implementer understand the purpose of simulation and the design
decisions that underlie the domain and platform models.

Separation of Concerns (Roles): Roles assist separation of concerns,
but are not the only element required. The domain experts seek to un-
derstand the complex interactions of the real social-ecological system,
whilst the software engineering roles (modeller, implementer) seek only
to capture the domain experts’ understanding and intuition about the
domain concepts in implementable ways.

Although different phases are led by different roles, the whole project
must be seen as collaborative. The implementer and modeller must be
prepared to seek guidance from, and discuss design implications with,
the domain expert. The domain expert must be prepared to challenge
details and quality of the models and implementation.

At the point where “CoSMoS modelling” was introduced, there was
confusion in the WD-NACE project over the purpose of existing models:
models of interacting agents, and of interacting feedback loops, existed,
but attempts to find a simulation for these models were stalled. In CoS-
MoS terms, we identified the existing models as domain “sketches” –
pictorial models used in the domain to express understanding, rather
than diagrams with explicit semantics that could be used to create a
software engineering artifact. Separation of concerns helps to keep the
process of describing the domain separate from the process of domain

CoSMoS in the Context of Social-Ecological Systems 67

modelling. The software engineering diagrams are used for software engi-
neering, not for domain exploration. Sometimes domain experts want to
use UML-like notations (or even variants of the domain model diagrams)
for their own modelling purposes. By treating domain-expert use of the
diagrams a part of the domain, not part of the domain model, we remove
the need to enforce syntactic and semantic consistency on models that
will not be used in software engineering.

The difference between the use of notations by a domain expert and
by modellers and implementers (software engineers) is summarised in
table 1. Note that a key element in the fitness-for-purpose of a simulation
is to be able to express the mappings between domain concepts and their
representations in the domain model (and on into the platform model and
simulation platform). This is essential information used in the validation
and calibration of the simulation platform and interpretation of results.

Table 1. Observed differences between domain expert use of diagrams and
software engineering use of diagrams. KISS and KIDS refer to “simplistic”
and “anti-simplistic” modelling, see [11].

Domain: domain expert use Domain Model: software engi-
neering use

Well-defined notations not essen-
tial

Well-defined syntax and software
engineering semantics essential

Any notational semantics may be
ignored

Syntactic and semantic consis-
tency must be checked

Diagrams express domain struc-
tures and interactions

Diagrams define potential com-
putational structures and interac-
tions

Exhaustive description and mod-
elling (KIDS) advocated

Abstraction to what is needed for
modelling purpose (KISS)

Justifications and rationale: CoSMoS encourages practicality over
academic rationale. At each phase of the simulation project, practical so-
lutions are needed to expedite good-quality research and a good-quality
software engineering.

For example, in WD-NACE, the domain sketches focus on process,
but there was little clarity over the components of the system. As usual in
a CoSMoS (or software engineering) project, this led to some essentially
arbitrary decisions about the domain modelling notation to be used. The
domain expert and modeller were aware that some people use UML no-
tations to design simulators; the modeller was familiar with the UML

68 Richard B. Greaves et al.

class diagram notation; the domain expert felt that they could under-
stand class diagrams. Thus, they decided to use UML notations for the
WD-NACE models. It is important to note that here, as in many other
projects, there is no academic justification for using UML – indeed, there
are plenty of academic reasons not to use UML, such as the fact that
most existing sketches were of process, not structure. The justification is
purely pragmatic: the relevant individuals felt confident in using UML
to express the domain model.

The decision about a modelling notation always has consequences.
A software engineering notation has explicit semantics. The decision to
use UML as-is (rather than a UML profile or domain specific variant of
UML) means that the diagrams have a specific object-oriented semantics.
For instance:

– a box on a class diagram represents a class; a class implies a set of
objects that have inherent identity, conform to the type of the class,
support the methods of the class, etc.

– a line on a class diagram represents an association; an association
is a link that allows objects of one class access to public data and
methods of linked objects (of another class).

In asking the domain expert to “validate” the class diagram, it is im-
portant that the domain expert understands that the notation here has
an inherent semantics. For instance, if an association links two classes,
this says no more than that the proposal for the simulator structure al-
lows objects of the linked classes to find out about objects of the other
class. The association does not express what happens in reality, and it
does not express how the interaction would happen in the simulator.

Validation in context: CoSMoS calls on software engineers to create
demonstrably fit-for-purpose software. This requires validation checks
between levels of abstraction, and verification checks of models, such
as the consistency checks described in Section 3.2. A full consistency
analysis of this sort reveals syntactic inconsistencies, such as missing
methods on classes. It also identifies underspecified elements, such as
conditions or invariants that require methods or data not represented
in the diagrams. The process of consistency analysis can prompt new
insights or questions to domain experts, identifying misunderstandings
or possible omissions and oversights in the domain model.

5 Discussion and Conclusions

Domain modelling in approaches such as CoSMoS is an iterative process.
We have striven at every step to be clear about the assumptions made

CoSMoS in the Context of Social-Ecological Systems 69

in the creation of the model. The ideas incorporated into the model
developed out of a simple initial model, enriched by guided use of relevant
literature. Each draft is discussed with the relevant domain experts in
Kenya, though the model remains to be reviewed by stakeholders.

The process seeks to make a model that is fit-for-purpose, and has
well-understood mappings from (simplifications of) the observed reality.
It is unclear whether this is what WD-NACE needs: social science does
not always distinguish clearly when it is seeking a theoretical model,
and when it wants to model reality. It is also unclear whether a model
of reality can be used to guide policy and decision options: a model that
is considered faithful to reality should faithfully express the effect of
changes in policy and decisions that have been made, but, on the other
hand, it is difficult to generalise from a model that is finely tuned to one
society and ecosystem. These questions need to be addressed before we
can draw any conclusions about the ultimate value of principled mod-
elling and simulation in social-ecological systems research of this sort.

The domain model summarised here represents a unified social and
ecosystems model that combines soft and physical elements. In many
ways, this is just the start of the modelling of the WD-NACE domain.
The extent to which soft elements are modelled is limited: we represent
wealth and influence in the model, but do not give any detail of what
these mean. We do not model any mechanism of decision making or in-
fluence. We could extend the model, so that the class diagram (Figure
7) includes classes that represent regional and local government respon-
sible for policy, and research organisations that monitor the ecosystems
and advise government organisations. However, this does not address
the need to understand what the soft elements mean or how they inter-
act with the physical elements of the model. Furthermore, the purpose
of this domain modelling exercise was to represent the influences on
fishing and reef ecosystem health; the extra organisations all operate
through the local communities or villages, or on individuals already rep-
resented in the model. Alternatively, the WD-NACE researchers can use
the existing domain model as a starting point for understanding how
to incorporate existing social science models or measures of wealth and
influence, and we can then adapt the domain model as necessary to sup-
port this. It is possible that parts of the STELLA model may prove to
be more appropriate for the soft-element modelling of wealth and in-
fluence than the UML notations; this would require mapping between
domain concepts represented in UML and STELLA. Alternatively, “in-
fluences” might be represented systematically as rule-bases, with values
taken from databases of representative data 7.

7 Suggested by WD-NACE researcher, Richard Taylor (SEI, Oxford)

70 Richard B. Greaves et al.

The domain model here is expressed in UML. CoSMoS does not dic-
tate UML. Here, the choice of notation reflected the specific experience
of individuals involved in WD-NACE, and was purely practical. The
CoSMoS philosophy supports pragmatic engineering, but, in this case, it
is arguable that UML, and particularly the “standard” UML approach
of starting by deriving a class diagram, is a poor choice. The existing
STELLA model uses a metaphor of stocks and flows, and is essentially
a behavioural model. The social-ecological system is a set of interacting
behaviours. There is thus a significant level of interpretation needed to
identify UML classes, which could inhibit checking of the new domain
model by those trained in STELLA modelling. It would probably be
useful for the modellers to work with the relevant domain experts to
cross-check the STELLA model and the UML activity diagrams, and
then to conduct a systematic consistency check between the UML activ-
ity diagrams and the other components of the UML domain model.

Overall, the CoSMoS philosophy, and guidance from software en-
gineers who have used CoSMoS ideas in other simulation and mod-
elling projects, has brought clarity to the WD-NACE domain modelling.
However, it is still unclear whether, in the longer term, the software-
engineering emphasis of the UML domain model described here is ap-
propriate for the WD-NACE project: this is a good approach if a fit-for-
purpose agent-based simulator is eventually required, but for domain
understanding and expression, a less rigorously-enforced modelling ap-
proach (which could still use UML, but worry less about consistency
checking and engineering correctness) might be sufficient.

