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Preface

The CoSMoS workshops series has been organised to disseminate best
practice in complex systems modelling and simulation, with its genesis
in the similarly-named CoSMoS research project, a four year EPSRC
funded research project at the Universities of York and Kent in the
UK. Funding for the CoSMoS project has now completed, but we have
continued to run the workshop series as a forum for research examining
all aspects of the modelling and simulation of complex systems. To allow
authors the space to describe their systems in depth we put no stringent
page limit on the submissions.

We are pleased to be running the eighth CoSMoS workshop as a satel-
lite event at the European Conference on Artificial Life (ECAL 2015),
York, UK. ECAL, along with its sister conference series ALife, is the lead-
ing international conference on artificially constructed living systems, a
highly interdisciplinary research area rich in complexity, which provides
a natural complement to the issues addressed by the CoSMoS workshop.

The main session of the workshop is based on five full paper and one
extended abstract submissions:

Andrews and Stepney present a small addition to the CoSMoS pat-
tern language: the Domain Experiment Pattern, which provides ad-
ditional structure for the Domain Model component in cases where
the experimental setup and procedure details are an important as-
pect of the simulation project

De’Bell uses the CoSMoS approach to build the first iteration of a
social system hierarchical network model and simulation, targetting
community empowerment in the health care domain

Greaves et al. present the details of a project using the CoSMoS ap-
proach to build a simulation to investigate a new theory for stem
cell decision making; the paper structures its presentation using the
CoSMoS pattern language

Hernandez et al. present the ‘action horizon’, a new tool for analysing
and counteracting destabilising events, to aid the control of complex
networks, and demonstrate its action by stabilising the well-known
chaotic predator-prey system

von Mammen et al. describe how they have integrated the CoSMoS
approach in the teaching of their graduate level Interactive Simula-
tion curriculum

Williams et al. provide an extended abstract outlining a Platform Model
of a complex immune system signalling pathway, using the X-Machine
modelling approach
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Our thanks go to all the contributors for their hard work in getting
these submissions prepared and revised. All submissions received multi-
ple reviews, and we thank the programme committee for their prompt,
extensive and in-depth reviews. We would also like to extend thanks to
the organising committee of ECAL 2015 for enabling our workshop to
be co-located with this conference. We hope that readers will enjoy this
set of papers, and come away with insight on the state of the art, and
some understanding of current progress in complex systems modelling
and simulation.
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The CoSMoS Domain Experiment

Model

Paul S. Andrews1,2 and Susan Stepney1,3

1 York Centre for Complex Systems Analysis, University of York, UK
2 Department of Electronics, University of York, UK

3 Department of Computer Science, University of York, UK

Abstract. The CoSMoS Domain Model contains information
about the real-world system we are attempting to model. The
system we are attempting to model and simulate may include
details on how that system can be manipulated, probed and
analysed and we may wish to capture the experimental setup
present in the Domain. Here we describe the relevant Domain
Experiment Model, and show its relationship to other core com-
ponents of the CoSMoS approach.

1 Introduction

CoSMoS provides a structured approach to enable the construction and
exploration of simulations for the purpose of scientific research. We cap-
ture the real work system of interest as a Domain Model. Depending on
the Domain and our Research Context, the system we are attempting
to model and simulate may include details on how that system can be
manipulated, probed and analysed through real-world experiments. In
such cases, we may wish to explicitly represent the experimental setup
present in the Domain. This we call the Domain Experiment Model, an
explicit component of the Domain Model. Here we describe the Domain
Experiment Model, showing its relationship to other core components of
the CoSMoS approach.

In section 3 we summarise the basics of the CoSMoS approach, fol-
lowed by section 3 in which we explore the experimental concepts present
in CoSMoS, and identify the need for a Domain Experiment Model. In
section 4 we show how the Domain Experiment Model can be incorpo-
rated as a component of the Domain Model and how it relates to the
Platform Model, and in section 5 we discuss running simulation experi-
ments.
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Fig. 1. The CoSMoS core components, which are developed within the Re-
search Context.

2 The CoSMoS Approach

The core CoSMoS philosophy revolves around engineering a properly
calibrated simulation platform that suits the criticality and intended
impact of the research outcomes. This simulation platform is considered
to be a scientific instrument [4] and is the basis for running multiple
simulation experiments that reveal insight into the modelled domain.

The whole process of simulator construction and use takes place
within an overall scientific research context. This context identifies the
goals and scope of the research being conducted, and includes explicit
statements of the simulation purpose, resources, constraints, assump-
tions, and success criteria. These elements of the research context drive
the design, implementation and use of the scientific simulators. Captur-
ing this process is achieved via a series of related core components that
explicitly describe specific aspects in the building, verifying, and use of
the simulator. Together they help provide confidence that simulation re-
sults can actually tell us something that relates to the real system being
studied.

The CoSMoS core components are explored in detail in [3]. They are
shown in figure 1 and summarised here:

Domain: a particular view or perspective of the part of the real world
that is the system of study. It describes what the simulation project
is “about”.

Domain Model: a model encapsulating the scientific understanding of
appropriate aspects of the domain. It provides the agreed scientific
basis and assumptions for the development of a simulation platform;
simulation implementation details are not considered in this model.

Platform Model: a model providing the high level specification of the
simulation platform, comprising design and implementation details,
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incorporating relevant domain model scientific concepts, research
context experimental requirements, and implementation constraints
and assumptions.

Simulation Platform: the encoding of the platform model into a cal-
ibrated software and hardware platform with which various simula-
tion experiments can be performed.

Results Model: a model that encapsulates the understanding of out-
puts and results from simulation experiments, in domain terms, en-
abling comparison with results from domain experiments.

3 CoSMoS and Experiments

Within the CoSMoS approach the concept of an experiment is present
at two stages: domain experiments, performed on a real world system
within the Domain, and simulation experiments, carried out within the
Simulation Platform. In common terminology, they are analogous to in
vivo/in vitro and in silico experimentation respectively.

A common end goal of a CoSMoS-based simulation research is to run
simulation experiments on the Simulation Platform that enable us to
build a Results Model that can be compared to the Domain Model and
provide insight back into the real Domain of study. To achieve this, the
Simulation Platform must allow us to run appropriate simulation exper-
iments that reflect the concepts of interest in the Domain. Specifically,
simulation experiments should allow us to select the appropriate model
components and behaviours, control the initialisation of key parameters,
and perform appropriate analyses via suitable statistics. These abilities
are explicitly represented within the Platform Model (via instrumenta-
tion), but ultimately stem from concepts within the Domain and Domain
Model.

These simulation experiments are performed to explore and under-
stand the behaviour of the simulation, and to compare that behaviour
with assumed or known Domain behaviours. There is a danger, however,
that the simulation experiments can be used to explore behaviours that
it is infeasible to observe or measure in the Domain, producing incom-
parable results. So in some cases, depending on the Domain and the
research context, it is sensible to ensure that the simulation experiments
mirror possible domain experiments, to help ensure comparable results.

The CoSMoS approach already has a specific place to identify and
capture simulation experiments, during the construction of the Platform
Model from the Domain Model in the Development phase. It also has
the Results Model, a description of the behaviours encoded within the
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Simulation Platform that are expressed from running simulation exper-
iments. But it has not provided explicit support for capturing domain
experimental details along with the rest of the Domain Model during the
Discovery phase. The Domain Experiment Model is introduced here as
a means of doing so.

The Domain Model can be viewed as describing the behaviours pre-
sent in the Domain that are expressed when probed via domain experi-
ments. The Domain Experiment Model is the place to explicitly model
these domain experiments, describing the experimental system present in
the Domain, identifying, for example, experimental procedures and pro-
tocols, variables and ranges, controls, measurables, data volumes, sample
sizes and statistical tests.

CoSMoS now advocates the use of an explicitly defined Domain Ex-
periment Model in cases where the Domain itself includes the experiment
system. The Domain Experiment Model structures a Domain Model by:

– capturing how the concepts, structures and behaviours in the domain
model are controlled and manipulated.

– detailing what data is collected from the experiments and how that
data is then manipulated and interpreted – using statistical methods
– to produce the results.

A prime example of where a Domain Experiment Model would be
applicable is Aevol4, from which we have previously reverse engineer a
Domain Model [2]. Aevol is an in silico experimental artificial evolution
platform [5] in which populations of digital bacteria are subject to Dar-
winian-style evolution. Its Domain falls within the areas of evolution-
ary theory and digital genetics focussing on the evolutionary dynamics
of the size and organisation of bacterial genomes. The Aevol simulator
encapsulates an in silico laboratory to test evolutionary scenarios [5],
enabling simulation experiments in which populations of artificial organ-
isms evolve within a controlled environment. These experiments mimic
those used in real bacterial evolutionary studies, the most famous of
which is the Lenski long-term evolutionary experiment [7]. Started over
25 years ago, this experiment has been continually evolving a strain of E.
coli within a controlled environment. Periodically E. coli are removed,
analysed and stored, enabling a genomic lineage to be created for future
reference and analysis. Aevol provides many of the same tools as this
experimental system within its Simulation Platform.

An example of where a Domain Experiment Model is not applicable is
described in [6]. In that case the Simulation Purpose is the investigation
of a new theoretical model, and the simulation experiments performed in

4 http://www.aevol.fr/
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Fig. 2. The substructure of the various CoSMoS models when a Domain Ex-
periment Model is employed.

the investigation are far removed from the particular domain experiments
that provide the original data. An explicit Domain Experiment Model
would provide no value, and so is not defined.

4 Encapsulating the Domain Experiment Model

The Domain Experiment Model provides extra structure on the Do-
main Model itself (figure 2); when exploited, this extra structure carries
through to the Platform Model and Results Model.

The Domain Model provides the domain concepts and behaviours,
and can be factored into three component submodels. The first com-
ponent is the Domain Experiment Model, which identifies the model
parameters and how we manipulate them. The second is the model of
the (usually hypothesised) domain micro level structures and behaviours.
The third is the model of the domain macro level emergent behaviours.

The Platform Model comprises computational representations of the
domain models, making implementation abstractions, and can be fac-
tored into two component submodels. The first is the Simulation Exper-
iment Model, derived from the Domain Experiment Model and incorpo-
rating instrumentation. The second is the computational realisation of
the domain micro structures and behaviours. The deliberate lack of a cor-
responding macro level model helps ensure that the ‘answer’ – the emer-
gent behaviours resulting from the hypothesised micro level behaviours
– is not explicitly coded into the Simulation Platform.

As noted, some Domain Experiment Model concepts are captured
in the Platform Model as simulation experiment instrumentation, mon-
itoring the core behavioural concepts that are provided by the Domain
Model. Concepts in the Domain Experiment Model get translated into
Platform Model concepts such as:
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– what the explicit parameters of the system are, and how these might
be controlled (e.g. fixed constants or variables)

– suitable ranges of operation of the parameters (e.g. sensible param-
eter ranges or agent numbers)

– termination conditions for experiments (e.g. time condition);
– origins and nature of sources of randomness
– experiment configurator that determines how parameters can change

across replicate runs
– what instrumentation is needed to collect, measure and process data

from simulation experiments. This includes:
• visualisers and data loggers
• Simulation Platform outputs to measure
• analyses that determine suitable statistical measure
• analysis conditions that determine the when and how to record

and process certain statistics
• third-party tools, such as Spartan [1]

The Results Model comprises models of the results of running sim-
ulation experiments on the simulation platform, and can be factored
into two component submodels. The first is a model of the experiment
suitable for analysing the simulation data. The second is a model of the
domain macro level emergent behaviours in terms of simulation variables.
Given that these emergent behaviours are removed from the Platform
Model, this model is needed to determine how these behaviours are iden-
tified and measured when running simulation experiments.

5 Simulation Experiments

Implementation of the Platform Model that contains the concepts de-
fined in the Domain Experiment Model results in a Simulation Platform
capable of running simulation experiments that conform to concepts in
the Domain Experiment Model.

The first stage of simulation experimentation is usually used to cali-
brate the Simulation Platform. This is needed to determine how to trans-
late domain parameters and variables into their corresponding platform
values (for example how to translate between real-world time, and sim-
ulated time), and how to take simulation experiment raw output data
and analyse it to enable comparison with domain results captured in the
Domain Model.

Once calibrated the Simulation Platform can be used to run simula-
tion experiments to construct a Results Model. The Results Model can
be used validate simulation experiment outputs with domain experiment
outputs in the Domain Model. If these disagree, it may be because:
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– the variables and parameters are not being translated appropriately
(calibration may have overfit their values)

– there are faults in the Platform Model or in the Simulation Platform
implementation (the simulation platform has not been adequately
engineered)

– there are faults in the core Domain Model (the science is imperfectly
understood), or Domain Experiment Model component (imperfect
measurements or statistical errors)

Once validated, a Simulation Platform can be used to run simulation
experiments that are analogues of the domain experiments. The raw
results of a simulation experiment are analysed and translated into Do-
main terms, via the Results Model. These analysed results can then be
compared to the real world experimental results, and be used to make
predictions about the results of future domain experiments. Predictions
should always be checked against real world data, particularly if the
simulation experiment is being run outside the calibration range of the
instrument.

6 Conclusions

We have shown how the concept of a Domain Experiment Model can
be incorporated into the basic CoSMoS approach, to help structure the
various models and the simulation experiments.

Whilst the Domain Experiment Model might not be suitable in all
cases, it should be used in circumstances where the Domain knowledge
is strongly reliant on a particular experimental system that probes the
real-world system under study, and where simulation experiments need
to mirror the domain experiments to some degree. It allows for an explicit
representation of the experimental system that is present in the Domain,
which aids such concepts being adequately incorporated into the Simula-
tion Platform in a more transparent manner. Where this is achieved, sim-
ulation experiments (captured by the Results Model) should be directly
comparable to domain experiments (captured by the Domain Model),
providing improved confidence in simulator outputs.

References

[1] K. Alden, J. Read, M. Timmis, P. S. Andrews, H. Veiga-Fernandes, and
M. Coles, “Spartan: A comprehensive tool for understanding uncertainty
in simulations of biological systems,” PLoS Comput Biol, vol. 9, no. 2, p.
e1002916, 2013.