Acknowledgments

The WD-NACE project supports the work of John Forrester and Richard
Greaves. Fiona Polack’s contribution builds on the work of the CoSMoS
project, funded by UK EPSRC. WD-NACE is a Programme Framework
Grant funded jointly by the UK Department for International Devel-
opment, NERC and ESRC, under the Ecosystems Services for Poverty
Alleviation (ESPA) programme. WD-NACE also supports the work of
David Obura (CORDIO, Kenya), whose permission to use figure 5 is
acknowledged with thanks.

References

[1] P. S. Andrews, F. A. C. Polack, A. T. Sampson, S. Stepney, and
J. Timmis. The CoSMoS Process, version 0.1. Technical Re-
port YCS-2010-450, Dept of Computer Science, Univ. of York, 2010.
www.cs.york.ac.uk/ftpdir/reports/2010/YCS/453/YCS-2010-453.pdf.

CoSMoS in the Context of Social-Ecological Systems 71

[2] J. Barron, S. Noel, M. Malesu, A. Oduor, G. Shone, and J. Rockström.
Agricultural water management in smallholder farming systems: the value
of soft components in mesoscale interventions. Stockholm Environment
Institute, 2008.

[3] P. Checkland and J. Poulter. Learning for action: a short definitive ac-
count of soft systems methodology and its use for practitioner, teachers,
and students. Wiley, 2006.

[4] P. Collard and S. Mesmoudi. How to prevent intolerant agents from high
segregation? In ECAL, pages 168–175. MIT Press, 2011.

[5] R. Costanza, D. Duplisea, and U. Kautsky. Ecological modelling on mod-
elling ecological and economic systems with stella. Ecological Modelling,
110:1–4, 1998.

[6] R. Costanza and T. Maxwell. Spatial ecosystem modelling using parallel
processors. Ecological Modelling, 58:159–183, 1991.

[7] S. Coulthard, D. Johnson, and A. McGregor. Poverty, sustainability and
human wellbeing: A social wellbeing approach to the global fisheries crisis.
Global Environmental Change, 21(2):453–463, 2011.

[8] B. de Vries and A. Petersen. onceptualizing sustainable development: an
assessment methodology connecting values, knowledge, worldviews and
scenarios. Ecological Economics, 68:1006–1019, 2009.

[9] A. Droop, P. Garnett, F. A. C. Polack, and S. Stepney. Multiple model
simulation: modelling cell division and differentiation in the prostate. In
Workshop on Complex Systems Modelling and Simulation, pages 79 –
112. Luniver Press, 2011.

[10] B. Edmonds. Bootstrapping knowledge about social phenomena using
simulation models. Journal of Artificial Societies and Social Simulation,
13(1):8, 2010.

[11] B. Edmonds and S. Moss. From KISS to KIDS an ‘anti-simplistic mod-
elling approach. In Multi Agent Based Simulation, volume 3415 of LNCS,
pages 130–144. Springer, 2005.

[12] M. Étienne. Companion modelling: a tool for dialogue and concerta-
tion. In Biodiversity and stakeholders: concertation itineraries (Technical
Notes 1), pages 44–52. Biosphere Reserves UNESCO-MAB, 2006.

[13] M. Fowler and K. Scott. UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Longman, 2 edition, 2000.

[14] F. Franzén, G. Kinell, J. Walve, R. Elmgren, and T. Söderqvist. Par-
ticipatory social-ecological modeling in eutrophication management: the
case of Himmerfjärden, Sweden. Ecology and Society, 16(4):27, 2011.

[15] T. Ghetiu, F. A.C. Polack, and J. Bown. Argument-driven validation of
computer simulations – a necessity rather than an option. In VALID,
pages 1–4. IEEE, 2010.

[16] V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske,
J. Goss-Custard, T. Grand, S. Heinz, G. Huse, A. Huth, J. U. Jepsen,
C. Jørgensen, W. M. Mooij, B. Müller, G. Peer, C. Piou, S. F. Railsback,
A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger, E. Strand,
S. Souissi, R. A. Stillman, R. Vabø, U. Visser, and D. L. DeAngelis. A

72 Richard B. Greaves et al.

standard protocol for describing individual-based and agent-based mod-
els. Ecological Modelling, 198:115–126, 2006.

[17] V. Grimm, U. Berger, D. L. DeAngelis, G. Polhill, J. Giske, and S. F.
Railsback. The ODD protocol: A review and first update. Ecological
Modelling, 221(23):2760 – 2768, 2010.

[18] E. Kemp-Benedict, S. Bharwani, and M. Fischer. Using matching meth-
ods to link social and physical analyses for sustainability planning. Ecol-
ogy and Society, 15(3), 2010.

[19] M. Kiran, P. Richmond, M. Holcombe, L. Shawn Chin, D. Worth, and
C. Greenough. FLAME: simulating large populations of agents on parallel
hardware architectures. In AAMAS, pages 1633–1636, 2010.

[20] D. Malleret-King. A Food Security Approach to Marine Protected Area
Impacts on Surrounding Fishing Communities: the Case of Kisite Marine
National Park in Kenya. PhD thesis, Biological Sciences, University of
Warwick, 2000.

[21] S. C. Mangi and C. M. Roberts. Quantifying the environmental impacts of
artisanal fishing gear on Kenya’s coral reef ecosystems. Marine Pollution
Bulletin, 52:1646–1660, 2006.

[22] L. Padgham and M. Winikoff. Prometheus: A methodology for developing
intelligent agents. In AOSE III, volume 2585 of LNCS, pages 174–185.
Springer, 2003.

[23] F. A. C. Polack. Arguing validation of simulations in science. In Workshop
on Complex Systems Modelling and Simulation, pages 51–74. Luniver
Press, 2010.

[24] F. A. C. Polack, P. S. Andrews, T. Ghetiu, M. Read, S. Stepney, J. Tim-
mis, and A. T. Sampson. Reflections on the simulation of complex systems
for science. In ICECCS, pages 276–285. IEEE Press, 2010.

[25] F. A. C. Polack, A. Droop, P. Garnett, T. Ghetiu, and S. Stepney. Simu-
lation validation: exploring the suitability of a simulation of cell division
and differentiation in the prostate. In Workshop on Complex Systems
Modelling and Simulation, pages 113 – 133. Luniver Press, 2011.

[26] N. Powell and M. Osbeck. Approaches for understanding and embedding
stakeholder realities in mangrove rehabilitation processes in Southeast
Asia: lessons learnt from Mahakam Delta, East Kalimantan. Sustainable
Development, 18(5):260–270, 2010.

[27] T. C. Schelling. Dynamic models of segregation. Journal of Mathematical
Sociology, 1(2):143–186, 1971.

Appendix: Validation of Person Modelling

This appendix presents a summary of consistency checks described in
section 3.2, focusing on the Person class and associated UML state dia-
gram. The consistency checks systematically consider the representation
of common abstract-syntax concepts (based on the UML 2.x metamodel

CoSMoS in the Context of Social-Ecological Systems 73

concepts8) between and within the models. In each table, entries pre-
ceded by ** explain how the consistency requirement is, or could be,
met.

Table 2. Results of consistency checks (Section 3.2) on the Person state dia-
gram (Figure 8) and class diagram (Figure 7)

State diagram ele-
ment

Consistency summary

Alive state not needed: any Person object currently repre-
sented in the system is alive

Other states and sub-
states

Person.role records the current
status of the object. The domain
of Person.role is an enumeration,
{child, student, ill/dependent, domestic,
farmer, fisher, trader, career, labourer,
tourism}
** Person has an operation, changeRole() to
change the value of this attribute; this needs
to be called as an action on the transitions be-
tween these states

Condition, household
can pay

** Condition needs a threshold calculation us-
ing Household.wealth and the roles/incomes
of the people who make up the household

** Household needs an operation to calculate
its ability to pay for education

Condition, Can pay ** Condition needs a threshold calculation us-
ing Person.wealth

** Person needs an operation to calculate its
ability to pay for education

Condition, Has farm assumed to be a precondition of the opera-
tion to change status: the precondition can
be fulfilled by prompting for confirmation that
the Person object of which the role is being
changed to farmer has access to land

** define precondition on
Person.changeRole() where the target
role is Farmer

8 www.omg.org/spec/UML/

74 Richard B. Greaves et al.

Condition, Has stock assumed to be a precondition of the operation
to change status: the precondition can be ful-
filled by prompting for confirmation that a Per-
son object of which the role is being changed
to trader has access to stock

** define precondition on
Person.changeRole() where the target
role is Trader

Condition, Has boat /
gear

assumed to be a precondition of the operation
to change status: the precondition can be ful-
filled by prompting for confirmation that a Per-
son object of which the role is being changed
to fisher has access to a boat or fishing gear

** define precondition on
Person.changeRole() where the target
role is Fisher

Condition, Has qualifi-
cations

assumed to be a precondition of the operation
to change status: the precondition can be ful-
filled by prompting for confirmation that a Per-
son object of which the role is being changed
to career has the appropriate qualifications

** define precondition on
Person.changeRole() where the target
role is Career

Table 3. Results of consistency checks (Section 3.2) on the class diagram
(Figure 7)

Class diagram ele-
ment

Consistency summary

Person.wealth attribute recording a measure of wealth

** need to define wealth, and determine a do-
main for this attribute

** need operations on Person that set or cal-
culate and update wealth

Person.role see above

Person.fishing Boolean attribute recording whether the per-
son is currently engaged in fishing

** need an invariant that Person.fishing is
false unless Person.role is fisher

Person.changeRole() see above

CoSMoS in the Context of Social-Ecological Systems 75

Person.decideToFish() operation assessing overall influences and de-
termining whether Person.fishing should be
false or true: the operation executes period-
ically, and if it establishes a change to true,
initiates a change of role (which checks precon-
ditions and sets Person.role as appropriate)

** need to establish how influences (asso-
ciation ends linking Person object to their
Household, Village and Community, and any
other Person objects in kin associations with
the object) are used to determine fishing activ-
ity, and to express this in operation details

** need relevant operations on Household,
Village and Community to provide required in-
formation to Person

** need attribute and operations on Person

to represent how that Person influences kin

Person objects

Person.doFishing() operation that models the fishing activity of
a Person whose role is fisher and for whom
fishing is true

** need to determine how the operation affects
Fish Stock.population and Reef.ecosystem

health

** need relevant operations on Fish

Stock.population and Reef.ecosystem

health to provide any required information to
Person

association end,
damages

Person calls Reef.damageHealth() with ap-
propriate parameter values. This operation
call is directly related to the effect of
Person.doFishing() (above)

association end,
depletes

Person calls FishStock.depletePop() with
appropriate parameter values. This opera-
tion call is directly related to the effect of
Person.doFishing() (above)

association end,
impact wealth

Reef calls an operation on Person that modifies
Person.wealth according to relevant parame-
ters based on Reef.ecosystem health with ap-
propriate parameter values. The operation only
applies if fishing is true

** the association end would call the wealth-
modification operation noted above

76 Richard B. Greaves et al.

Table 4. More results of class diagram (Figure 7) consistency checks (Section
3.2)

Class diagram un-
named association
ends

Consistency summary

with Person association end identifies kin objects whose in-
fluence should be heeded

with Household (ag-
gregation)

association end identifies Household to which a
Person object belongs, whose influence should
be heeded

with Household Person calls Household.promptFishDecision()
to access information needed to determine
whether to fish or not: uses aggregation link to
identify relevant household, and passes result
as a parameter of Person.decideToFish()

with Village (aggre-
gation)

association end identifies Village to which a
Person object belongs, whose influence should
be heeded

with Village Person calls Village.promptFishDecision()

to access information needed to determine
whether to fish or not: uses aggregation link to
identify relevant household, and passes result
as a parameter of Person.decideToFish()

with Community (ag-
gregation)

association end identifies Community to which a
Person object belongs, whose influence should
be heeded

with Community Person calls Community.promptFishDecision()
to access information needed to determine
whether to fish or not: uses aggregation link to
identify relevant household, and passes result
as a parameter of Person.decideToFish()

A Pattern Language for Scientific

Simulations

Susan Stepney

Department of Computer Science, University of York, UK

Abstract. For computer-based simulations to be scientifically
useful and scientifically credible, they need to be developed to
high standards, and argued fit-for-purpose. The CoSMoS project
has developed an approach to support such development, and
codified its approach in a pattern language. Here we overview
this pattern language, and discuss several example simulation
development patterns and antipatterns.

1 Introduction

Computer-based simulation is a key tool in many fields of scientific re-
search. In silico experiments can be used to explore and understand
complex processes, to guide and complement in vitro and in vivo exper-
iments, to suggest new hypotheses to investigate, and to predict results
where experiments are infeasible. Simulation is an attractive, accessible
tool: producing new simulations of simple systems is relatively easy. But
it is also a dangerous tool: simulations are often complex, buggy, and
difficult to relate to the real-world system.

A simulation needs to be both scientifically useful to the researcher,
and scientifically credible to third parties; it needs to have the properties
of a well-designed scientific instrument. The CoSMoS project has been
developing an approach to simulation of complex systems that supports
such development of simulations as a scientific instruments. The CoSMoS
approach emphasises two key aspects: the use of models to capture the
scientific domain and the simulation platform; and the close co-working
of scientific domain experts and simulation software engineers. This re-
quires the development of a suite of models, of the scientific domain, of
the simulation platform, and of the simulation results, in addition to the
simulation platform implementation. It also provides an approach for de-
veloping a rigorous argument of “fitness for purpose” of the simulation
for its intended task.

The CoSMoS approach is generic: it does not mandate a particular
modelling technique, or particular implementation language. What it

78 Susan Stepney

does mandate is the careful and structured use of models and arguments,
to ensure that the simulation both is well-engineered, and seen to be
well-engineered. In order to help developers through this careful and
structured approach, we have developed a pattern language to help guide
development, promote good simulation engineering practice, and warn of
potential pitfalls. This paper overviews the CoSMoS pattern language.

The structure of the rest of the paper is as follows. Section 2 overviews
the CoSMoS approach and its main features and components. Section 3
overviews the pattern language approach, and defines the pattern tem-
plates used in this paper. Section 4 presents several specific example
patterns and antipatterns. Section 5 concludes.

2 Overview of the CoSMoS approach

The CoSMoS approach enables the construction and exploration of sim-
ulations for the purpose of scientific research. It has been designed to be
adaptable both to a variety of simulation problems and to changing cir-
cumstances during simulation construction and use. Application of the
approach should be tailored to suit the criticality and intended impact
of the research outcomes.

The construction and use of simulations is a necessarily interdisci-
plinary endeavour between scientists who study a particular domain (the
domain experts), and software engineers who construct simulations to fa-
cilitate the study of that domain (the developers). Together, the domain
experts and developers are involved in open-ended scientific research: the
simulations are used as a tool to support theory exploration, hypothesis
generation, and design of real-world experimentation.

To run computer simulations we need to engineer a simulation plat-
form. A properly calibrated simulation platform is the scientific instru-
ment, the basis for running multiple simulation experiments. To engineer
such a platform requires us to explicitly represent some knowledge of the
system being studied in a form that can be implemented on a computer.
This representation, the source code, is either designed manually by the
developers or automatically generated from a higher-level description.

In many existing approaches the source code is the only explicit de-
scription of the aspects of the target domain that are being simulated.
Source code contains numerous implicit assumptions (including abstrac-
tions, simplifications, axioms, idealisations, approximations) concerning
both the scientific aspects of the work, and the engineering design of the
simulation platform. Source code also contains many implementation de-
tails, which are needed to make the simulation run on a computer, but

A Pattern Language for Scientific Simulations 79

are not part of the underlying scientific model. Hence source code is not
a satisfactory basis for modelling.

To mitigate inappropriate assumptions in the design of simulation
platforms, and to have greater confidence that simulation results can
actually tell us something that relates to the real system being studied,
we use a series of related models to drive and describe the development
of the simulation platform and simulation results generated from its use.
Systematic development assists interaction between domain experts and
developers, and improves our confidence in, and interpretation of, the
results of simulations.

2.1 Phases

We identify three main phases in a simulation project.

Discovery, or “deciding what scientific instrument to build”. This es-
tablishes the scientific basis of the project; identifies the domain of
interest, models the domain, and sheds light on scientific questions.

Development, or “building the instrument”. This produces a simula-
tion platform to perform repeated simulation, based on the output
of discovery.

Exploration, or “using the instrument in experiments”. This uses the
simulation platform resulting from development to explore the sci-
entific questions established during discovery.