8 Paul S. Andrews and Susan Stepney

[2] P. S. Andrews and S. Stepney, “Using CoSMoS to reverse engineer a do-
main model for Aevol,” in 2014 CoSMoS workshop, S. Stepney and P. S.
Andrews, Eds. Luniver Press, 2014, pp. 61–79.

[3] P. S. Andrews, S. Stepney, T. Hoverd, F. A. C. Polack, A. T. Sampson, and
J. Timmis, “CoSMoS process, models, and metamodels,” in 2011 CoSMoS
workshop, S. Stepney, P. Welch, P. S. Andrews, and C. G. Ritson, Eds.
Luniver Press, 2011, pp. 1–13.

[4] P. S. Andrews, S. Stepney, and J. Timmis, “Simulation as a scientific
instrument,” in 2012 CoSMoS workshop, S. Stepney, P. S. Andrews, and
M. Read, Eds. Luniver Press, 2012, pp. 1–10.

[5] B. Batut, D. Parsons, S. Fischer, G. Beslon, and C. Knibbe, “In silico ex-
perimental evolution: a tool to test evolutionary scenarios,” BMC Bioin-
formatics, vol. 14, no. Suppl 15, p. S11, 2013.

[6] R. B. Greaves, S. Dietmann, A. Smith, S. Stepney, and J. D. Hal-
ley, “Genome-wide mouse embryonic stem cell regulatory network self-
organisation: a big data CoSMoS computational modelling approach,” in
2015 CoSMoS Workshop, S. Stepney and P. S. Andrews, Eds. Luniver
Press, 2015, pp. 31–66.

[7] M. J. Wiser, N. Ribeck, and R. E. Lenski, “Long-term dynamics of adap-
tation in asexual populations,” Science, vol. 342, pp. 1364–1367, 2013.



Towards a Network Model of

Community Empowerment for
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Modelling

Keith De’Bell1,2

1 Department of Mathematics, Statistics and Computer Science,
St. Francis Xavier University, Nova Scotia, Canada. B2G 2X3

2 York Centre for Complex System Analysis, University of York,
YO10 5DD, UK

Abstract. The role of systematic modelling to construct simu-
lation tools for use in the planning and implementation of com-
munity empowerment initiatives is discussed. The CoSMoS ap-
proach is used to provide a framework for a demonstration of the
construction process, consisting of the development of a simple
network model, and to highlight the modelling considerations
involved.

1 Introduction

The development of in-silico simulation tools to assist with the plan-
ning of interventions intended to improve public health is motivated
by two interacting factors. First, it is well established that a signifi-
cant and sustained improvement in population health necessitates that
health inequity and the related social determinants of health be effec-
tively addressed [10, 15, 20, 21]. It has been argued that this requires the
coupling of community empowerment processes with more conventional
“top-down”public health strategies [17, 18]. In this context, community
empowerment is a process in which communities gain more control over
those factors that influence their lives including the social determinants
of health and includes, for example, improved access to decision making
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and resources [18, Chapter 2]. Second, the systems within which such in-
terventions occur, i.e. human social systems are inherently complex. The
response of such a complex adaptive system to an intervention depends
on the context of that specific system. Previous experience with inter-
ventions addressing the social determinants of health is extremely impor-
tant in planning future activities however simple input output models or
methods that attempt to remove the specific system context of the in-
tervention are of limited use [14]. Changes in context may even give rise
to so-called “wicked problems”; i.e. unanticipated negative consequences
that counteract the intended benefits of the intervention. For example,
negative impacts of “early intervention”programs in strongly disadvan-
taged families, even when such programs are considered to “work”in less
disadvantaged families, might be considered “wicked problems” [24, and
references therein].

In this paper, we describe the construction of a social network model
as the basis for investigating the role of social network properties in the
context of community empowerment strategies. We limit the scope of the
model to those properties that are associated with the building and main-
taining of social connections. Despite limiting the model construction in
this way, we emphasize that the intention is to highlight the potential for
in-silico simulation environments to be incorporated into both the pre-
implementation planning and the in-progress adjustment of community
empowerment programs. This use of modelling, based on societal struc-
tures and dynamics, is, we believe, consistent with the need to combine
social science approaches with public health expertise in order to make
sustainable advances in addressing health inequities. This combination
of social science and humanities knowledge with public health expertise
has recently been advocated in a report by the British Academy for the
Humanities and Social Sciences [7].

The framework for the model construction is provided by the Com-
plex System Modelling and Simulation (CoSMoS) approach [23]. De-
signed to enable the development and use of simulation as a scientific
instrument, the CoSMoS approach employs a set of modelling stages
that facilitate the systematic construction of simulation software. In par-
ticular, it has been applied to scientific studies such as the simulation
of cellular processes involved in cancer [6]. Its wider applicability has
been demonstrated by its use to design algorithms inspired by biologi-
cal systems [3] and to reverse engineer models from implementations [2].
Recently, its potential utility as a tool for studying social systems has
been indicated by its use to formalize and analyze Schelling’s (aspatial)
Bounded Neighbourhood Model [1] and its use in the context of social-
ecological systems [13].
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In Sect. 2 the steps of the CoSMoS approach are used to illustrate the
construction of the model and some preliminary results are summarized.
Sect. 3 identifies a number of modelling considerations necessary for
further iteration of the model, and comments on the applicability of
simulations based on models of this type to intervention planning.

2 Systematic Modelling using the CoSMoS
Approach

2.1 Overview of the Model Building Procedure

Specifying the underlying knowledge base used, and the assumptions
and approximations made during the model building process provides an
explicit description of the limitations of the resulting simulation package.
Thus, these specifications define the class of problems for which the
simulation package provides an applicable in-silico environment.

The CoSMoS approach has been described in detail elsewhere [23].
For our present purpose, it is sufficient to visualize it as a set of states
(models) with the transitions between states being generated by a set of
functions (processes such as abstraction and implementation) (Fig. 1).
The specific system the CoSMoS approach is to be applied to, the mo-
tivation for the research and questions to be addressed are described in
the “Research Context”.

The CoSMoS approach can be used in an iterative fashion. Successive
cycles of the iteration are generated in response to an evaluation of ex-
perimental results obtained from the simulation. Specifying the research
context initiates a process of defining a boundary that determines what
is within and what is outside the system to be modelled. This process of
setting a boundary is continued in the description of the domain and the
construction of the domain model. The risk involved in this necessary
process of setting boundaries is similar to that faced by evaluators and
intervention planners when drawing boundaries around a system i.e. in
modelling a complex system it is not possible to know in advance the
importance of these excluded effects in determining the outcomes. West-
horp has discussed these risks in the context of complexity consistent
evaluation, and has emphasized the importance of informing the deter-
mination of boundaries with theory [24]. In the evaluation of change
processes in complex adaptive systems, theory focusses on the compo-
nents of the system considered important for the change process and, in
particular, identifies the interaction set to be included in the evaluation.
Systematic modelling enables testing of the effects of exclusions that may
be made as part of the modelling process, and an iterative approach to
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Domain'(real'world'knowledge)' Domain1model''(domain'
structure'and'behaviour)'

Pla:orm1model'(simula;on'
structure,'algorithm,'and'
observables'to'be'measured)'
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Results1model'(system'
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simula;on'output'

abstrac;on'

abstrac;on'
and'modelling'
decisions'

implementa;on'simula;on'

verifica;on'valida;on'

Fig. 1. The stages in the CoSMoS approach

refining the model by expanding (or contracting) the system boundary.
Clearly, this is complementary to the theory-based approach discussed
by Westhorp and offers the possibility of interaction between simulation
and theory.

In the schematic description of the CoSMoS approach in Fig. 1, the
approach to issues with many interacting facets used here is illustrated.
There are two cycles to the iteration process. The inner cycle involves
comparison of the Results-model generated by the simulation(s) with the
Domain-model. This comparison verifies that the simulation produces
the key features of the Domain that were captured in the Domain-model.
Further iterations of the modelling process are carried out based on this
comparison. The outer cycle of the iterative process, validation, allows
the modeller to add additional aspects of the system so that progress
towards a more complete description of the system is approached in a
systematic manner. For example, a more complete description of public
health interventions to address health equity require that the general
empowerment actions be combined with specific activities to address so-
cial determinants of health. In the modelling process described below,
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the specific actions are excluded and, further, the modelling process is
restricted to those aspects that are related to social networking. Subse-
quent validation stages will consider the degree to which the resulting
simulations are capable of describing the system. Extending the bound-
ary of the Domain and hence the content of the Domain-model will allow
a more detailed description to be generated.

In the remainder of this Section we describe the Research Context
of the modelling process described here (Subsect. 2.2) the construction
of the models that underpin construction of the simulation environment
(Subsects. 2.3, 2.4, 2.5 & 2.6) and preliminary results of the model (Sub-
sect. 2.7).

2.2 Research Context

The overall research context is that described in the opening sentences
of Sect. 1. That is, any intervention intended to improve health equity
by addressing the associated social determinants of health occurs in a
system that has a unique context. This context consists of the combina-
tion of the interactions with the system’s external environment and the
internal structure of the system. This internal structure consists of the
system agents and the relations between them, and reflects the history
of the specific system.

Because of the context dependence and because the planner(s) can
not know completely the context of the system, i.e. can not completely
know the internal state of the system and its subsystems, the outcome
can not be predicted with certainty. Rather the planned intervention has
an associated spectrum of possible outcomes. Which of these possible
outcomes will occur will not be fully determined until the intervention
is implemented. Consequently, it is not ntended that the end product
of the modelling process be a descriptive tool that predicts a specific
outcome given a particular input. Rather, the modelling process aims to
construct an exploratory tool capable of allowing planners to investigate
possible outcomes and the factors that affect the probabilities of those
outcomes. This focus on the probability distribution of a spectrum of
possible outcomes reflects the uncertainty of outcome until implementa-
tion that exists in the Domain, and the effect the evaluation process has
on outcome as described in the next paragraph. This focus on probability
of outcomes is also intended to provide an approach which is functional
despite the difficulty of defining causality in complex adaptive systems.
That is, in systems where the presence of an interaction or set of inter-
actions has an effect on the probability of an outcome but is not causal
in a reductionist sense [24]. For further discussion of the potential of a
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social simulation approach to explore the implications of complex social
dynamics see, e.g., Ref [22].

The need for exploratory tools that can investigate potential out-
comes of planning choices and associated uncertainties is further under-
lined by recent developments in the way that evaluations of interventions
are conceptualized. Traditional evaluation strategies can be thought of as
processes that are parallel to the intervention process but, ideally, do not
affect it. The output from such an evaluation process informs external or-
ganizations (such as funders or government departments) about progress
towards implementing the intervention, completing the intervention, and
achieving the desired outcomes. Considerable effort has been directed at
identifying effective evaluation strategies for interventions that address
inter-related issues such as poverty, poor housing, low education levels,
high-risk behaviours etc., either as issues in their own right or in their
role as social determinants of health. A key finding from this extensive
work is the need to formulate the evaluation strategy as an inherent
part of the intervention process [9, 12]. Changing the view of evaluation
to incorporate its role as an integral part of the intervention does not
remove the traditional role of data collection and analysis to inform ex-
ternal agencies. Rather it adds the responsibility to inform the relevant
external agencies, the interveners and the system members during the
course of the intervention. This generates considerations of modifications
to the intervention that reflect new understandings about the system as
they appear. From this viewpoint, the evaluation process facilitates the
negotiation between individuals in the system and informs both a re-
formulation of individual strategies and the strategic framework (often
referred to as the Theory of Change) of the intervention. That is, the
intervention should itself be considered an adaptive process (Fig. 2) in
which evaluation interacts with the intervention planning and implemen-
tation. Exploratory tools using in-silico simulation could use information
from evaluation to assess potential outcomes of changes made in response
to that evaluation and could make the assessment sufficiently quickly to
be used as part of the in-progress planning for the intervention.

Consequently there is a need for simulation-based tools that can use
data and analysis prior to the intervention, and during the intervention
to identify potential outcomes and how changes in strategy and envi-
ronment affect the probabilities of these outcomes. Moreover, such tools
must be able to take into account the specific ontology of a system when
making these predictions. We argue here that the building of in-silico
environments that allow the exploration of multiple scenarios (including
variations of strategies) will provide such tools to facilitate both pre-
implementation and in-progress implementation planning.
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Fig. 2. A schematic representation of the interaction between evaluation pro-
cess and cycle of change components. See Ref. [5, Section 2.4] for a more
detailed illustration of the basic cycle of change structure.

2.3 Domain Definition - a Community Empowerment
Approach to Public Health

The domain of the model is defined by specifying those aspects of the
real-world that the software is to simulate. For the purpose of developing
an in-silico simulation tool, we define the domain as community empow-
erment interventions addressing the social determinants of health. This
approach has been advocated by public health researchers (see, for ex-
ample, Ref. [18] and references therein). Community empowerment can
be seen as a process that runs in parallel with and interacts with tradi-
tional top-down public health activities that address specific issues such
as vaccination programs and anti-obesity programs. Tensions arise be-
tween this empowerment stream in public health programme planning
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and the more conventional stream of public health programme planning.
However, an integrated strategy allows these tensions to be made ex-
plicit and decisions made on how to deal with them at each stage of the
planning and implementation process [17]. In a similar way, community
empowerment is complementary to addressing specific underlying social
issues such as implementing a living wage policy [19], tackling health
related worklessness [4], and building age-friendly communities [16] (see
Ref. [7] for further examples).

A clear definition of the Domain is required in order to place a bound-
ary around the modelling process. Expansion of the Domain can then
be considered as part of the iterative process e.g. at a later stage the
inclusion of specific types of action can be included. To clearly state the
boundary of the domain we specify the following conditions.

– Programmes dealing with specific diseases or prevention measures,
such as an inoculation programme or obesity reduction programme,
are excluded from the domain. We acknowledge that such specific
actions may be part of a PH intervention in which the planning tool
is used. Therefore, the planning tool or, at least, its applicability
should be sufficiently flexible that it can incorporate very specific
actions. However, for definiteness, we exclude such actions here.