These phases are not intended to be performed purely sequentially. A
project naturally begins with a discovery phase followed by development
and then exploration. But many iterations of discovery, development and
exploration may be required to build a robust, fit for purpose instrument.
The separation into phases helps provide a focus on what particular
pieces of information are needed at each phase for each model.

Indeed, some projects might not perform all phases. A prior project
may have performed the necessary discovery, and only development and
exploration is needed (although it will be necessary to check that the
assumptions of the prior discovery phase are valid for this project). Sim-
ilarly, a suitable existing simulation platform might exist, and only the
exploration phase is followed in this project (again, it will be necessary to
check that the assumptions underlying the existing simulation platform
are valid for this project). On the other hand, it may be that only the dis-
covery phase occurs, and discovers that a simulation is not appropriate,
or not needed.

80 Susan Stepney

domain
domain
model

platform
model

results
model

simulation
platform

Fig. 1. Relationship between simulation components; arrows represent flows
of information. These are all framed by the research context.

2.2 Models

Our simulation approach uses the following model concepts (figure 1):
domain, domain model, platform model, simulation platform, and results
model.

Each of these components has a different role to play in the building,
verifying, and use of the simulation:

Domain represents the real-world system of study.
Domain Model encapsulates understanding of appropriate aspects of

the domain. It focuses on the scientific understanding; no simulation
implementation details are considered.

Platform Model comprises design and implementation details for the
simulation platform, based on the domain model concepts.

Simulation Platform encodes the platform model into a software and
hardware platform with which simulation experiments can be per-
formed.

Results Model encapsulates the understanding of outputs and results
from simulation experiments, in domain terms, enabling comparison
with results from domain experiments.

2.3 Experiments

The models described above are used to build the simulation platform.
The platform can be thought of as a computational implementation of
the model of the real world system under study.

The simulation platform can be used to run simulation experiments
that are analogies of the real world experiments run in the domain. The
results of a simulation experiment (after suitable translation into domain
terms, and data analysis, via the results model) can be compared to the
real world experimental results (see figure 2; the later Data Dictionary
and Calibration pattern descriptions have further details).

A Pattern Language for Scientific Simulations 81

domain
experiment Results

Model

Domain Model Platform Model

compare /
validate /
predict

inform /
translate platform model

parameters
domain model

parameters

domain expt
input model

simulation expt
results

platform expt
input model

domain expt
results

domain
data analysis

simulation
data analysis

domain model
dynamics

platform model
dynamics

Domain

domain
parameters

and dynamics

domain expt
input data

domain
raw output data

model

Sim Platform

simulation
platform

parameters

simulation
expt input data

simulation
raw output data

simulation
platform code

implement

simulation
experiment

inform /
translatemodel instantiate

experimental
results model

instanceinstance

Exploration

Discovery Development

Fig. 2. The relationship between the various models and phases, and how the
simulation platform is used to perform simulation experiments. See text for
details.

Initial runs are used to calibrate the simulation platform. This is
needed to determine how to translate domain parameters and variables
into their corresponding platform values (for example how to translate
between real-world time, and simulated time), and how to take simula-
tion experiment raw output data and analyse it to enable comparison
with domain results.

Subsequent runs can be used to validate the simulation. If these dis-
agree with domain experiments, it may be because:

– the variables and parameters are not being translated appropriately
(calibration may have overfit their values)

– there are faults in the platform model or in the simulation platform
implementation (the simulation platform has not been adequately
engineered)

– there are faults in the domain model (the science is imperfectly un-
derstood)

Once the simulation has been validated, experiment runs can be used
to make predictions about the results of domain experiments. Even in
such a case, predictions should be checked against real world data, par-
ticularly if the simulation experiment is being run outside the calibration
range of the instrument.

82 Susan Stepney

2.4 Arguments

To build confidence in a particular simulation-based study, the team
needs to argue the appropriateness of the entire simulation project (in-
cluding modelling and simulator development, input data, and analysis
of results). This requires an argument, based on evidence, that the sim-
ulation platform is fit for purpose, and is being used appropriately to
perform the simulation experiments. This argument can be used to drive
the shape of the simulation development process: it is easier to argue a
system is fit for purpose if the development has been guided with such
a need in mind, and the system is more likely to be valid if it has been
structured in such a way.

We use the terms “fit for purpose” (with the meaning “good enough
to do the job it was designed to do” [26]) and “appropriate” for our ar-
gument structure. These terms emphasise that they are relative, to the
simulation purpose, and hence that there is a need to revisit arguments
should that purpose change. We choose not use more common termi-
nology such as “valid” or “correct”. These terms have implications of
being absolute terms: “this instrument is correct”, as opposed to “this
instrument is appropriate for a given purpose”. Hence these terms do
not capture the need to revisit arguments if circumstances change. Ad-
ditionally, they have implications of being either true or false: something
is either “valid” or “invalid”, whereas we want to capture a continuum
of possibilities, allowing a simulation platform to have degrees of fitness
for purpose.

An appropriateness argument is usually incomplete: its purpose is to
capture the understanding about fitness for purpose of its audience, so
that it can be referenced in future, challenged and revisited. A thorough
and fully documented argumentation exercise is unnecessary in most
situations, particularly in cases where the simulation criticality is low.

As well as documenting what you do, and arguing that it is the right
thing to do, it is important to document what you don’t do, and argue
why it would be wrong to do it. This saves much grief later in the project,
when a previously dismissed approach is retried, and the reason for its
dismissal rediscovered.

There are two approaches to arguing the fitness for purpose: retro-
spectively, after the simulation platform has been developed, or incre-
mentally, as the development of the simulation platform proceeds.

3 Patterns

As can be seen, the CoSMoS approach has many components: phases,
models, implementations, arguments. In order to help structure a sim-

A Pattern Language for Scientific Simulations 83

ulation project, the approach is captured in the CoSMoS pattern lan-
guage [33]. This pattern language provides the structure, detail, and ra-
tionale for developing all the necessary components, to aid the developer
in producing a high quality, scientifically viable simulation instrument.

In 1977, Christopher Alexander and his co-authors published A Pat-
tern Language [1], one in a series of books “intended to provide a com-
plete working alternative to our present ideas about architecture, build-
ing, and planning”. It is a handbook of 253 patterns, where “Each pat-
tern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without
ever doing it the same way twice.” [1, p.x]. The patterns describe how
quality buildings should be designed, and together provide a language
covering a wide range of spatial scales, from whole towns, through small
clusters of buildings, and individual buildings, to tiny detailing.

And that, as far as the computing community goes, would have been
that, were it not that the concept of Patterns inspired a group of software
engineers. Buildings are not the only things described by “architecture”:
software engineering uses the same word to describe its own structuring
concepts. In 1995, the so-called “Gang of Four” published Design Pat-
terns [13], which took Alexander’s concept and applied it, to produce a
catalogue of patterns found in good software architectures. Things have
not looked back: there are now analysis patterns [11], coding patterns [5],
patterns conferences and catalogues [7, 21, 27, 38], antipatterns [6, 25],
metapatterns (patterns that describe patterns), and more (including ar-
guments that the whole software patterns community have completely
missed Alexander’s point [12]).

The initial flurry of publications may have slowed somewhat since
those early days, but Patterns are now part of the everyday culture of
software engineering. One impact of Alexander’s ideas, as adapted by the
Gang of Four, on software development has been to make it clear that
there is much more to object-oriented architecture than just the single
concept of an object. The patterns provide a simple vocabulary, letting
us all talk of the Visitor Pattern, or the Factory Pattern [13], without
having to explain what we mean.

3.1 Pattern template

It is important that a pattern is a practical, tried-and-tested solution to
a problem, not merely something the pattern writer hopes or theorises
might be a good solution.

We use the following template to document a pattern:

84 Susan Stepney

Pattern Template

Intent

What the pattern is for; what its use will achieve.

Context

The place or circumstance where the pattern is applicable.

Discussion

An explanation of what the pattern provides, and how to use it. This
may include references out to other patterns (formatted as the name of
the pattern, followed by the page number where it is defined).

Summary

A pithy summary of how to achieve the pattern’s intent.

Related patterns

A list of related patterns (not otherwise mentioned in the body) and
antipatterns (common mistakes that may be made when applying this
pattern).

We refer to a pattern in the text by its name, in sans serif font: Pattern
Template. In the pattern catalogue, we also give the page number where
the referenced pattern is documented. However, in this paper, only a few
patterns are documented, so instead we provide appendix A documenting
its intent.