– Included in the domain are interventions that are intended to ad-
dress social inequities through community empowerment even when
these interventions are not specifically addressing the relation that
these social inequities have with health inequities. For example, the
domain will be taken to include interventions to address poverty,
low education attainment, poor quality housing and/or other inter-
related factors even when the primary concern of the intervention
is not health in the narrower interpretation of this term. Specific
actions or policy changes are not included at this stage.

The choice of which experts or which expert knowledge are consulted
also determines the domain of the model . The eventual expansion of the
domain to include a greater range of expert knowledge can be consid-
ered part of an iterative process. Public health expertise is distributed
among public health researchers, public health planners, public health
decision makers and public health evaluation experts. Further public
health knowledge is held by front-line public health workers and pub-
lic health clients. Front-line public health worker knowledge and public
health client knowledge contains elements that are specific to the partic-
ular (local) community within which the intervention occurs. Inclusion of
this local specific knowledge in the domain will result in models specific
to this community. Therefore we need to construct generic models such
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that local expert knowledge can be incorporated into the simulation.
For the purpose of an initial model construction we draw on published
reports of public health interventions and social change in which commu-
nity empowerment has been a major consideration. Iteration to expand
the domain would include consultations with knowledge experts in both
policy and public health.

We restrict the domain description to the following observations that
are consistent with the literature reviewed.

– Interventions require the engagement of multiple stakeholders and
layered structures (e.g. national or regional stakeholders, intermedi-
aries responsible for the “on-the-ground”intervention, and commu-
nity stakeholders) [see, e.g., Ref. [11]]

– Social network structures are built and maintained through individual-
to-individual contacts (even when the formal description of the con-
nection is in terms of organization-to-organization agreements). So-
cial distance is a determining factor in the formation of social connec-
tions. Social influence between individuals is dependent on a number
of factors [8]. These factors include physical distance and psycholog-
ical distance. Psychological distance incorporates perceived differ-
ences in social factors such as status, authority, social standing and
power. Here we take the term “social distance”to mean the combined
effect of physical distance and social/psychological factors that cre-
ate social separation between individuals.

– Community empowerment interventions seek to increase community
capacity to access and manage resources, and to influence decisions
that affect the community [18].

2.4 Model Framework: the Domain Model

The domain-model is constructed as a representation of the domain that
contains key properties of the domain including the underlying structure
and dynamics, and the list of observables relevant to the domain.

We represent the multiple stakeholder, layered structure of the system
as a three layer process with in-layer and between-layer communications
carried by social network structures. Each layer consists of individuals
that may form network connections with others in their own layer and
with individuals in the other layers (Fig. 3). The three layers of the
system are listed in Table 1.

Network dynamics are determined by the following

– Connections between individuals are formed, build in strength and
are maintained through social meetings.
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Fig. 3. Schematic representation of the three layers of the domain model:
Political/Policy (P), Intervener/Intermediate (I), and Neighbourhood (N), and
network structure

– Social distance determines which individuals will form (direct) con-
nections

– Connections that are not maintained fade and will eventually cease.

To complete the domain-model we specify the set of observables that
are to be generated in the simulations. Laverack [6] lists a set of nine
empowerment outcomes (“domains of empowerment”). From these nine
outcomes, we select four observables that can be related to network prop-
erties (Table 2). The translation of these observable properties to mea-
surable quantities specified in the platform model may be considered as
analogous to the translation of outcomes to measurable indicators that
occurs in constructing an evaluation scheme. As with indicators used
in the domain any observable specified in the platform model must be
measurable.
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Table 1. Layers of the 3-layer Domain-model

Layer Description

Political/Policy (P) Agencies which control funding, resources and
policy (including, e.g., non-government
funders) at a national or regional level

Intervener/Intermediary (I) Agencies and individuals that act to
implement the changes directed at
community empowerment

Neighbourhood (N) Individuals and agencies that act locally
within the communities that the empowerment
program (and related public health initiatives)
act in.

Table 2. Translation of the Domain-model community outcomes to platform
model outputs. Domain outcomes are selected from the nine “domains of com-
munity”identified by Laverack [18]

Domain Outcomes Translation Platform-model Outcomes

Develops local Neighbourhood leaders Number of N layer
leadership must have both intra individuals with both intra-

and inter layer layer and interlayer
connections connections. Individuals

with both types of conn-
ection are identified as
(neighbourhood) leaders

Strengthens links to Leaders must have and Number of other individuals
other organizations maintain links to other connected to each leader
and people individuals (in all layers)

Building empowering Leaders must form and Number of individuals in
organizational maintain connections the P and I layers that
structures with the intervener and leaders are connected to

political levels

Increases control over Leaders must form and Number of individuals in
program management maintain connections to the P layer connected to

the political layer leaders
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2.5 Platform Model

The platform model provides a description of the system that can be
implemented as software. Here, we implement the system as a network
of agents (nodes in the network) distributed in a “social space”. (There
is an extensive literature on the use of network models for the modelling
of social structures. We refer the reader to Ref. [25] for a summary of
some key articles).

Each agent is assigned to one of the three layers of the domain model
(P, I & N). The location of each agent in social space is represented by
allocating the agent a (x,y) coordinate in a (bounded) plane represent-
ing the corresponding layer of the domain-model. The relative position
of the three planes in this social space is determined by assigning a
z-coordinate to each of the planes. Adjacency (direct connection) is ini-
tially determined by social distance. If the distance between any two
agents is less than a specified value a direct connection between them is
assigned as a nonzero adjacency weight (0 ≤ wij ≤ 1).

Evolution of the system occurs through (Markov) dynamics consist-
ing of three actions in each time step:

– Random selection of a subset of agents who invite the agents to
whom they are directly connected to a meeting.

– An increase in the adjacency-weight by a set amount, up to a maxi-
mum weight of 1, for all agent-pairs with an inter-agent distance less
than a specified value if both agents in the pair attend a meeting.
This allows agent-pairs that were previously connected but not ad-
jacent to acquire a non-zero adjacency weight. The maximum social
distance specified for this step may be greater than (or less than) the
maximum social distance over which direct connections are formed
in the initial network construction.

– A decrease in all non-zero adjacency-weights by a specified amount.

This dynamical process is based on an algorithm for social network
dynamics recently described by zu Erbach-Schoenberg et al. [25]. An
advantage of the algorithm introduced by zu Erbach-Schoenberg et al.
stems from the use of adjacency weights (network edge weights). This
enables a gradual change in the strength of connections between pairs
of agents as connections are formed and maintained through meetings
(the first and second step above), or decline due to lack of maintenance
(the third step above). As noted by zu Erbach-Schoenberg et al., basing
initial and evolving adjacency on social distance combined with agents
with static positions has a limiting effect on the building of network [25].
That is, the dynamical process of forming direct connections through the
agency of a “mutual friend”( i.e. the second item in the list of actions
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above) means that agents can not become adjacent to or connected to
agents that they were not connected to in the initial network in the
implementation of the algorithm used here. zu Erbach-Schoenberg et
al. have implemented the algorithm as a model of spatially constrained
systems and performed a comprehensive study of the network proper-
ties in a two dimensional realization [25]. The implementation of the
algorithm used here differs in some details from the implementation of
zu Erbach-Schoenberg et al. One such difference is that this implemen-
tation does not use the “affinity”parameter, introduced by zu Erbach-
Schoenberg et al, which is the probability that two individuals make
a connection at a meeting. Rather the distancing that may be caused
by social/psychological factors is assumed to be included in the “social-
distance”as described above. This has the advantage of reducing the
number of parameters in the model however it raises questions about
calibration that we return to in Sect. 3.

The observables of the platform model are identified by interpreting
the domain outcomes in terms of network connectedness (Table 2). The
validation process tests the degree to which the domain outcomes can
reasonably be represented by network statistics. We comment on this
further in Sect. 3. In what follows, ”connectedness” is used to indicate
the number of other agents that a given agent is connected to; i.e., the
number of other agents in the component to which the specified agent
belongs. As usual ”degree” indicates the number of other agents that a
given agent is directly connected to (adjacent to).

2.6 Software Implementation - The Simulation-platform

The in-silico experimental environment used to experimentally explore
the system behaviour is generated by constructing the Simulation plat-
form, a software representation of the Domain-model. For the purpose
of the illustrative development of a network model here, a Fortran 90
Simulation-platform was constructed. The outputs from the simulations
correspond to the simple connectedness indicators outlined in Table 2.

The Simulation-platform is constructed so that the number of agents
in each layer can be specified for a given simulation. Values of the model
parameters, such as the social distance used to determine the initial
network and the distance over which direct connections can be estab-
lished/strengthened during meetings, are also input for a given simula-
tion of the system. A single simulation run consists of the generation
and evolution of a specified number of networks with fixed values for the
model parameters.
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2.7 Simulation Output - the Results-model

The results model consists of the description of the system obtained from
the simulation outputs. We present here some preliminary results that
illustrate the outputs of the current model.

Connectedness statistics, corresponding to the four Domain-model
observables, were generated by implementing the platform as code and
assigning the program parameter values. Parameter values were chosen
for convenience in assessing the properties of the model. Consequently,
the description generated is illustrative rather than corresponding to any
specific system of the domain. Each layer plane has a square geometry
with a linear dimension of 200. The maximum social distance for the
initial determination of adjacency was assigned a value of 20. The max-
imum social distance for adjacency via the friend-of-a-friend mechanism
(i.e. for agents that meet due to a mutual friends invitation) was as-
signed a value of 40. The z coordinates of the P, I and N planes were
assigned values of 14,0,-14 respectively. I.e. the parameters were delib-
erately chosen so that agents in the N and P layers are not adjacent
in the initial network but adjacency between these agents may evolve
through the social network dynamics in the platform-model. This choice
corresponds to the understanding that community empowerment can be
thought of in terms of connecting individuals to the political and policy
processes. The number of agents in the N and P layers were set to 100
and 5 respectively. The number of agents in the I layer was varied from
0% to 24% of the number of agents in layer N.

Statistics were collected for the initial network and final network for
each value of the number of layer I agents considered. For completeness,
in Fig. 4 we show the behaviour of the average of both the initial and final
statistics corresponding to the connectedness and degree of the neigh-
bourhood leaders, as the number of agents in layer I is varied. (Averages
are over 100 networks). Each data point was generated by a single sim-
ulation run. The averages in Fig. 4 illustrate certain general features of
the model. In particular, comparison of the initial and final (total) con-
nectedness and (total) degree of agents identified as community leaders
shows that the total connectedness decreases but the degree increases
with time. I.e. the networks of leaders decrease with time but those that
are sustainable become much more complete (more direct connections).
While the averages are useful for illustrating general behavior they ob-
scure one of the key features of the results, that is that the survival of
a given leader’s network depends on the initial structure of the network,
i.e. the final structure of the network may vary widely between networks
with a large highly connected component which contains all or most of



Towards a Network Model of Community Empowerment 23

0"

5"

10"

15"

20"

25"

0" 5" 10" 15" 20" 25" 30"

Ini*al"leader"degree"

Ini*al"leader"connec*vity"

Final"leader"degree"

Final"leader"connec*vity"

I"Layer"Agents"

Fig. 4. Average connectedness (component size) and degree (number of direct
connections) of community leaders in the network model vs. number of agents
in the intervener (I) layer as a percentage of the number of agents in the
neighbourhood layer (N).

the leaders, to a network of essentially isolated individuals depending on
the structure of the initial network.

Although the general trend in the network statistic with the number
of agents in layer I can be discerned from Fig. 4, there is clearly some
variation of the data points around a smooth line that might be drawn
to represent the general trend. This is an indication of the wide variation
in characteristics of initial networks generated with the model param-
eters specified above, and the corresponding variation in the final net-
works. The frequency distribution of the network average of initial and
final leader connectedness across the 100 networks corresponding to the
MI=24 data point in Fig. 4, is shown in Fig. 5. As can be seen in Fig. 5,
the distribution of network averages of connectedness for leaders for the
initial networks has a long tail with small but significant population in
the tail of the distribution. The evolution of the networks results in a
distribution of final network average component sizes for leaders that is
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Fig. 5. Frequency distribution of the initial and final neighbourhood leader
network average connectedness across 100 networks with 24 intervener (Layer
I) agents.

narrower and shifted to smaller values on average. The wide distribution
of network averages is related to the choice of parameters which, in this
case, led to a wide variation in the network structures. This variation in
the initial network structure can be reduced by, for example, increasing
the density of agents or increasing the social distance over which direct
connections form, in such a way that the number of components is small
and almost all agents belong to a large component.

With a long tailed broad distribution of leader connectedness, such
as that shown in Fig. 5, an assessment of error bounds for data points
shown in Fig. 4 requires some care. To ensure a meaningful estimate of
error bounds the mean and statistical deviation of the simulation run
average for each statistic (e.g. leader connectedness) was calculated over
ten separate simulation runs. Each of the simulation runs consisted of
100 networks. Sample results for networks with 24 agents in the I layer
are shown in Table 3. The error bars are ± two standard deviations.

For the parameter set chosen here, the average number of leaders de-
creases as the system evolves. However, individual networks may evolve
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Table 3. Mean and error bars for the simulation average of the initial and final
leader connectedness in systems with 24 agents in Layer I. Estimates of the
mean and error bars were calculated using ten simulations. Each simulation
consisted of the generation and evolution of 100 networks

Initial Final

Leaders 28.7 ± 1.2 17.2 ± 2.2

Degree of Leaders 4.2 ± 0.1 8.0 ± 0.6

Connectedness of Leaders 25.3 ± 2.1 9.6 ± 0.9

to have a smaller number of leaders or a greater number of leaders than
were initially present in the network. Moreover, the set of leaders in the
final network are not necessarily a subset of the leaders in the initial
network (though the two sets must have at least one agent in common).
That is, due to the effect of the competing actions of building social
connections through meetings and connections declining through lack of
maintenance, initial leaders may be ”lost” (cease to be leaders) but new
leaders may emerge due to their connections with existing leaders.