A pattern language provides a vocabulary for talking about a problem
situation. This is analogous to the manner in which the names of the
modelling concepts in Domain Driven Design [9] provide a vocabulary
for talking about a software system. A full pattern language is more
than just a vocabulary, however. As in Alexander’s original work [1],
a full language is morphogenetic, in that it provides a way composing
patterns to building a full solution to a problem. Patterns refer to other
patterns, and the consequences of using one pattern impact what other
patterns are relevant and applicable. Such a full pattern language is
much harder to develop; the CoSMoS pattern language provides some
such structure, but is not a fully morphogenetic language yet.

A Pattern Language for Scientific Simulations 85

3.2 Anti-pattern template

Patterns provide guidance on what to do. It is just as important to give
guidance on what not to do, particularly when this superficially appears
to be a good idea, a clever shortcut, a sensible compromise, or even
just normal practice. Antipatterns [6, 25] provide a means to give such
guidance. An antipattern documents a pattern of bad behaviour or an
often repeated mistake, together with a solution of what to do instead,
or how to recover from the mistake. The solution is often a pointer to
which pattern(s) to use instead.

We use the following template to document an antipattern:

Antipattern Template

Problem

What the problem is.

Context

The place or circumstance where the mistake is often made.

Discussion

Further discussion of the problem.

Solution

A pithy summary of what to do instead, or how to recover from the
mistake.

We refer to an antipattern in the text by its name, in italic sans serif
font: Antipattern Template. In the pattern catalogue, we also give the
page number where the referenced antipattern is documented. However,
in this paper, only a few antipatterns are documented, so instead we
provide appendix B documenting its problem statement.

In addition to antipatterns of the form “doing the wrong thing”,
antipatterns can often appear in pairs (for example, Analysis Paralysis
and Premature Implementation) where one of the antipatterns is “doing
too much” and its pair is “doing too little”.

86 Susan Stepney

4 Example patterns and antipatterns

This section describes and discusses a few selected examples of spe-
cific patterns and antipatterns, to help illuminate both the CoSMoS
approach, and the pattern language approach. The high level Research
Context pattern is important for setting the scope of a simulation project.
The more detailed Data Dictionary and Calibration patterns discuss some
of the finer points about ensuring that any experiments performed us-
ing the simulation platform can be related to domain concepts and re-
sults. Finally, the Amateur Science and Proof by Video antipatterns warn
against some problems that can occur when the underlying scientific
purpose for building the simulations is forgotten.

4.1 High level patterns

Patterns are used to capture the overall high-level structure of the CoS-
MoS approach. The top level CoSMoS Simulation Project is summarised
as:

– carry out the Discovery Phase
– carry out the Development Phase
– carry out the Exploration Phase

As noted earlier, not all these phases need be carried out in all projects.
Variants and options allow different routes to be followed through the
pattern language.

Drilling down one level, the Discovery Phase is summarised as:

– identify the Research Context
– define the Domain
– build a Domain Model
– Argue Appropriate Instrument Designed

The discussion accompanying these summaries captures the concepts
overviewed in §2. These summaries, outlining what is required to achieve
the pattern’s intent, are to be read in a declarative, rather than sequential
manner. The pattern says what needs to be achieved; the subpatterns say
how to achieve each part; but there is no requirement (beyond certain
dependencies) placed on the order these things need to be done.

As an example of a full high-level pattern, we present the Research
Context.

A Pattern Language for Scientific Simulations 87

Research Context

Intent

Identify the overall scientific context and scope of the simulation-based
research being conducted.

Context

A component of the Discovery Phase, Development Phase, and Exploration
Phase patterns. Setting (and resetting) the scene for the whole simulation
project.

Discussion

The role of the research context is to collate and track any contextual
underpinnings of the simulation-based research, and the technical and
human limitations (resources) of the work.

The research context comprises the high-level motivations or goals
for the research use, the research questions to be addressed, hypothe-
ses, general definitions, requirements for validation and evaluation, and
success criteria (how will you know the simulation has been successful).

The scope of the research determines how the simulation results can
be interpreted and applied. Importantly, it captures any requirements for
validation and evaluation of simulation outputs. It influences the scale
and scope of the simulation itself.

Consideration should be made of the intended criticality and impact
of the simulation-based research. If these are judged to be high, then an
exploration of how the work can be validated and evaluated should be
carried out.

Determine any constraints or requirements that apply to the project.
These include the resources available (personnel and equipment), and
the timescale for completion of each phase of the project. Any other
constraints, such as necessity to publish results in a particular format
(for example, using the ODD Protocol), should be noted at this stage.
This helps ensure that later design decisions do not violate the project
constraints. Ensure that the research goals are achievable, given the con-
straints.

As information is gathered during the project, more understanding of
the domain and the research questions will be uncovered. For example,
a Prototype might indicate that a simulation of the originally required
detail is computationally infeasible. The Research Context should be
revisited between the various phases, and also at any point where major

88 Susan Stepney

discoveries are made, in order to check whether the context needs to
change in light of these discoveries.

Summary

– document the research goals
– Document Assumptions relevant to the research context
– identify the team members, including the Domain Expert, the Domain

Modeller, and the Simulation Implementor, their roles, and experience
– agree the Simulation Purpose, including criticality and impact
– note the available resources, timescales, and other constraints
– determine success criteria
– revisit between phases, and at discovery points; if necessary, change

the context, and Propagate Changes

Related patterns

The research context scopes what should go in the models and simula-
tion: beware of modelling Everything but the Kitchen Sink.

It is important to identify if, when, why and how the research context
changes throughout the course of developing and using the simulation.
Beware of Moving the Goalposts.

4.2 Detailed patterns

Here we present two example related detailed patterns, that of the Data
Dictionary, and that of Calibration as mentioned in the Data Dictionary.

Data Dictionary

Intent

Define the modelling data used to build the simulation, and the exper-
imental data that is produced by domain experiments and the corre-
sponding simulation experiments.

Context

A component of the Domain Model, Platform Model, and Results Model.
There is observational data that is present in the Domain Model. It

needs to have instrumentation provided for in the Platform Model and the

A Pattern Language for Scientific Simulations 89

Simulation Platform, to extract the analogous data from the simulation.
This model is also used to capture the simulation outputs as part of the
Results Model.

Discussion

The Domain pattern includes identification of the data sources that pop-
ulate the Data Dictionary. There are two kinds of data in this model:

1. modelling data (parameter values): used to parameterise the various
models, by providing numbers, sizes, timescales, rates, and other
system-specific values; this usually comes from the raw data from
previous experiments, analysed and reduced using previous models
and theories.

2. experimental data: comprising the input values and output results of
the domain experiments and corresponding simulation experiments;
this is broken into three parts:
(a) Calibration data, for setting and tuning the platform parameter

values
(b) validation data, to allow the calibrated simulation platform to

be validated against the Domain Model
(c) unseen (predicted) data

The separate Calibration and validation data sets are analogous to
the training and test data sets used in machine learning [18]. This ap-
proach ensures that the simulation is not so tuned that it “overfits” the
calibration (training) data, but is generic enough to also fit the (unseen
during calibration) validation data.

In some systems there may be insufficient experimental data to per-
form calibration and validation. If so, an argument should be used to
demonstrate why this is not considered to be a problem.

Experimental data may be of varying quality. It may be a set of par-
ticular experimental values, with well-characterised errors and a mea-
sured statistical distribution. Or it may be more qualitative, such as
“quantity A is bigger than B”, “event C occurs before D”. Different
qualities of data will require different calibration comparisons.

If the simulation has high criticality (determined from the Research
Context), it would be reasonable to require a further set of truly unseen
validation data, to form the basis for an “acceptance test”, before the
system is used in any critical predictive capacity.

Domain values might be directly used in the platform model and sim-
ulation platform. For example, environmental parameters such as rainfall
rates in an ecological simulation, or robot sensor data in an engineering
simulation.

90 Susan Stepney

Fig. 3. The components of the Data Dictionary in the Domain Model, and how
they relate to components in the Platform Model and the Results Model.

Domain model parameters and data values are not necessarily iden-
tical to the platform model parameters and data values, however. For
example, a single value in a simulation could well be a proxy for a num-
ber of values in the domain. So there needs to be a well-defined transla-
tion mapping of these values between models, captured by the “informs”
arrow in figure 3. Similarly, the data output from a simulation run, cap-
tured and analysed in the Results Model, needs to be translated into
Domain Model terms. The form of these translations is guided by the
translation of domain model concepts to platform model concepts, and
the precise structure is determined by Calibration runs. Translation back
from results model to domain model equivalents (interpreting output in
real-world terms).

Once the simulator has been calibrated and validated, it can be used
to generate data for novel scenarios, to make predictions; the domain
model can potentially be augmented with new experimental data to test
those predictions.

It is possible to extract much more information from a simulation
than from a biological experiment, say, but if it is not observable (even

A Pattern Language for Scientific Simulations 91

indirectly, through surrogates, or by investigating predictions) in the
domain model, it is of little use.

The necessity for suitable data in the Results Model implies require-
ments on the Platform Model: it must be of a form that can produce the
required data, and must be suitably instrumented to output the data.

This careful separation of modelling data (used to build the model)
and experimental data (to be produced by the domain experiment or
analogous simulation experiment) is important, in order not to Program
In the Answer.

Summary

– build a model of the modelling data, used to build the simulation
– build a model of the experimental data that will provide the com-

parison between the Domain Model and the Results Model; include
considerations of data quantity and quality

– determine whether the domain experimental data is of sufficient
quantity and quality to provide adequate calibration, validation (and
if critical) unseen acceptance test data sets
• either: argue that the domain experimental data is sufficient
• or: argue why apparently insufficient data is not a problem in

this case

Related patterns

Visualisation Model, for presenting experimental output data to the user.

Calibration

Intent

Tune the Simulation Platform parameter values so that simulation results
match the calibration data provided in the Data Dictionary.

Context

A component of the Simulation Platform pattern.

Discussion

Calibration is a standard part of the manufacture and deployment of
any scientific instrument. It often refers to setting the correct zero point

92 Susan Stepney

domain
experiment

compare

translated
data, so'

domain expt
results, dr

domain
data analysis simulation

data analysis

domain
data, do

domain
raw output data

simulation
data, si

simulation raw
output data, so

simulation
experiment

translate
Tds

simulation expt
results, sr

translation
Tsd

Fig. 4. Summary of the components of the data model in the Domain Model,
how they relate to components in the Platform Model and the Results Model,
and the relationship that calibration aims to achieve.

and scale. Physical scientific instruments may need to be recalibrated if
environmental conditions change (such as temperature causing expansion
of parts of the device). Simulation scientific instruments should only need
to be calibrated once before use, but do need to be recalibrated if the
simulation platform is changed in any way (see Tweaking).

Calibration is required in order to bring the Simulation Platform to
an experimentation-ready state. Uncertainties in parameters (and po-
tentially in sub-models) are addressed by exploring the parameter space
(or trying different sub-models), in order to obtain from the simulation
platform outputs in agreement with calibration data. Calibration can
be performed through simple, manual adjustments or more elaborate
fitting, e.g. GAs, gradient techniques.

The various kinds of data involved are part of the Data Dictionary.
Figure 3 shows the various data components in detail. The calibration
data is used to adjust the translations and parameter values until the
Results Model data fits the Domain Model experimental results. Figure 4
shows a summary of this, indicating what the calibration exercise affects.

A Pattern Language for Scientific Simulations 93

The Domain Model has input data di (comprising both parameter
values and experimental data). A domain experiment based on this ex-
perimental data will produce raw output data. After the appropriate
scientific data analyses, this yields the domain results data, dr, conform-
ing to the Results Model.

To move to the simulated world, the domain data needs to be trans-
lated to appropriate Simulation Platform values si, using Tds. A simula-
tion experiment given input data si (simulation parameters and exper-
imental setup), will produce raw simulation data so. This needs to be
translated back into domain world terms, using Tsd, and then similarly
analysed into the Results Model, to yield the simulation results sr.

The calibration exercise is to adjust the translation functions Tds

and Tsd to achieve dr ≈ sr. The relationship between domain and sim-
ulated results need not be exact equality, but can be statistical simi-
larity, or qualitative agreement; the achievable relationship depends on
experimental data quantity and quality. The domain and simulation ex-
periments are not functions in the mathematical sense, since different
experimental runs on the “same” input data will yield different output
data, due to variation, experimental error, and stochasticity.

If the parameters are time varying, there is also the need to translate
from domain time to simulation time.

Calibration is a “data-fitting” process: translation function param-
eters are tuned so that the simulation adequately reproduces the cali-
bration data. As such, common data-fitting issues such as “overfitting”
need to be avoided. In particular, the form of the translation functions
should not be arbitrarily fitted; their design should be constrained and
guided by the kinds of changes made moving from domain to platform
models.

The translation, Tds may be relatively trivial (not much more than
the identity transformation) if the domain and platform models are very
similar. However, it might be sophisticated, if the platform model has
introduced differences, such as surrogate entities standing in for multiple
domain entities, change of dimension, non-trivial discretisation, and so
on. The complexity of the back-translation, Tsd will mirror that of Tds.
If information is lost by Tds that cannot be regained by some Tsd, then
the Domain Model must be defined so as not to need this information,
and the domain data analysis process will also lose it.

One technique that can be used to help calibrate surrogates is to
express parameters in terms of dimensionless quantities (for example,
the Rayleigh Number or the Reynolds Number) to minimise the effect
of unit choices and other changes.

94 Susan Stepney

The calibration data has to be selected to ensure good calibration.
It should be of broad enough span that the planned Simulation Experi-
ments will not be using the Simulation Platform “out of calibration”. The
validation data should have a similar span, and be kept separate and
independent of the calibration exercise to ensure a fair validation. The
accompanying argument should cover the choice, span, and independence
of this data.

Running experiments “out of calibration” (that is, in an area of ex-
perimental space not well covered by the calibration data) should be
done with caution. One reason for doing so it to explore which might be
the most fruitful areas for further domain experiments.

Calibration might not succeed: it might not be possible to tune the
simulation parameters to make the Simulation Experiment results con-
form sufficiently to the domain experiment results. This could indicate
a problem with the Domain Model, such as missing component or mech-
anism, or with the Platform Model, such as poor discretisation, or in-
appropriate approximations. In the simplest cases, the relevant model
should be changed (for example, by making some components platform
higher fidelity to better simulate the corresponding domain components),
remembering to Propagate Changes, recalibrate, and reargue as appropri-
ate. In more extreme cases, further domain experiments or hypotheses
might be needed to gain a more adequate Domain Model.

Summary

– select the calibration and validation data
– perform calibration, to produce a calibrated Simulation Platform suit-

able for performing Simulation Experiments
• determine the translation from domain data to simulation input

data
• determine the translation from simulation output data to domain

data
• run calibration Simulation Experiments, tuning parameter values

until the platform results match domain results to the required
accuracy

• fix these tuned parameter values in the calibrated Simulation
Platform

– use the validation data to ensure that calibration has not overfitted
the Simulation Platform

– argue that the calibration is appropriate for purpose

Related patterns

Beware of Living in Flatland.

A Pattern Language for Scientific Simulations 95

Do not confuse calibration with Sensitivity Analysis.

With these more detailed patterns, we see that not every item in
the summary is a further, more detailed pattern. Eventually, we reach
“primitive” tasks that do not require a pattern themselves, either because
they are simple, or because they are well-known tasks for which there is
an adequate literature.

4.3 Antipatterns

Here we present two example antipatterns, Amateur Science, which can
happen at the early stages of a simulation project, and Proof by Video,
which tends to happen later on.

Amateur Science

Problem

You do not engage with a domain expert, because you think you know
the domain science well enough.

Context

Building the Domain Model; making simplifying assumptions in the Plat-
form Model; performing platform Calibration; building the Results Model;
running a Simulation Experiment.

Discussion

While modelling it can be easy to use your own understanding of the
domain, rather than referring to the domain expert or relevant literature.
This understanding is, however, nearly always oversimplified and at too
shallow a level: even if a domain looks relatively straightforward from
the outside, it can have hidden subtleties and traps. After all, if it really
were that simple, there would be no need for a simulation instrument.

If you are finding it difficult to Document Assumptions about the Do-
main or Domain Model, you may be engaged in Amateur Science. The next
step up in sophistication is to fall into the Literature Only antipattern.

96 Susan Stepney

Solution

Engage with the Domain Expert, who will soon make it clear that the
real world domain “is more complicated than that”. But beware of Blind
Trust in the expert.

Proof by Video

Problem

The Visualisation Model is all there is.

Context

Building a Results Model during the Exploration Phase

Discussion

The visualised results from the simulation look superficially similar to
those from the domain (be it a static figure or an animation), and so you
judge the simulation to be a “success”. But there is no quantification of
the similarity of the results, so you cannot be sure the correspondence
is more than an optical illusion, and you cannot make any quantitative
statements or predictions.