The average behaviour of the remaining platform model observables
(connections to agents in the P and I layers, and connections to agents
in the P layer only) again indicate some general properties of the model.
The behaviour of the connections to outside partners is consistent with
that observed for all connections i.e. for the parameter set chosen, the
average number of agents in layers P and I connected to a leader (the
leader’s number of external partners) decreases as the network evolves
but the number of direct connections a leader has to agents in layers P
and I increases. Connectedness to the P layer by neighbourhood leaders
remains very low on average even at the highest value of the number of
I layer agents considered.

3 Discussion

The process of modelling community empowerment outlined in Sect. 2
results in a 3 layer (process) model with communication between the
layers carried by social connections. The platform model consists of an
abstract network of agents with connectedness that evolves through a
dynamical process with two competing elements. The first of these ele-
ments builds direct connections between agents (network nodes) through
a process that simulates the initiation and maintenance of social connec-
tions through individual-to-individual contacts (meetings). The second
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element diminishes direct connections between agents and simulates the
decay of social connections that occurs if individuals do not maintain
their social relationship through contacts (meetings) [25].

Observables measured in the simulation are expressed in terms of
connectedness in the network. These observables were identified by con-
sidering the community empowerment outputs (“domains of community
empowerment”) identified by Laverack [18].

The parameters used to generate preliminary results from the sim-
ulations were chosen for convenience and to reflect reasonable general
assumptions about the dynamical process. For example, the maximum
social distance over which direct connections can be established follow-
ing introduction by a mutual friend was specified to be twice that of the
maximum social distance over which initial direct connections can be
formed. This reflects the property of social systems that introductions
by a mutual friend allow an individual to make direct contacts with
individuals that they might not otherwise connect with directly. Param-
eterizing the model in this way allows us to determine certain general
properties of the model and to ask how those properties compare with
data from actual community empowerment interventions. These consid-
erations identify two interconnected problems that confront attempts
to model social systems to a level which will provide context specific
simulations; i.e.

– Is it possible to map concepts such as social distance onto simple
model variables? If so, what is the appropriate form of the variable?
Here we have used a three dimensional vector to represent social
distance and, in particular, to separate the different layers in the
system. It is, of course, possible to consider using higher dimen-
sional vectors to represent the multiple factors that contribute to
social distance [8]. However, it remains to be tested if such a higher
dimensional representation would improve the model in a significant
way.

– If appropriate model variables can be identified, how is the model
calibrated? (See also Ref. [25] for comments on the calibration of
models involving spatial separation of agents).

Returning to the general properties of the model indicated by the
preliminary results presented here, we identified that the surviving net-
work components connected to agents identified as community leaders
tend to shrink but to evolve towards a highly connected group. While
this is apparent from the averaged data in Fig. 4, the presentation of
average data hides certain information that the simulations reveal when
a more detailed analysis is conducted. In particular there is a dichotomy
among the community leaders. Initial network components associated
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with the community leaders tend to evolve to one of two types of struc-
ture; i.e. after sufficient time steps, either the component the leader is
connected to is highly connected and consequently quite stable, or the
leader is isolated with no (or very few) remaining connections. Clearly
a choice of model parameters that favour one of these contrasting be-
haviours over the other can be made. For example increasing the number
of meetings per time step while holding the decrease due to lack of meet-
ing in a given time step constant, will tend to favour the formation of
stable networks. In this sense the model is consistent with the observa-
tion that the convener role of agencies in the intermediate group in the
early stage of an intervention, facilitates the building of momentum and
eventual sustainability of the initiative [11].

For a given choice of parameters, which of the two groups of the di-
chotomy a given leader evolves to is determined by the initial structure
of that leader?s network component as well as the specific set of ran-
dom numbers that determine which leaders issue meeting invitations.
This is, of course, consistent with our expectation of context depen-
dent behaviour in complex systems. However, it implies that if we are
to develop simulation tools that can identify the spectrum of possible
outcomes, knowledge of the initial network structure is particularly im-
portant. Network mapping is a commonly used way of visualizing and
characterizing social networks. The point here is that network mapping
information as input to the simulation appears to be essential for accu-
rate forecasting of the spectrum of possible outcomes for an intervention
in a specific system i.e. local knowledge such as may be held by front-
line local public health workers and neighbourhood residents is critical
to provide the necessary context information.

An advantage of the CoSMoS approach is that it makes explicit the
modelling decisions that are made at each of the stages of the modelling
procedure. Modelling decisions made in the application of the process
described above included modelling individuals as agents that are fixed
at randomly allocated locations in a social space. Other than their loca-
tions, which codify their association with a particular layer, all agents in
the platform-model are equivalent in that they each use the same mech-
anism for creating, building and maintaining social connections and each
does so with the same probability of calling a meeting of friends. Con-
sideration of the extension of the model by having agents with different
characteristics raises the question of the network building dynamics. In
particular, it appears necessary to consider if some agents may use strate-
gies that are both intentional and that are less limited by considerations
of social distance.
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Abstract. The principal barrier to gaining understanding of
embryonic stem (ES) cell regulatory networks is their complex-
ity. Reductionist approaches overlook much of the complexity
inherent in these networks and treat the ES cell regulatory sys-
tem as more or less equivalent to the sum of its component parts,
studying them in relative isolation. However, as we learn more
about regulatory components it becomes increasingly difficult
to integrate complex layers of knowledge and to develop more
refined understanding. We seek better control of the complexity
inherent in non-equilibrium ES cell regulatory networks under-
going lineage specification by developing computer simulations
of self-organisation using the CoSMoS approach. Simulation, to-
gether with the hypothesis that lineage computation occurs at
the edge of chaos, should allow us to investigate the driving of
gradual accumulation of network complexity ‘from the bottom
up’. Here, we present the first step in this design process: use
of the CoSMoS approach to develop a highly abstracted model
and simulation of regulatory network activity driven by just sin-
gle pluripotent transcription factors (TF), but at genome-wide
scales. We investigate three TFs in isolation: Oct4, Nanog and
Sox2, central elements of the core pluripotent network of mouse
embryonic stem cells. This provides a suitable basis for future
modelling of multiple interacting TFs.

1 Introduction

Mathematical or computational frameworks and tools are indispensable
in the study of cell regulatory networks [12, 51] because functions, traits
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and pathologies are rarely caused by single genes [12, 26, 49]. However,
the principal challenge that prevents comprehensive understanding (and
simulation) of regulatory networks is their complexity [36]. Indeed, in
the era of systems biology, the icon for molecular biology is the ‘hairball’
graph, which illustrates how everything seems to interact with almost ev-
erything else [20, 32]. High-throughput technologies generate such large
volumes of data that there is concern about how to grasp the big pic-
ture [14, 17, 27] and most data sets are not being used to their full
potential.

Here we present the first iteration of a novel computational frame-
work to interrogate the complexity of stem cell regulatory networks. We
employ a previously described theoretical framework based on the no-
tion that the backbone of stem cell fate computation is provided by
the critical-like self-organisation of transcription factor (TF) regulatory
networks [23–25].

We apply the modelling framework CoSMoS [3, 43, 45], which is
specifically designed to capture the emergent properties of complex sys-
tems, and to guide the engineering of trustworthy computer simulations,
i.e., those that are scientifically valid, useful and credible to third parties.

The models and results in this paper report on the first iteration
of the CoSMoS design cycle. Here, we design and calibrate simulations
of single TFs in isolation. This single TF version of the full model is
not biologically realistic; its purpose is to serve as a building block of
complexity that will be iterated in our next work.

The structure of the paper follows the patterns defined in the CoS-
MoS approach outlined in §2. This progresses through the definition of
scope and the model of the scientific domain in §3, then the develop-
ment of the simulation software in §4, and use of the simulation to run
experiments and explore system behaviour in §5. We conclude with some
reflections on the process in §6, and discussion of further work in §7.

2 The CoSMoS approach

The CoSMoS approach [3, 43, 45] enables the construction and explo-
ration of computer simulations for the purposes of scientific research.
It describes a series of models and other components that need to be
specified, designed, and implemented in order to build and use a fit-for-
purpose simulator. The approach is guided by considering the simulator
to be a form of scientific instrument [6] that needs to be carefully de-
signed, built, calibrated and used in a manner appropriate to the specific
research questions.
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The CoSMoS approach is encapsulated as a pattern language [1]. The
CoSMoS patterns provide guidance on what to do at the various stages of
a CoSMoS simulation project [42, 45]. We structure this paper explicitly
in terms of these patterns.

To guide the reader through the pattern structure, we reproduce in
boxed text a brief overview of the pattern: the pattern name and intent,
a short phrase describing what should be done; and, where applicable,
any components (including sub-patterns) that can be used to decompose
the intent. We use section subheadings to capture the specific pattern
names (named with initial capitals, such as Research Context) and other
components (named in lower case, such as success criteria) and their
position in the overall pattern structure.

We start at the top level of a simulation project, which is formed of
three phases per iteration of the project.

CoSMoS pattern: CoSMoS Simulation Project: Develop a basic fit-
for-purpose simulation of the complex scientific domain of interest.

The components of a CoSMoS Simulation Project are:
– carry out a Discovery Phase
– carry out a Development Phase
– carry out an Explorations Phase
– iterate as required

In this paper we report on the first iteration of our simulation, com-
prising a simulation of a single TF branching process. This provides the
basis for the next iteration, which will add multiple interacting TFs. The
next three sections document the results of carrying out this first itera-
tion of each of these three phase patterns, structured in terms of their
sub-patterns.

3 Discovery phase

CoSMoS pattern: Discovery: Decide what scientific instrument to
build. Establish the scientific basis of the project: identify the do-
main of interest, model the domain, and shed light on scientific
questions.

The components of the Discovery phase are:
– identify the Research Context
– define the Domain
– do Domain Modelling
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– define the Expected Behaviours
– Argue Appropriate Instrument Designed (omitted here)

3.1 Discovery > Research Context

CoSMoS pattern: Research Context: Identify the overall scientific
context and scope of the simulation-based research being conducted.

The components needed to identify the Research Context are:
– provide a thumbnail overview of the research context
– document the research goals and project scope
– agree the Simulation Purpose, including criticality and impact
– identify the Team members, including the Domain Scientist, the

Domain Modeller and the Simulation Engineer, their roles, and
experience

– document Assumptions relevant to the research context
– note the available resources, timescales, and other constraints
– determine success criteria
– decide whether to proceed, or walk away

Discovery > Research Context > overview

The context of this research is the investigation of a conceptual approach:
self-organisation at the edge of chaos. We have argued that if the activity
of single transcription factors can be described as critical-like branching
processes, their interplay should define a critical-like genome-wide in-
terference pattern that captures in some way the nature of the entire
pluripotency transcription factor regulatory network [24].

Here we build a simulation based on the representation of TFs as
branching processes. The mathematical concept of a branching process
(BP) is as follows. Consider a population of individuals. At time t each
individual i produces a next generation of mi offspring individuals, with
the value of mi drawn from some probability distribution. Let the av-
erage number of offspring produced be µ. If µ > 1, then the process
is supercritical and the number of individuals grows without bound. If
µ = 1 then the system is critical and can either give rise to more indi-
viduals in the next step or lead to dissipation of the process. If µ < 1
then the process goes to extinction.

Our model of TF BPs builds on this idea, and also allows the TFs
to interact in such a way as to cause the regulatory network to self-
organise at the edge of chaos. We capture the activity of single TFs as
BPs in order to predict the interplay of multiple TFs and the emergent
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nature of the entire TF regulatory network, hypothesised to operate in
a critical-like state [24].

For a TF to be stably expressed, its BP must be supercritical [24].
Therefore, by modelling the activity of TFs known to be expressed in
mouse embryonic stem cells, we link the perturbation of a TF’s cistrome
(portion of the genome in which the TF displays some activity) with a
dynamic and distributed description of TF activity. This is a prerequisite
to being able to simulate the entire TF regulatory network of an ES cell,
as argued in [24]. The TFs called Oct4, Sox2 and Nanog are central
elements of the core pluripotent network of mouse embryonic stem cells.
In the first instance, the current work will allow us to calibrate our
simulation for these three TFs in isolation, that is, to characterise how
their associated TFBPs propagate in the absence of interference.

Our iterative approach to the development of the full simulation com-
mences with the simplest possible system: the operation of one transcrip-
tion factor at genome-wide scales. We will later add layers of further
complexity, testing and calibrating as we go.

A model of a single pluripotent TF in isolation is far from complete
and is not biologically realistic. It is only when multiple TF BPs are sim-
ulated in parallel that we can expect to generate the interference patterns
predicted to underpin circuitry self-organisation. As greater numbers of
pluripotency TFs are included in the model, we anticipate that our sim-
ulations will become increasingly biologically realistic. In future work
we will augment the complexity of the computational model in a step-
wise manner, adding detail and refining assumptions as we progress, and
increasingly be able to provide insights not accessible by other means.

Discovery > Research Context > research goals

The overall research goals of this work are:
1. to create a simulation of Branching Process Theory (BPT) as applied

to embryonic stem cell differentiation
2. to use this simulation to validate the application of BPT in this

context
3. to make the simulation available for more general use

Here we report on the first iteration, of a single TF branching process.

Discovery > Research Context > Simulation Purpose

CoSMoS pattern: Simulation Purpose: Agree the purpose for which
the simulation is being built and used, within the Research Context.

The components of the Simulation Purpose are:
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– define the role of the simulation
– determine the criticality of the simulation results

Simulation role: The role of the simulation is exploratory: to provide
evidence of the usefulness of BPT as a model of decision making in
stem cell differentiation. The simulation will be used to investigate which
values of the average branching ratio are required to set up a sustainable
TF branching process.

Simulation criticality: The simulation work is being used to explore the
suitability of of a particular approach, BPT, in the domain. The simula-
tion results are not safety, security, or financially critical: they will not
be used directly in the development of any products.