Solution

Analyse the data from the simulation experiment, and compare the re-
sults quantitatively with domain experiment results, as specified by the
Data Dictionary. Argue how the comparison validates the simulation re-
sults.

Not to be confused with Debug By Video.

It is worthwhile to keep these antipatterns in mind, to help guard
against problems. The “related patterns” section of individual patterns
can warn of potential antipatterns relevant to that pattern (as in the
Calibration case). For an antipattern of the form “doing too little”, it can
also warn against the paired “doing too much” antipattern (as in the
Amateur Science case), and vice versa.

A Pattern Language for Scientific Simulations 97

5 Discussion and conclusions

The CoSMoS approach describes a collection of roles, artefacts, and ar-
guments that go into developing a simulation as a scientific instrument.
The pattern language outlined in this paper provides guidance for us-
ing roles and developing the artefacts and arguments. Three patterns
and two antipatterns have been given in detail, and several more have
been summarised (in the appendixes). The full pattern language [33] has
around one hundred patterns and antipatterns, covering various levels of
detail, phases of the simulation project, and variations on the approach.

Using a pattern language helps provide guidance for the simulator
developer in “bite sized” chunks, and provides a universal vocabulary
for talking about the development project. The patterns are based on
the CoSMoS project partners’ experience of developing a range of simu-
lations used as scientific instruments.

Acknowledgements

This work is part of the Complex Systems Modelling and Simulation
(CoSMoS) project, funded by EPSRC grants EP/E053505/1 and EP/
E049419/1. I would like to thank my CoSMoS project colleagues, and
pattern book [33] co-authors, for providing much of the raw material on
which this paper is based. Thanks also go to the anonymous referees,
whose comments have helped improve this paper.

CoSMoS project documentation of simulation, modelling and process
descriptions [3, 29, 30], of validation and argumentation [2, 16, 17, 28], of
various biological system simulation case studies [8, 10, 14, 15, 31, 32],
of environment orientation [22, 23], of metamodels [4, 24], and of the
CoSMoS workshop proceedings [34–37], is available from the CoSMoS
project website www.cosmos-research.org

References

[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacob-
son, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language:
towns, buildings, construction. Oxford University Press, 1977.

[2] Paul S. Andrews, Fiona Polack, Adam T. Sampson, Jon Timmis, Lisa
Scott, and Mark Coles. Simulating biology: towards understanding what
the simulation shows. In Stepney et al. [34], pages 93–123.

[3] Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney,
and Jon Timmis. The CoSMoS process, version 0.1: A process for the
modelling and simulation of complex systems. Technical Report YCS-
2010-453, Department of Computer Science, University of York, March
2010.

98 Susan Stepney

[4] Paul S. Andrews, Susan Stepney, Tim Hoverd, Fiona A. C. Polack,
Adam T. Sampson, and Jon Timmis. CoSMoS process, models, and
metamodels. In Stepney et al. [35], pages 1–13.

[5] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.
[6] William J. Brown, Raphael C. Malveau, Hays W. “Skip” McCormick III,

and Thomas J. Mowbray. AntiPatterns: refactoring software, architec-
tures, and projects in crisis. Wiley, 1998.

[7] James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages
of Program Design. Addison Wesley, 1995.

[8] Alastair Droop, Philip Garnett, Fiona A. C. Polack, and Susan Stepney.
Multiple model simulation: modelling cell division and differentiation in
the prostate. In Stepney et al. [35], pages 79–111.

[9] Eric Evans. Domain-Driven Design: tackling complexity in the heart of
software. Addison Wesley, 2004.

[10] Anton Jakob Flügge, Jon Timmis, Paul Andrews, John Moore, and Paul
Kaye. Modelling and simulation of granuloma formation in visceral leish-
maniasis. In CEC 2009, pages 3052–3059. IEEE Press, 2009.

[11] Martin Fowler. Analysis Patterns: reusable object models. Addison Wes-
ley, 1997.

[12] Richard P. Gabriel. Patterns of Software: tales from the software com-
munity. Oxford University Press, 1996.

[13] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns: elements of reusable object-oriented software. Addison
Wesley, 1995.

[14] Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Us-
ing the CoSMoS process to enhance an executable model of auxin trans-
port canalisation. In Stepney et al. [36], pages 9–32.

[15] Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an exe-
cutable model of auxin transport canalisation. In Stepney et al. [34],
pages 63–91.

[16] Teodor Ghetiu, Robert D. Alexander, Paul S. Andrews, Fiona A. C. Po-
lack, and James Bown. Equivalence arguments for complex systems sim-
ulations - a case-study. In Stepney et al. [37], pages 101–140.

[17] Teodor Ghetiu, Fiona A. C. Polack, and James L. Bown. Argument-
driven validation of computer simulations – a necessity rather than an
option. In VALID 2010:, pages 1–4. IEEE Press, 2010.

[18] Paolo Giudici. Applied Data Mining: Statistical Methods for Business and
Industry. Wiley, 2003.

[19] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent
Ginot, Jarl Giske, John Goss-Custard, Tamara Grand, Simone K. Heinz,
Geir Huse, Andreas Huth, Jane U. Jepsen, Christian Jørgensen, Wolf M.
Mooij, Birgit Müller, Guy Pe’er, Cyril Piou, Steven F. Railsback, An-
drew M. Robbins, Martha M. Robbins, Eva Rossmanith, Nadja Rüger,
Espen Strand, Sami Souissi, Richard A. Stillman, Rune Vabø, Ute Visser,
and Donald L. DeAngelis. A standard protocol for describing individual-
based and agent-based models. Ecological Modelling, 198(1-2):115–126,
2006.

A Pattern Language for Scientific Simulations 99

[20] Volker Grimm, Uta Berger, Donald L. DeAngelis, J. Gary Polhill, Jarl
Giske, and Steven F. Railsback. The ODD protocol: A review and first
update. Ecological Modelling, 221(23):2760–2768, 2010.

[21] Neil B. Harrison, Brian Foote, and Hans Rohnert, editors. Pattern Lan-
guages of Program Design 4. Addison Wesley, 2000.

[22] Tim Hoverd and Adam T. Sampson. A transactional architecture for sim-
ulation. In ICECCS 2010: Fifteenth IEEE International Conference on
Engineering of Complex Computer Systems, pages 286–290. IEEE Press,
2010.

[23] Tim Hoverd and Susan Stepney. Environment orientation: an architecture
for simulating complex systems. In Stepney et al. [37], pages 67–82.

[24] Tim Hoverd and Susan Stepney. Energy as a driver of diversity in open-
ended evolution. In ECAL 2011, Paris, France, August 2011. MIT Press,
2011.

[25] Andrew Koenig. Patterns and antipatterns. Journal of Object-Oriented
Programming, 8(1):46–48, 1995.

[26] Macmillan Dictionary. http://www.macmillandictionary.com/dictionary/
british/fit-for-purpose.

[27] Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors. Pattern
Languages of Program Design 3. Addison Wesley, 1998.

[28] Fiona A. C. Polack. Arguing validation of simulations in science. In
Stepney et al. [36], pages 51–74.

[29] Fiona A. C. Polack, Paul S. Andrews, Teodor Ghetiu, Mark Read, Susan
Stepney, Jon Timmis, and Adam T. Sampson. Reflections on the simu-
lation of complex systems for science. In ICECCS 2010, pages 276–285.
IEEE Press, 2010.

[30] Fiona A. C. Polack, Paul S. Andrews, and Adam T. Sampson. The
engineering of concurrent simulations of complex systems. In CEC 2009,
pages 217–224. IEEE Press, 2009.

[31] Fiona A. C. Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu, and
Susan Stepney. Simulation validation: exploring the suitability of a sim-
ulation of cell division and differentiation in the prostate. In Stepney
et al. [35], pages 113–133.

[32] Mark Read, Paul S. Andrews, Jon Timmis, and Vipin Kumar. A domain
model of experimental autoimmune encephalomyelitis. In Stepney et al.
[37], pages 9–44.

[33] Susan Stepney, Kieran Alden, Paul S. Andrews, James L. Bown, Alastair
Droop, Teodor Ghetiu, Tim Hoverd, Fiona A. C. Polack, Mark Read,
Carl G. Ritson, Adam T. Sampson, Jon Timmis, Peter H. Welch, and
Alan F. T. Winfield. Engineering Simulations as Scientific Instruments.
Springer, 2012. in preparation.