Discovery > Research Context > team

The three main CoSMoS roles are fulfilled by the team members in the
following way:
– Domain Scientist: Halley, an expert on BPT as applied to stem cell

differentiation, backed up by a domain expert in ES cell biology
(Smith), and a data collection expert (Dietmann)

– Domain Modeller: Greaves, with CoSMoS domain modelling experi-
ence, backed up by a further CoSMoS modelling expert (Stepney)

– Simulation Engineer: Greaves, with agent based simulation engineer-
ing experience

Discovery > Research Context > Assumptions

CoSMoS pattern: Document Assumptions: Ensure assumptions are
explicit and justified, and their consequences are understood.

The components of Document Assumptions are:

– identify that an assumption has been made, and record it
– for each assumption, determine its nature and criticality
– for each assumption, document the reason it has been made
– for each reason, document its justification, or flag it as “unjus-

tified” or “unjustifiable”
– for each assumption, document its connotations and consequences
– for each critical assumption, determine the connotations for the

scope and fitness-for-purpose of the simulation
– for each critical assumption, achieve consensus on the appropri-

ateness of the assumption, and reflect this in fitness for purpose
arguments



Mouse embryonic stem cell regulatory network 37

– revisit the simulation scope in light of the assumption, as ap-
propriate

A.1 Cistrome data can be provided by processed ChIP-Seq data
reason It is the data we have
justification This is one standard use for ChIP-Seq data
consequence ChIP-Seq data is variable across measurements, so we

will need to check the robustness of our results to this variation
A.2 It is sufficient to consider only the key pluripotency transcription

factors: Nanog, Oct4, Sox2
reason As a first step in providing insight, we consider the three

TFs widely acknowledged to be central components of the core
pluripotent network

justification See for example [13]
consequence We will not be able to determine the effect of fur-

ther TFs. However, it should be straightforward to incorporate
further TF data into the multi-cistrome model.

A.3 We can use mouse data as a suitable proxy for data from human ES
cells
reason Suitable mouse data is more readily available; mouse ES

cells have an unambiguous ‘ground state’; so mouse data is a
good basis for evaluating the TF BP model

justification Although effective manipulation of human ES cells is
a long term goal, here we are only assessing the TF BP model

consequence We cannot extrapolate results to the human system

Discovery > Research Context > resources, timescales, other
constraints

The project has a one year duration. The Domain Scientist is employed
full time, and Simulation Engineer part time.

The work has access to a local computer cluster, for running simula-
tions and gathering performance metrics.

The team members are split between York (Halley, Greaves, Stepney)
and Cambridge (Smith, Dietmann)

Discovery > Research Context > success criteria
1. a single-cistrome simulator that exhibits the expected behaviours,

and can be used as the basis for multi-cistrome simulator develop-
ment

2. a multi-cistrome simulator that can justify the use of the TF BP
model to analyse stem cell fates
This paper documents the first iteration: the single-cistrome simula-

tor
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3.2 Discovery > Domain

CoSMoS pattern: Domain: Identify the subject of simulation: the
real-world biological system, and the relevant information known
about it.

The components are:
– draw an explanatory Cartoon
– provide an overview description of the domain
– provide a Glossary of relevant domain-specific terminology
– Document Assumptions relevant to the domain
– define the scope and boundary of the domain – what is inside

and what is outside
– identify relevant sources: people, literature, data, models, etc

Discovery > Domain > Cartoon

CoSMoS pattern: Cartoon: Sketch an informal overview picture of
the Domain.

Figure 1 is a cartoon of the regulatory process. A single gene regu-
lation and its expression is conceptually relatively straightforward; the
complex interplay of multiple interacting regulatory processes is not.

Discovery > Domain > overview: embryonic stem (ES) cell bi-
ology

Modern, high-throughput laboratory techniques routinely provide large-
scale datasets including complete genome sequences, dynamic measure-
ments of gene expression, extensive lists of regulatory proteins and RNAs,
and in vivo occupancy of DNA by TFs, cofactors and nucleosomes [7].
Such datasets facilitate the investigation of ES cell regulatory networks.
To create a complete multi-layered model of a stem cell network one
should exploit these big data to bridge gaps between the phenotypic
behaviour of whole cells and key regulatory molecules [50].

We need to capture the results of multiple high-throughput exper-
iments within a logical and transparent conceptual and computational
framework in order to facilitate the interrogation of multiple layers of
complex regulatory information. Our initial model is based on the com-
plete genome sequence of mouse embryonic stem cells and on ChIP-Seq
data that capture the density of TF binding sites throughout the genome.
TFs operate in parallel, influencing each other; according to our hypoth-
esis, they produce genome-wide interference patterns that capture in
some way the predicted nature of the entire pluripotent circuitry.
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Fig. 1. Domain > Cartoon: (top) The regulatory process: a TF protein binds
to DNA at the BS, thereby regulating production of protein (which may be
a TF) from the corresponding gene (gene expression). (bottom) Expressed
proteins may include other TFs that can regulate expression of other genes: a
‘hairball graph’ of the human proteome and its binding interactions [20, fig.1]
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Embryonic stem (ES) cells have the potential to produce all of the
different cell types within the body, but this behaviour cannot yet be effi-
ciently exploited in vitro. We have considerable knowledge of the compo-
nent parts of the regulation of ES cells maintained under precise external
conditions [35], but during normal development many different types of
regulatory factors interact, enabling cells to respond flexibly to chang-
ing environments. The regulatory network of single ES cells is therefore
some function of both cell intrinsic and cell extrinsic variables.

Here we assume that pluripotency is a state of individual ES cells.
ES cells exit pluripotency via a transient ‘primed’ state that facilitates
cell fate computation [38]. Our knowledge of this exit process and the
transient primed state is incomplete, partly because it is difficult to ob-
tain data from transient cell states [47]. The process of pluripotency
exit itself is intrinsically disorganised and/or chaotic in order for it to
integrate intrinsic and extrinsic information and compute cell fate. Ac-
cording to our conceptual framework, regulatory circuitries compute cell
fate trajectories via ‘critical-like dynamics’ at the edge of chaos [24].

Nanog, Oct4 and Sox2 form part of the core pluripotency circuitry of
ES cells [13]. Oct4 in particular seems central to understanding pluripo-
tency. Oct4 expression level is closely regulated, with deviations either
above or below a certain expression range resulting in differentiation [40].
It has been suggested that protein complexes, in which Oct4 is involved,
help to establish a dynamic competition between individual elements,
serving to buffer the differentiation-promoting activity of Oct4 [37].

Fluctuations are inevitable in any system that has many degrees
of freedom. At static equilibrium, such fluctuations ultimately disap-
pear but under non-equilibrium conditions, fluctuations are often great
enough to drive reorganisation toward new dynamic states [15, 39]. If
continual driving is experienced, complex spatiotemporal patterning usu-
ally results and systems are said to have ‘self-organised’ [11, 22, 39].

In biology, the growth and development of organisms occurs far from
equilibrium. The stem cell regulatory networks that facilitate these pro-
cesses are replete with positive and negative feedback loops and nonlinear
interactions. When faced with overwhelming complexity, the natural ten-
dency of humans is to either reduce, simplify or ignore it. Reductionist
thinking makes systems (a) easier to think about, (b) easier to consider
manipulating, and (c) easier to predict, provided non-equilibrium driving
is minimal.

Over the last few decades, there has been increasing awareness of
the limitations of the reductionist approach [8, 16, 19, 30, 41] and it
has become clear that some laws of nature cannot be deduced by re-
solving more detail [48]. This so called ‘new era of physics’ focuses on
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developing complex behaviour out of simplicity, instead of the traditional
reductionist approach that reduced complexity to its simplest possible
form [2, 28, 41]. Non-equilibrium driving can have profound consequences
on system behaviour, a realisation that contrasts with our natural ten-
dency to assume systems are near equilibrium or at least show some
steady state behaviour. Equilibrium and reductionist thinking pervades
most scientific disciplines [9–11, 18], including molecular and stem cell
biology.

The differentiation of pluripotent cells in the early embryo is a fasci-
nating non-equilibrium process that results in the production of numer-
ous specialised cell types. More than 600 different proteins have been im-
plicated in exit from a näıve pluripotent state and control of early state
transitions in the mouse [29]. As our focus shifts from individual com-
ponents to complex communication networks, experimental studies have
become more difficult. Not only do central features of complex networks,
such as robustness, prevent straight forward analysis and interpretation
of network behaviours, but many experiments cannot be performed be-
cause of ethical reasons surrounding the use of human embryos.

Computer simulation sidesteps the ethical, moral and political issues
surrounding use of human embryos. It therefore represents an alternative
route to gaining new insight in to this promising field of regenerative
medicine. Our overarching aim is to gain sufficient understanding so
that any cell type of therapeutic interest can be generated effectively at
will.

Discovery > Domain > Glossary: terms and acronyms

CoSMoS pattern: Glossary: Provide a common terminology across
the simulation project.

The main biological terms used in the various models are:

binding site (BS) : section of DNA that binds a given TF and influ-
ences transcription of associated genes

branching process (BP) : the mathematical model underlying inspi-
ration of the TF BP framework being investigated here

ChIP-Seq : a technique to identify the binding sites of transcription
factors on DNA

cistrome : the portion of the genome associated with a specific TF; a
pattern of genome-wide binding sites to which the TF displays some
activity

pluripotent stem cell : a cell capable of generating all the cell types
present in the adult body



42 Richard B. Greaves et al.

segment : the genome data is segmented, into say 10k or 50k base-pair
sequences, in order to apply the TFBP framework

transcription factor (TF) : a protein that binds to DNA to influence
transcription of the associated gene

Discovery > Domain > assumptions

See §3.1 for the Assumptions pattern requirements.

A.4 The genome can be modelled as a set of overlapping TF cistromes
without needing epigenetic factors

reason We are looking only at TF segments, and the pluripotent
state can be induced by TFs alone

justification See, for example, [31]
consequence Behaviours facilitated by other factors, such as epi-

genetics, will be unseen in the model

A.5 a TFBS is either bound or unbound, there is no partial TF binding

reason not enough data to say otherwise

A.6 a segment can be either activated or deactivated, there are no differ-
ing amounts of activation

reason Simplification: the data does say whether a segment has one
or more binding sites

justification This is the first iteration; we will revisit the neces-
sity/impact of this assumption in later iterations

consequence We will not be able to separate out behaviours of
groups of genes in a segment. In order to do so, we could use
smaller segments. But segments cannot be made too small, else
we would lose correlations between related TFs.

A.7 we can investigate cell decision making by modelling an individual
cell, not a population

reason cells have internal decision making, although they can also
be influenced by their environment

justification See, for example, [33]
consequence We will not be able to investigate population-level

decision making

Discovery > Domain > scope

– single cell model
– single transcription factor model
– later iterations will add more, coupled TFs, and more interacting

cells
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Discovery > Domain > sources
– Domain scientists
– Biological literature, as referenced in the various overviews
– Chip-seq data for various cistromes (source: Dietmann)

3.3 Discovery > Domain Modelling

CoSMoS pattern: Domain Modelling: Produce an explicit descrip-
tion of the relevant domain concepts.

The components of Domain Modelling are:
– collaborate with the identified Domain Scientist
– draw an explanatory Cartoon
– discuss and choose the Modelling Approach and level of abstrac-

tion
– build the Domain Model using the chosen modelling approach
– build the Data Dictionary
– document Assumptions relevant to the domain model
– Argue Domain Model Appropriate (omitted here)

Discovery > Domain Modelling > collaborate

The lead domain scientist (Halley) and the domain modellers (Greaves,
Stepney) collaborated closely throughout the development of the domain
model, translating and abstracting the conceptual TF BP model into a
form suitable for simulation.

The domain scientists (Halley, Smith, Dietmann) collaborated on re-
fining the research context.

The simulation engineer (Greaves) collaborated with the the data
collection expert (Dietmann) on the form and content of the biological
data provided.

Discovery > Domain Modelling > Cartoon

See §3.2 for the Cartoon pattern.
Due to the structure of our Domain Model description, the Domain

Modelling Cartoon is presented in the section on the TF BP model (fig-
ure 4), and should be read in in that context.
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Discovery > Domain Modelling > Modelling Approach

CoSMoS pattern: Modelling Approach: Choose an appropriate mod-
elling approach and notation.

A central part of this design process is to develop the simplest pos-
sible working model at each stage of the modelling process. This ‘agile’
approach ensures that simulation code is not unnecessarily complicated.
It also helps to ensure that if a coding problem is found, it is simple
matter to backtrack to the last working model.

The domain model is captured using UML, in anticipation of an
agent-based, object-oriented design and implementation of the simulator.

Discovery > Domain Modelling > Domain Model

Our domain modelling gives rise to several models at different levels of
abstraction: a specifically biological stem cell model of regulatory net-
works, a model simplifying detailed transcription regulatory networks
using branching process theory, and a generic abstract model, which we
refer to as the ‘sparking posts’ model.

Note that the sparking posts model could also be used as a domain
model for other biological phenomena as captured by branching process
theory, such as patterns of information flow in the human brain.

Regulatory network

We have mouse genome data including the suite of BSs within it. For
convenience and simplicity, we divide this sequence in to 50 kilobase
(kb) segments, any of which may or may not contain binding sites for a
particular TF of interest. If a 50kb segment contains a binding site for
our transcription factor, X, then the segment is said to be part of the X
cistrome.

Data about the locations of the transcription factor binding sites, in
relation to the gene segments in the model, is provided experimentally
by ChIP-Seq data. Figure 2 is a representation of ChIP-Seq data.

The regulatory network components can be captured in a model such
as that shown in figure 3. However, we abstract away from many of these
‘hairball’ inducing details, and consider the system instead in terms of
the TF BP model.

Transcription Factor Branching Process model

A common approach to understanding cell regulatory processes is the
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Fig. 2. A representation of a set of ChIP-Seq data for a cistrome (part of the
genome relevant to a specific TF). Each square represents a 50kb segment of
DNA. A white square is a segment that contains at least one BS site for a
product that is not a TF. A red squares is a segment that contains at least
one BS site for a product that is a TF. A black square is a segment that does
not belong to this cistrome.
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Fig. 3. Class diagram model of a stem cell pluripotency regulatory network.
The stem cell has a genome comprised of genes, which can alternatively be
described as a cistrome (or set of cistromes), each being comprised of segments
of gene which may or may not contain transcription factor binding sites.

application of concepts, tools and techniques developed in mathemat-
ics, physics or computer science [34]. Network representations, for ex-
ample, can accommodate multiple types of data within a single visual
illustration that provides an overview of regulatory pathways and com-
ponents [21, 34]. As already mentioned, empirically-derived interaction
networks can be difficult to interpret, often appearing as a ’hairball’
graph as regulatory mechanisms are increasingly dissected.

We use here a novel way to visualise and simulate genome-wide reg-
ulatory network interactions. Our coarse-grained approach does not re-
quire details of binding constants prerequisite for most ODE models of
stem cell regulation. In many previous computational or mathematical
models of stem cell regulatory networks, TFs are represented as single
nodes with binary (on/off ) behaviour. Here, we use a different approach
that captures TF activity as a dissipative branching process that prop-
agates within the bounds imposed by the TF’s unique cistrome.

Unlike reductionist models that capture TF activity using single vari-
ables in an equation, in our model we explicitly represent a background
delocalisation of TF activity throughout the genome. We can visualise
the activity of each TF’s BP as a kind of gateway through which regu-
latory information pertaining to the TF passes over time.

The TF BP model allows a decoupling between details of BS con-
stants and the emergent effect of TF activity throughout the genome.
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Instead of struggling with countless (often unknown) binding constants,
we consider the overall flow of regulatory information at genome-wide
scales. It is thus more suitable for attempts to discover how the ES cell
regulatory network behaves as a whole during computation of lineage
choice. Through this more coarse-grained methodology, we hope to dis-
cover complex interactions that can easily be overlooked by studies that
focus on only a handful of key regulatory components at a time.

The potential binding of a TF to target regions throughout the
genome is determined by ChIP-Sequencing. The data set or ‘footprint’
for a given TF comprises a unique pattern of TF-DNA interactions that
is somewhat dependent upon the precise methods used to infer interac-
tions. The precise footprint for a specific TF may vary between different
experimental datasets. Such ‘fuzziness’, rather than being a nuisance, is
intrinsic to the TF BP model.

If we understand the activity of any given TF as a branching process
of regulatory information propagating through time, it makes sense that
there will be some correlation between observed TF expression and the
saturation of target sites influenced by TF activity. The significance of
this important point will become clearer in later work, when we simulate
multiple cistrome data sets. Here, we focus on simulating a single TF’s
BP to introduce the groundwork for our approach.

Figure 4 presents a Cartoon of the TF BP model. Each square in
the figure corresponds to a 50kb segment of the mouse genome. Black
squares represent segments that contain no BSs for the TF of interest,
while red and white squares represent segments with at least one BS for
the TF of interest. The difference between a red and white segment lies
in their products. A red segment has products that include TFs, whereas
none of the products of a white segment is a TF. Henceforth, when we
refer to a ‘red’ segment we mean a gene segment that can bind TF and
thus become stimulated into transcribing further TFs.

We capture the countless (ill-defined or unknown) cascades of gene
activation via TF production and feedback as a branching process in
which TFs produce other TFs while also regulating the remainder of
the genome. There are potentially three qualitatively different types of
behaviour for any TFX branching process. Firstly, the cistrome X is
saturated and the TFX gene is continually and stably expressed. Alter-
natively, there is the opposite type of emergent behaviour, with TFX

expression occurring at a very low noisy level that is not sustainable
unless TFX is supported by continual activation of the TFX gene via
some external signal. Finally there is a dynamic intermediate between
these extremes where a branching process only just percolates through
the TFX cistrome. In all cases, the targets of TFX are divided in to two
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Fig. 4. Domain Modelling > Cartoon: A branching process representation of
the overall flow of regulatory information, which serves as the basis of our
simulation. At t, assume the circled red segment is activated. At time t + 1
this will activate m further randomly chosen segments (arrows), and itself
deactivate. At time t + 2, any of these newly activated segments that are
themselves red, will each activate a further m randomly chosen segments, and
deactivate.
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types: (1) dissipative targets that do not propagate information back
in to the TFX cistrome and (2) amplifying targets that are either TFs
themselves and capable of propagating information or code for signalling
molecules that are involved in signal transduction.

We define an average branching ratio, called m, for our gene regu-
lation branching process. That is to say that once transcribed, a gene
(or gene segment in our case) will produce m product molecules (in this
single cistrome model these will all be the TF that binds to binding sites
within the cistrome of interest). If the activated site is associated with
TF products then new TFs are produced and these can bind to other
TF binding sites in the system. In this way, up to m segments will be ac-
tivated in the next time step of the algorithm. In the time step after this
each of the activated segments can go on to activate m further segments
and so on as illustrated in Figure 4.

This TF BP model is built on the classical BP theory outlined in
section ‘Domain > overview’, and is adapted in the following ways:

– m is related to the BP branching factor µ, but is not the same,
because here the m ‘offspring’ include both white and red segments,
yet only red segments go on to produce further ‘offspring’.

– In the supercritical case, the number of offspring cannot increase
without bound, but only up to the number of relevant segments in
the cistrome.

– The individulas are segments, and do not ‘die’ at the end of a gen-
eration; rather they can be reused (reselected) in subsequent gener-
ations.

Domain Model: Sparking Posts

In order to model a branching process, we produce our domain model in
terms of a metaphor. To capture the nature of critical-like self-organisation
hypothesised to underpin lineage computation, we have reduced the sys-
tem to a ‘sparking posts model’. This computational model is used to
define the backbone of critical-like self-organisation upon which other
layers of complexity are elaborated.

The TF BP representation of our system is modelled as a ‘sparking
posts’ representation of the cistrome in which each segment is modelled
as a metal ‘post’ which emits ‘sparks’ once it has been activated by an
incoming spark emitted by another post in the previous timestep. The
sparks represent the TF products of the genes contained within a given
segment and are therefore the principal mode of communication between
cistromes, the genome being effectively the sum of all cistromes in the
system.
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Fig. 5. A class diagram capturing the sparking posts model components. An
Arena has multiple Posts; Posts produce Sparks, and are activated by Sparks.

So the Domain Model is as follows.
Consider an arena containing metal posts, some red, some white. The

arena is an abstraction of a particular cistrome; the posts are abstrac-
tions of the segments containing BSs (red and white squares in figure 2);
red posts are abstractions of segments that express TFs (red squares in
figure 2).

Posts may be active (on) or not. In a timestep, an active red post
emits m sparks. A post being active is an abstraction of a gene in a
segment being activated; a red post sparking is an abstraction of an
activated gene expressing a TF.

Posts become deactivated after they have sparked. A spark lands on
a random post in the arena (that is, the model is aspatial), and activates
it.

Continued propagation of sparks relies on the activation of sufficient
red posts at each timestep.

Figures 5 and 6 capture this Domain Model.

Discovery > Domain Modelling > Data Dictionary

CoSMoS pattern: Data Dictionary: Define the modelling data used to
build the simulation, and the experimental data that is produced by
domain experiments and the corresponding simulation experiments.

The sparking post model’s parameters and variables are shown in
figure 7. Figure 8 shows the values of some of these parameters for the
cistromes of interest here.
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Fig. 6. A state diagram of a post. Posts are initially off; become activated (on)
if a spark lands; then become deactivated in the next timestep.

p total number of posts in the arena
r number of red posts
m sparks emitted per active red post
s0 number of red posts active initially

t timestep
st number of red posts active at timestep t

Fig. 7. Sparking post model: (top) parameters, constant during a simulation
run; (bottom) variables, changing during a simulation run

Nanog Sox2 Oct4

p 4310 3330 2540
r 631 542 466
r/p 0.146 0.163 0.183
p/r = mc 6.8 6.1 5.5

Fig. 8. The values of the parameters p (number of posts, or segments in the
cistrome) and r (the number of red posts, or red segments in the cistrome) for
the TFs investigated in this study
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Discovery > Domain Modelling > assumptions

See §3.1 for the Assumptions pattern requirements.

First, we have some assumptions related to the TF BP model, which
we note as they have an impact on the sparking posts model.

A.8 the product of a TF producing segment is the TF whose cistrome
we are modelling

reason An assumption underlying use of the TF BP model

justification The TF may not be directly produced; there may be
a cascade of production, but the TF BP model collapses this
cascade. We are investigating this model.

consequence This is an abstraction from the biology, made to al-
low us to model the highly complex processes. If it works, this
abstraction could also provide an approach to include other fea-
tures such as epigenetics and mRNAs in a tractable model.

A.9 the identity of the TFs produced during transcription is irrelevant
in the single cistrome model

reason An assumption underlying use of the TF BP model

justification The TF BP model assumes that the relevant scale of
computation is the cistrome level, abstracted from specific details
of the individual TFs

Assumptions directly related to the sparking posts model are:

A.10 a spark from a post can hit any post with equal probability: there is
no notion of a ‘distance’ between posts

reason an aspatial model

justification the TF BP model collapses a potential cascade of TFs
into a single ‘proxy’ TF. This cascade would lose any spatial
dependence in the DNA.

A.11 a post cannot be hit by more than one spark per timestep: there is
no notion of different ‘capacity’ posts

reason follows from assumption A.6
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Discovery > Domain Modelling > Expected Behaviours

CoSMoS pattern: Expected Behaviours: Describe the expected emer-
gent behaviours of the underlying system.

The ‘sparking posts’ domain model forms the basis for subsequent
simulation development.

We can form a much simpler version of the model, in order to help
understand the effect of noise. Since there are a finite number of posts,
stochastic fluctuations will occur, and sparks might occasionally miss
many or all of the red posts. Here we instead assume that posts are always
hit the average number of times. We are interested in the proportion of
red posts active in the ‘steady state’, in limit of large time.

At time t there are st red posts active. Each of these active post
emits m sparks, so a total of st×m sparks are emitted. Let each of these
sparks be absorbed by a separate post, of which a fraction r/p are red.
So at the next timestep, there are st+1 = stmr/p red posts active.

The number of active red posts reduces with time if m < p/r, and so
the arena is extinguished, with s∞ = 0.

The number of active red posts steadily grows with time if p/r < m,
until there are more sparks emitted than there are posts in total (moving
outside our assumption of each spark being absorbed by a separate post),
and so the arena saturates with s∞ = r.

The critical value, mc, where this change of behaviour happens is
mc = p/r. Values for mc for the TFs of interest are shown in figure 8.

Hence the expected behaviour of the single cistrome simulation is to
quench for low values of m, saturate for high values of m, and have a
tipping point around mc.

4 Development phase

CoSMoS pattern: Development: Build the scientific instrument: pro-
duce a simulation platform to perform repeated simulation, based
on the output of the Discovery phase.

The components of the development phase are:
– revisit the Research Context
– develop a Platform Model
– develop a Simulation Platform
– Argue Instrument Built Appropriately (omitted here)
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4.1 Development > revisit

The research context is unchanged in the light of Discovery phase activ-
ities. The TF concepts need to be reinterpreted in terms of the sparking
posts model.

4.2 Development > Platform Modelling

CoSMoS pattern: Platform Modelling: From the Domain Model, de-
velop a platform model suitable to form the requirements specifica-
tion for the Simulation Platform.

The relevant components of Platform modelling are:
– choose a Modelling Approach for the platform modelling
– develop the Platform Model from the Domain Model
– document Assumptions relevant to the platform model

Development > Platform Modelling > Modelling Approach

We use the same approach as for domain model, assisting seamless de-
velopment.

Development > Platform Modelling > Platform Model

The emergent tipping point behaviour is not part of the platform model.
The rest of the ‘sparking posts’ model carries over from the domain
model unchanged.

Instrumentation is added, to collect statistics from the simulator,
including post sparking activity. A user interface and visualisation com-
ponent is added, to control the simulator runs (set the simulation pa-
rameters), and examine the output.

Development > Platform Modelling > Assumptions

A.12 the sparks due to an activated post last for one simulation time step

reason simplicity
justification first iteration
consequence half lives and decay rates are not modelled; they may

be added in later iterations
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4.3 Development > Simulation Platform

CoSMoS pattern: Simulation Platform: Develop the executable sim-
ulation platform that can be used to run the Simulation Experiment.

The relevant components of developing the simulation platform
are:
– choose an Implementation Approach
– code and test (details omitted here)
– perform calibration (details omitted here)
– document Assumptions relevant to the simulation platform

Development > Simulation Platform > implementation ap-
proach

The simulation is implemented as an object-oriented Java application
using the MASON simulation environment to handle such things as
time-stepping the simulation and on screen graphics (when running in
graphical mode).

5 Exploration phase

CoSMoS pattern: Exploration: Use the simulation platform result-
ing from Development to explore the scientific questions established
during Discovery.

The components are:
– revisit the Research Context
– perform Results Modelling
– perform a Simulation Experiment
– Argue Instrument Used Appropriately (omitted here)

5.1 Exploration > revisit

The research context is unchanged in the light of Discovery and Devel-
opment phase activities.

5.2 Exploration > Results Modelling

CoSMoS pattern: Results Modelling: Develop a results model suitable
for interpreting simulation experiment data in Domain Model terms.

The relevant components of results modelling are:
– build a Visualisation Model
– build a Results Model
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– Argue Results Model Appropriate and Consistent (omitted here)

Exploration > Results Modelling > Visualisation Model

CoSMoS pattern: Visualisation Model: Visualise the simulation ex-
periment results of the Data Dictionary in a manner relevant to the
users.

The visualisation mimics the cistrome data in figure 2.

Exploration > Results Modelling > Results Model

The results model is the cistrome activity (number of activated posts)
as a function of time.

5.3 Exploration > Simulation Experiment

CoSMoS pattern: Simulation Experiment: Use the simulation as a
scientific instrument to explore the behaviour of the system.