[34] Susan Stepney, Fiona Polack, and Peter Welch, editors. Proceedings of the
2008 Workshop on Complex Systems Modelling and Simulation. Luniver
Press, 2008.

[35] Susan Stepney, Peter Welch, Paul S. Andrews, and Carl G. Ritson, edi-
tors. Proceedings of the 2011 Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2011.

100 Susan Stepney

[36] Susan Stepney, Peter H. Welch, Paul S. Andrews, and Adam T. Sampson,
editors. Proceedings of the 2010 Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2010.

[37] Susan Stepney, Peter H. Welch, Paul S. Andrews, and Jon Timmis, edi-
tors. Proceedings of the 2009 Workshop on Complex Systems Modelling
and Simulation. Luniver Press, 2009.

[38] John Vlissides, James O. Coplien, and Norman L. Kerth, editors. Pattern
Languages of Program Design 2. Addison Wesley, 1996.

A Referenced patterns and their intent

Argue Appropriate
Instrument Designed

Present the basis of consensus that the sim-
ulation as a scientific or engineering instru-
ment is appropriate to its purpose and use

Calibration Tune the Simulation Platform parameter
values so that simulation results match the
calibration data provided in the Data Dic-
tionary

Data Dictionary Define the modelling data used to build the
simulation, and the experimental data that
is produced by domain experiments and the
corresponding simulation experiments

Debug By Video Use a visualisation of the simulation results
to help detect problems with the implemen-
tation

Development Phase Produce a Simulation Platform, based on the
output of Discovery Phase

Discovery Phase Establish the scientific basis of the project,
and build the Domain Model

Document
Assumptions

Ensure assumptions are explicit and justi-
fied, and their connotations are understood

Domain Identify the subject of scientific research:
the real-world system and the relevant in-
formation known about it

Domain Expert Identify the “owner”, or single point of con-
tact, for domain knowledge

A Pattern Language for Scientific Simulations 101

Domain Model Produce an explicit description of the rele-
vant domain concepts

Domain Modeller Identify those team members responsible
for producing and maintaining the Domain
Model

Exploration Phase Perform Simulation Experiments to explore
the scientific questions established during
Discovery Phase

ODD protocol Present the simulation details in confor-
mance with the ODD protocol [19, 20]

Platform Model From the Domain Model, develop a plat-
form model suitable to form the require-
ments specification for the Simulation Plat-
form

Propagate Changes Ensure that changes in one part of the sys-
tem propagate throughout, to ensure con-
sistency

Prototype Build an executable model to explore spe-
cific domain or implementation issues

Research Context Identify the overall scientific context and
scope of the simulation-based research be-
ing conducted

Results Model Encapsulate the understanding of outputs
and results from Simulation Experiments, in
Domain Model terms

Simulation
Experiment

Perform an in silico experiment using the
Simulation Platform

Sensitivity Analysis Discover how the uncertainties in the sim-
ulation output values depend on uncertain-
ties in the input and modelling parameter
values

Simulation
Implementor

Identify those team members responsible
for producing and maintaining the Simula-
tion Platform

Simulation Purpose Agree the purpose for which the simulation
is being built and used, within the research
context

102 Susan Stepney

Simulation Platform Develop the executable simulation platform
that can be used to run the Simulation Ex-
periment

Visualisation Model Visualise the Simulation Experiment results
of the Data Dictionary in a manner relevant
to the users

B Referenced antipatterns and their problem
statements

Amateur Science You do not engage with a domain expert,
because you think you know the domain sci-
ence well enough

Analysis Paralysis You are spending too much time analysing
and modelling the domain, trying to get ev-
erything perfect, and never getting to the
simulation

Blind Trust You accept everything the Domain Expert
tells you, even outside their own expertise

Everything but the
Kitchen Sink

You are putting irrelevant information or
detail into a model, just because you can

Literature Only You take the domain literature as the only
input to the Domain Model

Living in Flatland You are simulating a 2D space, and naively
translating the results to 3D reality

Moving the Goalposts You change the Research Context (for ex-
ample, you pose a new research hypothe-
sis), without checking that the models and
validity arguments still hold

Program In the
Answer

The results from the simulation are an in-
evitable consequence of the simulation pro-
gramming, not an emergent consequence of
the operation of the simulation

A Pattern Language for Scientific Simulations 103

Proof by Video The Visualisation Model is all there is

Premature
Implementation

You start writing Simulation Platform code
before having a proper understanding of the
domain

Tweaking You make a series of small, “unimportant”
changes to the working Simulation Platform

104 Susan Stepney

Simulating the Effects of

Anticoagulant Drugs Upon Blood

Clotting Dynamics

Alexey Goltsov, Gregory Goltsov, and Adam Sampson

Centre for Research in Informatics and Systems Pathology (CRISP),
University of Abertay Dundee, Dundee, DD1 1XF, United Kingdom

Abstract. Linking scales in both modelling and visualisation
is a key challenge in computational physiology. We have com-
bined two existing simulations of blood clotting – a large-scale
simulation of the physical interactions between platelets in the
bloodstream, and a detailed simulation of the chemical signalling
inside a platelet based on an accurate mathematical model –
and linked them to an interactive 3D visualisation, allowing re-
searchers to immediately see the tissue-scale results of changes
to cell-scale models.

A The Original Simulations

This work is based upon two existing, mature simulations. The first
simulation was constructed to explore the effects of combinations of an-
ticoagulant drugs such as aspirin and celecoxib upon blood clotting [1].
These drugs work by inhibiting the production of prostaglandin H syn-
thase (PGHS), a precursor of signalling molecules such as thromboxane,
a key factor in the activation and aggregation of platelets. Our kinetic
model of PGHS-1 catalysis within platelets was calibrated using in-vitro
and in-vivo experimental data.

The second simulation was developed as part of the TUNA project to
study the low-level platelet behaviours necessary for clotting to emerge [2]
and implements an agent-based model of spatial interaction using con-
current techniques for multicore and distributed simulation, allowing ex-
perimentation and cross-validation at realistic scales. The model was
later reworked using techniques developed by the CoSMoS project for
improved scalability.

Merging these two approaches enables interactive experimentation
with the effects of anticoagulant drugs in a realistic spatial environment.
The first simulation provides a biologically-accurate model of the key

106 Alexey Goltsov, Gregory Goltsov, and Adam Sampson

processes within a cell; the second provides the implementation tech-
nologies necessary to visualise the emergent effects of those processes at
larger scales.

B The Combined Simulation

Starting with our existing model of platelet chemical signalling, we spec-
ified and calibrated a characteristic subset of the model using a hybrid
Petri net approach. We designed a declarative embedded domain-specific
language (EDSL) for hybrid Petri nets, and developed a new signalling
simulator that could be embedded into the existing spatial simulation
enabling fine-grained parallelisation. We extended the spatial simulation
to model diffusion of multiple chemical signals with realistic concentra-
tions, and linked it to the new signalling simulation. We also built a
new immersive 3D visualisation for the simulation using the Cinder li-
brary, which allows easier navigation and exploration of the simulated
system, interactive adjustment of parameter values, and more effective
visualisation of cell properties (Fig. 1).

Fig. 1. Clotting in response to a wound in the combined simulator.

Simulating Blood Clotting Dynamics 107

The resulting simulation correctly reproduces the required domain
behaviours, and provides a number of reusable components for other
work within CRISP, integrating equational models of cell signalling with
CoSMoS-style models of spatial interaction. We are particularly inter-
ested in spatial aspects of cancer growth, and plan to couple the simu-
lation built in this project to our group’s biologically-accurate visualisa-
tion of cell signalling network dynamics, enabling the user to “zoom in”
from a physical view of the world to a conceptual view of the signalling
network within a chosen cell.

Acknowledgements

The authors would like to thank the Nuffield Foundation for support-
ing Gregory Goltsov’s work on this project through an Undergraduate
Research Bursary.

References

[1] Alexey Goltsov, Galina Lebedeva, Ian Humphery-Smith, Gregory Goltsov,
Oleg Demin, and Igor Goryanin. In silico screening of nonsteroidal
anti-inflammatory drugs and their combined action on prostaglandin H
synthase-1. Pharmaceuticals, 3(7):2059–2081, 2010.

[2] Carl G. Ritson and Peter H. Welch. A process-oriented architecture for
complex system modelling. Concurrency and Computation: Practice and
Experience, 22:965–980, 2010.

108 Alexey Goltsov, Gregory Goltsov, and Adam Sampson