The relevant components of a simulation experiment are:
– design the experiment
– perform the experiment
– analyse the results

Exploration > Simulation Experiment > design

The parameters p (number of posts) and r (number of red posts) are
effectively fixed for any given set of experimentally derived cistrome data
(figure 8). We can also generate synthetic data to create systems with a
range of p and r values to explore general behaviours.

We identify 4 experiments to perform on the single-arena simulation:

experiment 0 : Effect of m. With p and r fixed and s0 = r, explore
the effect of m by locating those values of m for which the system
remains fully saturated: all red posts are activated at all time steps.
Compare this with the expected mc value (figure 8) for a noiseless
system.

experiment 1 : Effect of s0, sensitivity to initial conditions. Repeat
experiment 0 with smaller values of s0.

experiment 2 : Effect of r. Create arenas with a fixed p and a range
of r values. At each value of r, determine the values of m for which
the system remains saturated throughout the simulation.



Mouse embryonic stem cell regulatory network 57

experiment 3 : Effect of noise. Keeping the ratio of p to r fixed at the
value in the biological data, investigate the effect of reducing p. This
will give some insight into how the data scales up within the context
of our model, and whether we can use smaller arenas in experiments
to improve simulation performance.

Number of simulation runs. We are not performing any statistical anal-
yses at this stage of the project, merely inspecting behaviour. However,
the simulation is essentially stochastic, and when we do come to perform
statistics, we will need to choose the number of runs based on the signif-
icance, power, and effect size of interest. For consistency, we make that
choice now, and use the relevant number of runs.

We require a statistical significance of 99% (a 1% false positive rate),
a statistical power of 99% (a 1% false negative rate), and a ‘medium’
effect size (Cohen’s d = 0.5, the ability to distinguish a difference in
means of 0.5 of a standard deviation). Calculating the required sample
size for these experimental parameters3 gives 192.

We round this up, and take the number of runs to be N = 200.

Protocol. One simulation run comprises the p and r values of a particular
arena (chosen to match Nanog, Sox2, Oct4 data), an m value (1–50), and
a starting activity (s0 = r for experiment 0; s0 = r/2 for experiment 1).

For each simulation run, we record the proportion of active red posts
at the final timestep, T = 1000.

For each parameter set (p, r, m, s0), we run the simulation N = 200
times.

5.4 Exploration > Simulation Experiment > analyse results

Experiments 0 and 1

Experiment 0 uses s0 = r: all red posts initially active. Experiment 1
uses s0 = r/2: half the red posts initially active.

See figures 9–11 for the results of the simulation runs.

The observed values of m where the system ‘switches on’, and can
maintain saturation, are close to the calculated mc values. However, m
has to be somewhat higher than this to saturate the finite-sized arena.

Starting with only half the posts active makes little difference to the
results.

3 using, for example, the calculator at http://powerandsamplesize.com/
Calculators/Compare-2-Means/2-Sample-Equality
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Fig. 9. p and r corresponding to Nanog data; (left) experiment 0: s0 = r;
(right) experiment 1: s0 = r/2. Recall mc = 6.8
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Fig. 10. p and r corresponding to Sox2 data; (left) experiment 0: s0 = r;
(right) experiment 1: s0 = r/2. Recall mc = 6.1
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Fig. 11. p and r corresponding to Oct4 data; (left) experiment 0: s0 = r;
(right) experiment 1: s0 = r/2. Recall mc = 5.5

Experiment 2

For experiment 2, we took p = 4310 (as in Nanog), and r = 200, 400, 600, 800,
to see how the value of mc changes. We used s0 = r throughout.

See figures 12–13 for the results of the simulation runs.
Recall that the theoretical tiping point value is mc = p/r. So as r

increases, mc should decrease. This is observed (figure 12).
Also note that the smaller r, the noisier the behaviour. This is ex-

pected as stochastic effects will be more prominent when there are fewer
red posts available.

Experiment 3

For experiment 3, we took p/r = 4310/631 (as in Nanog), and reduced
p keeping p/r constant (mimicking a smaller arena but with the same
density of red posts). We used s0 = r throughout.

See figure 14 for the results of the simulation runs; compare with
figure 9(top) for the ‘full’ arena.

The systems tip at the same point, but the behaviour gets noisier as p
(and hence r) decreases, and stochastic effects become more pronounced.

6 Discussion

This paper documents and illustrates the use of CoSMoS patterns to
perform a complete iteration of a CoSMoS simulation project, from ini-
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Fig. 12. Experiment 2: varying r; here p = 4310: (top left) r = 200; (top right)
r = 400; (bottom left) r = 600; (bottom right) r = 800

r m obs mc

200 23–24 21.6
400 11-12 10.8
600 7–8 7.2
800 5–6 5.4

Fig. 13. Experient 2: observed value of m at tipping point, versus calculated
value mc
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Fig. 14. Experiment 3: varying p with constant p/r: (left) p = 2000, r = 293;
(right) p = 1000, r = 146

tial discovery, through development, to exploration. There were several
lessons learned, summarised here.

It is not always clear whether information should be included in the
Domain, or Domain Model, sections, particularly relating to assump-
tions. However, it is more important to document the information that
to agonise over precisely which section to document it in.

Not all patterns are applicable. For example, here the Domain Model
Cartoon had to be presented within the Domain Model section, rather
than as a prior illustration. Additionally, the TF BP model is so ab-
stracted from the Domain, that aspects such as the Domain Experiment
Model [5] are not relevant, and so have been omitted. Again, it is more
important to follow the spirit of the CoSMoS approach rather than the
letter of every pattern.

Not every aspect of the CoSMoS approach needs to be performed
with complete rigour. This simulation is not safety critical, so some as-
pects have been omitted (such as justification of all assumptions, and
argumentation of fitness-for-purpose). The extra effort needed to com-
plete all aspects should be expended only if it gives benefit.

Although the presentation is sequential and hierarchical, the his-
torical process was not. We spent many short iterations, and consid-
erable backtracking (for example, see figure 3), before finally fixing on
the ‘sparking posts’ model. The CoSMoS patterns define what informa-
tion should be recorded by the end of the project, but not the order it
needs to be produced. Some uses of CoSMoS can apply the patterns in
significantly different orders, for example [4].
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We might not have arrived at the conceptual sparking posts model
without taking an iterative approach. The need to have just a single-
cistrome model for this first iteration revealed a fundamental misunder-
standing that the modellers were having about the background TF BP
model.

Although we were taking an agile approach, producing minimal sim-
ulation models and code, collaborations meetings would often generate
interesting but out of current scope ideas. We invented the concept of
the “to don’t” list: a place to record the ideas for future reference, in a
manner that made it clear they were not to be included in the current
iteration. Some of these ideas also prompted the recognition of assump-
tions in the current iteration.

The Domain Scientist (Halley) was new to the CoSMoS approach
at the start of the project, but had previous experience working with
modellers using different approaches on other projects. Halley reports
that CoSMoS is a flexible tool to produce objective scientific simulations,
and allows progress without being funnelled into preconceptions imposed
by a specific toolset or implementation approach.

7 Summary, Conclusions, Future Work

This work has run through a complete CoSMoS cycle, producing the first
iteration of the system: a single cistrome model.

The results demonstrate that the single-cistrome model exhibits its
tipping point close to the predicted value of mc, but the tipping is not
particularly sharp, so for values of m close to mc, there is a lot of noise
in the system.

In order to generate results that have genuine biological relevance,
it will be necessary to create a simulation of two or more cistromes in-
teracting with each other via the TFs that each produces. For example,
we will investigate model behaviour when the Oct4, Sox2 and Nanog
branching processes are allowed to interact. Given the groundwork de-
veloped in this first iteration, the modelling and simulation work in for
the second iteration, to augment the system with multiple cistromes,
should be relatively straightforward. We are currently developing this
second iteration.

Beyond this, future iterations could include:

– More complex connections within networks of cistromes, including
inhibition and negative feedback, combinatorial binding of TFs, and
indicators of 3D genomic or chromosomal architecture. The inclusion
of inhibition of gene expression is particularly relevant to the process
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of pluripotency exit, as batteries of differentiation genes are suddenly
expressed.

– A Domain Specific Language with which we can describe the network
– TF half life variability
– Epigenetic histone marks that may help to shape circuitry self-organ-

isation
– Combinatorial binding of TFs to enhancer sites that impart tran-

scriptional synergy [46]
– Multicellular model incorporating cell-cell signalling

The model presented here represents a novel example of self-organisa-
tion that may apply to other complex systems. It is of interest from
a purely theoretical perspective because it helps to demonstrate how
distributed interactions among units result in higher ordered emergent
behaviours. Such complexity could provide dynamic templates of organ-
isation upon which natural selection builds additional elaborations [25].
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Abstract. Building robust and resilient systems is a major
challenge for engineering. To this end, analytical indicators may
be useful for managers in making decisions. In this paper, a new
analytical construct is presented: the action horizon. This con-
struct is devoted to assisting in the control of a system when an
event driving the system to its collapse is detected. This con-
struct is useful for analysing the best moment to start executing
a corrective action. In this paper, the action horizon is experi-
mentally evaluated in the predator-prey system and we discuss
how it could help with managing power systems.

1 Introduction

Instability in power grids can provoke a dramatic power drop, which
may lead to service disruption. This situation can happen due to natural
environmental changes, machinery failure and/or human actions.

The practical importance of stability analysis, for events that cannot
be predicted, is that it helps in selecting countermeasures to avoid sys-
tem collapse and enhances stability. There are short-term and long-term
countermeasures that comprise system planning, operational planning
and real time monitoring.
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However, once the destabilising event has been identified and the
countermeasure has been selected, the following questions arise: when
should this action be executed and, more specifically, what is the best
moment to execute it in order to minimise costs?

In general, the controllability of a system involves not only the selec-
tion of the countermeasure, but also the analysis of the optimal moment
to start executing it. However, due to the dynamism of a complex sys-
tem, it is interesting to delay the execution of the countermeasure since
other events could occur and allow the system to recover stability with-
out taking any action. In some cases, therefore, it could be better to do
nothing.

This paper introduces the construct of action horizon which helps
decide the best moment to execute a countermeasure improving the con-
trollability of complex systems. The structure of the paper is defined as
follows: firstly, the controllability concept is presented. After that, this
concept is discussed with respect to energy systems and the challenges to
improve it. Then, the action horizon is formally defined. This construct
is evaluated experimentally in the predator-prey system. The final sec-
tions discuss the benefits of the action horizon for the predator-prey and
how it could help to manage energy systems.

2 Complex systems and controllability

Complex Systems science has historically emerged from domains such as
Sociology and Biology. Complexity theory aims to understand how these
usually natural, large and very dynamic systems function, which are their
rules and patterns and how global emergence leads to an equilibrium in
which the system remains. The concept of Emergence, which describes
a global behaviour that cannot fully be inferred by the behaviours of
individual agents or, as Aristote long ago observed: when the whole is
more than the sum of the parts, is characteristic to all Complex Systems.
In an effort to understand Emergent phenomena, different methods of
the domain have been used, for example modelling of individual parts of
the system by reflecting their behaviour in a synthetic way. This has led
to a better understanding of the system; exploring it through detailed
inspection and analysis of the individual elements, and reconstructing
their interactions and dynamics in order to understand the aggregated
behaviour at different levels of this system.

For many years now, however, Complexity Theory has not only helped
to improve our knowledge of existing natural systems; it has also has
been successfully applied to understanding the behaviour of large man-
made complex systems. Evolution theories have been applied to urban
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systems [2, 3], and the world-wide web, as one of the largest and most
widely distributed systems, has been shown to comply to many of the
laws that were previously discovered through the exploratory approach.
The difference here is that man-made systems are usually designed to ful-
fill a concrete purpose. Complex systems science as a means for exploring
and understanding systems has already lead to scientific breakthroughs
(examples of understanding of firefly synchronisation, behaviour in bee
hives, etc.).

Going one step further and understanding how we can modify the
trajectory of these systems however is an important challenge. [6] raised
this topic in their paper entitled “Controllability of complex networks”,
focusing on finding the entities of the system which have a greater im-
pact on its controllability, using the statistical physics approach. Indeed,
the methods of exploring complex systems to better know the means
by which we can drive those systems into a desired trajectory could be
seen as one of the main challenges in this field. Complexity theory could
help us better understand engineered systems, such as power grids or
other infrastructure networks. However, a transfer of these rather the-
oretical approaches to concrete application cases is needed. In this pa-
per, we initially try to shed light on controllability from a conceptual
point of view, then we will try to illustrate its possibilities for typical
academic complex system examples, and further apply these methods
to a real engineered system. As mentioned above, energy systems are
complex man-made systems, nowadays with a tendency towards more
decentralised and distributed management patterns. With a view to en-
suring both the reliability and sustainability of those systems, a complex
systems approach might help to improve their controllability and ensure
stability.

3 Energy system controllability

Energy system complexity comes from the great variety of technical in-
stallations (e.g. plants, grids), energy sources and carriers (e.g. gas, elec-
tricity), actors (e.g. producer, network operator, industrial and private
consumer), and is strongly influenced by various economic (e.g. energy
prices, market systems), political (e.g. taxes, subsidies) environmental
(e.g. weather) and social (e.g. acceptance of technologies) factors. En-
ergy systems nowadays have changed tremendously, in comparison to
earlier energy systems. The share of renewable energy generation (REG)
in electricity systems is increasing, new actors, for example, traders, have
entered the systems, other actors have changed their role (for example,
consumers becoming producers), markets systems have changed from a
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highly regulated to a more liberalized operation, acceptance of certain
technologies (e.g. nuclear power) has decreased in certain countries, and
information technology has found its way with an extensive application
into the systems (see [4]). A wide range of ideas to cope with these new
system elements and influences have been developed: inter alia: system
integration of REG via smart grids, demand side management (DSM), in-
terconnection of the different energy systems with the electricity system
for transport (e.g. via electric vehicles), heat (e.g. via heat pumps), gas
(e.g. via power-to-gas), increased use of storage, grid expansion (see [9]
for further concepts).

With a growing complexity of energy systems, the corresponding
models which aim to analyse and optimize their performance have in-
creased in complexity, too. To keep these models manageable (and, in
turn, the real systems they model) they have been simplified, concen-
trating on the improvement of a subset of objectives ( [7]). In most of
the cases this simplification merely consists of decreasing the number
of system elements and target variables by e.g. limiting the observation
period, its differentiation and the geographical extension. Depending on
the chosen methodology the complex interactions and procedures nor-
mally are mapped as precisely as possible, within the defined subset of
targets to study. Therefore, these models represent adequate states for
the modelled time horizons and impacts of simulated events and actions.
Numerous energy models study a large number of the influences of deci-
sions (or actions, or countermeasures) on the system. Non-deterministic
simulations have become an important means of modelling energy sys-
tems, as they represented these extremely complex systems very well.
Multi agent models (using the same methodology as the model we will
investigate later) have become more and more common ( [10]). Controlla-
bility of energy systems has always been an issue, but with deterministic
model actions to control the mode (and thus the represented system),
it is relatively easily determined (type and point in time). With multi
agent models, controllability becomes a bigger issue.

To illustrate this problem we will present two (of course there are
many more!) problems in energy systems: The first problem comes from
the increasing penetration of photovoltaics and other small-scale elec-
tricity generations in many distribution grids around the world. As such
investments have been subsidised for a long time, a lot of electricity
consumers have chosen to invest and become producers as well. In fact,
during some hours of the day, this generation outstrips consumption,
which leads to a feed-in of energy at distribution grid level. The prob-
lem here is that most existing distribution grids were not designed for
such usage. Because of high security standards, grids in countries like
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Germany are heavily oversized in regard to effective power transmission,
a fact which has allowed the grids to cope with the new application
until now. Other aspects of the electrical grids, such as maintenance of
voltages and stability frequency may pose problems, as there are strict
regulations of the level for all of them (power quality: 400V ± 10%, fre-
quency: 50Hz ± 0.2%).

New types of big consumers, such as electric vehicles, may also con-
tribute to this problem. Owners of the electric vehicles may decide to
recharge them at the same moment at home, which will result in a huge
peak load. To deal with these issues, strategies such as DSM in smart
grids have been developed. In this approach, flexible demand is shifted
using different kinds of incentives, such as electricity prices varying dur-
ing the day, or a direct control by an operator, for example an electric
vehicle fleet operator that schedules vehicle charging. As effective power
supply cannot be predicted very well (using weather forecasts, etc.) main-
tenance of voltage and stability of frequency is more complicated and
depends on grid conditions and other short-term factors. Scheduling ac-
tions to prevent problems and using these actions optimally (concerning
grid conditions and costs) is an issue studied in a lot of energy model
simulations.

The second problem arises on a greater scale. As regenerative decen-
tralized electricity generation is increasingly being adopted to confront
climate change in many countries, its share in the generation mix in-
creases. This generation is mainly fluctuating and not evenly distributed
geographically, due to weather and climate conditions. Therefore, the role
of balancing energy, supply and demand, becomes more and more impor-
tant. To enhance this balancing, energy storage and increasing flexibility
of demand may become important. As mentioned before, power grid reg-
ulations and safety management are strict. Therefore, in a possible future
energy system with a high percentage of uncertain and unequally dis-
tributed generation, the question of how much balancing energy has to
be stored, and when and where this will be done, is becoming more and
more important.

4 Defining the action horizon

An operator in the energy system should be able to analyse the optimal
moment to start executing countermeasures. To this end, for controlla-
bility purposes, it is interesting to know: (1) the maximum time after an
event occurs that the system is still guaranteed to recover its stability
by executing the countermeasure; (2) the time after the event in which
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the action will be effective, with a probability rate; or (3) the time after
the event in which the action will no longer be effective.

Understanding these questions evolves around the event horizon con-
cept, which is defined in the general theory of relativity to explain how
space time bends around a massive object. This theory predicts that
there is a region near black holes from which light is unable to escape.
The boundary of this region is the event horizon, or “a point of no re-
turn”.

In an analogous manner, if we delay the execution of a countermea-
sure, there also could be a “point of no return”. That is, a moment
in time where this corrective action is not effective for recovering the
stability of the system.

This is the proposed action horizon construct, defined as the mo-
ment up to which it is possible to recover the stability of the system by
executing the selected corrective action for a probability of success.

Given a corrective action from a set of possible countermeasures, it
is defined a function Fω that assigns a success probability to the delay
of starting the execution of the action.

Fω : τ → µ

where ω ∈ Ω is a corrective action from a set of countermeasures,
τ ∈ [0,∞) is the time from the moment when the event that destabilises
the system occurs, and µ ∈ [0, 1] is the measure that represents the
success probability of a corrective action.

Thus, given a probability µ, it could be calculated τ such that Fw(τ) =
µ. The following properties can be defined for this function:

Non negativity:

Fw(τ) ≥ 0,∀ω ∈ Ω and ∀τ ∈ [0,∞)

Monotonicity:

Fω(τx) ≥ Fω(τy),∀τx, τy ∈ [0,∞) and τx ≤ τy

Axiom 1. When the system is stable, Fω(∞) = 1,∀ω ∈ Ω, since the
action is not required to be executed.

Axiom 2. When the system has collapsed, Fω(0) = 0,∀ω ∈ Ω,
since the corrective actions will not be able to recover the system at any
moment

Then, the action horizon for a given action and a defined success
probability, θµω, is the time after the event occurs such that:
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θµω ∈ [0,∞)

Fω(θµω) = µ

Fω(τi) ≤ Fω(θµω),∀τi ≥ θµω

Since the most common desired success probability is 100%, a sim-
plification of the action horizon notation is:

θω ≡ θ1ω

5 Experimental evaluation of the action horizon:
the predator prey system case

In this section, previously mentioned ideas are applied to a system that
has been modelled as an agent-based model: the predator prey system.
We have chosen this system as it is simple enough to illustrate the ideas
explained in this paper, in addition to being a well-known system.

The model we have used for running all the experiments can be down-
loaded from here [8]. This model may be freely reused. Our only require-
ment is to cite us.

To find out the action horizon of the system, we have studied how the
system behaves when parameters are stable. Then, an exogenous event
causes the system to lose stability, provoking its collapse after some time.
An action has been found that, when applied, prevents the collapse of
the system. This action, that counteracts the exogenous event, avoids
the collapse of the system if applied during the very first step in which
the event starts. At this point, an analysis is run in order to calculate
the probability of avoiding the collapse of the system when performing
this action, depending on the time at which it is applied, after the start
of the event. The “action horizon” will be the final time at which the
application of the action has a hundred percent chance of success.

5.1 Predator prey model

The model used for analysing the action horizon is inspired by the
model developed in [11]. This model considers three types of species:
“grass”, “hares” and “foxes”. The predators of the grass are the hares
and the predators of the hares are the foxes. This model represents a 2-
dimensional toroidal world where every kind of agent is spatially located
and the possibility of eating is related to the agents that are in the same
cell, as well as their kind.
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In this model, there are as many grass units as cells in world. This
grass has a specific regrowth time which defines the steps to have new
edible grass after the old grass unit has been eaten. This means that
every grass unit has an attribute that defines if it is ready to be eaten
or not. The regrowth time is the same for all the grass units.

Both animals, hares and foxes, have energy as an attribute and can
perform these actions at each step: move, eat and reproduce. The energy
is decremented at each step, meaning that an animal may die after having
taken several steps without eating (energy = 0). Actions are described
in the following list:

– Move: animals can only move to adjacent cells and their orientation
is calculated randomly.

– Eating: as previously mentioned, eating is only possible when there
is something to eat in the cell where the animal is. The restrictions
are that a hare cannot eat another hare or a fox, nor can a fox eat
another fox, or grass. Obviously, when a fox eats a hare, the hare
dies and its energy becomes 0. When a hare eats grass, the grass
cannot be eaten again until it is regrown.

– Reproduce: each kind of animal has a reproduction rate. In each
step, a random number is calculated in order to see if the animal has
a baby or not. Every animal is able to produce babies, and there is
no gender consideration.

5.2 Stability of the system

The predator-prey system remains quite stable whenever all attributes,
such as the reproduction rates, the regrowth time of the grass or the
initial populations, stay the same along the simulation. In this section,
the parameterisation of the system is illustrated in table 1.

Table 1. Parameters of the system

Parameter Value

World size 150 * 150 cells

Grass regrowth time 17 steps

Hares’ reproduction rate 4%/step

Foxes’ reproduction rate 3%/step

Initial edible grass 50% of all cells

Initial hares 2000 hares

Initial foxes 800 foxes
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Fig. 1. Population evolution with stable parameters
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Fig. 2. Relation between hares and foxes populations

As it can be seen in figure 1, the population of the species is stable
along the time. Edible grass oscillates between 2,500 and 3,500 units. As
it can be seen in figure 2, the fox population oscillates between 600 and
900 and hares between 1,600 and 2,000.

5.3 Destabilising the system

Keeping the system stable results in the action horizon being infinite.
That is, if no action is made, the system can remain stable indefinitely.
The calculus of the action horizon must be considered whenever some
indicators show that the system is moving out from its stable state.
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Fig. 3. Population evolution in case of drought

There are many ways to destabilise this predator prey system we are
analysing. We have chosen one of those most likely to happen: a drought.
The way in which this drought has been implemented in the model is
through increasing the regrowth time from 17 to 50. This means that
there will not be as many edible grass units as before. Therefore, the
hares will be in danger and if their population decreases, the foxes will
be in danger too. The duration of this drought is 500 steps.

In figure 3, the evolution of the populations is presented in a simula-
tion in which, after step 200, a drought starts which makes the regrowth
time of the grass longer. In this figure, it can be seen how the quantity
of grass is dramatically reduced, thus affecting the hare population. This
reduction of the hare population provokes, on the one hand, the extinc-
tion of the foxes some steps later and, on the other hand, the stability
of edible grass at around 2,500 units. When the drought finishes (step
700), a new stability situation is created for both the grass units and
the hares. Unfortunately, the overall system has collapsed, as foxes have
totally disappeared.

The scattered plot presented in 4, shows the evolution of both the
hare and fox populations. It can be seen how, during the drought, the
hare population decreases and, as a consequence, the fox population
also decreases until they are totally extinct. After, the drought, the hare
population increases, reaching around 4,000.

5.4 Stabilising the system

Before analysing the action horizon, an action must be found which
avoids the collapse of the system. There are many actions that can be
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performed. However, the most ecologically-friendly we have seen is to
artificially feed hares by placing some grass in the world, in order to
avoid a high decrease in the hare population.

Specifically, the idea consists in leaving some grass (3% of the cells
of the world) at every step after the drought event starts. However,
this grass is only left whenever the population of hares is lower than
1,800. In figure 5, the evolution of the populations can be observed.
There is a high oscillation of the grass population as consequence of the
action. Furthermore, the hare population remains stable at around 1,800
whereas the fox population decreases slightly. After the drought, grass,
hares and foxes are still alive, so that after some steps the situation
before the drought event is recovered. The evolution of both hares and
foxes can be observed in the scattered plot presented in figure 6.

5.5 Evaluating the action horizon

After analysing the stability of the system, how to destabilise it and how
to find a corrective action, a, to avoid its collapse, the action horizon can
be evaluated. The idea of this last part of the experiment is to find the
final time at which the previously mentioned action can be performed,
so that the probability of the system recovering is 100%.

To run this experiment, a set of simulation has been defined in which
the corrective action is applied at different times after the drought event
starts. The set of times goes from 0 to 600, with a step of 10. That is,
there will be simulations in which the action will start at the step 0,
others at 10, 20, ..., 600 after the drought event starts. Every configura-
tion will be simulated 2,000 times so that the probability of success in
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corrective action executed

applying the action will be calculated for each of those temporal config-
urations.

In figure 7, the probability of success in applying the action after the
drought starts are presented. As can be seen, the action can be applied
with a 100% probability of success if applied within 110 steps after the
drought event. Then, probability reduces until reaching 500 steps, where
the probability of success is close to 0%. Thus, we can determine that
the action horizon, θa, is 110 steps after the drought event considering
action, a.
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6 Discussion

In conducting these experiments, we have relied on three main factors
that seem to be the most critical for the action horizon:

– Event: the event that produces the systems collapse determines how
far away the action horizon is. If we had set the regrowth time to
infinite, instead of 50, the action horizon would have definitely been
quite shorter. Moreover, the action that we applied to correct the
situation (putting grass in the 3% of the cells) may not have been
sufficient to recover the system.

– Action: the action to avoid the collapse of the system is also critical
to determine how far away the action horizon is. In the case we have
presented, the action horizon would have been further away if the
grass had been set in more places, or the condition to leave grass
had been when hares population was lower than 2,000. Obviously, if
the action is too aggressive, it is possible to bring the action horizon
closer, as a collapse may be caused by the action itself.

– State before the event: this last factor is not as critical as the
other ones, but can determine how far away the action horizon is.
If the system is running with low populations at the time in which
the event happens, the action horizon will be closer, as an action to
recover the system will be required before.

Another important factor to consider when evaluating the action
horizon is the systems stochasticity. Under the same conditions in the
three factors previously mentioned, the simulations can reach different
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action horizons as the evolution of the populations is determined by
stochastic events.

Knowing the action horizon allows the managers to decide when is
the best moment to act in the system so that effort can be reduced. In
this case, one of the low-cost solutions might be to act within the action
horizon time, as this means that effort was saved in all the previous
steps in which nothing was done. Nevertheless, it is important to know
the probability of succeeding after the action horizon, since this may be
helpful in deciding what kind of action to apply, once this temporal point
is reached. That is, if it is known that an action has a certain probability
of success, perhaps it will be possible to come up with a better action
that may have a higher probability of success.

7 Conclusion

In this paper we focused on a concrete example based on the predator-
prey model in order to show the action horizon concept and how it
supports the controllability of a complex system. By simulating a desta-
bilising event, the system was disrupted, making it unstable. At this
point, corrective actions were performed and tested in order to assess
the so called action horizon. This is defined as the maximum time after
the event occurs in which a corrective action has a desired success rate
in achieving stability.

It is interesting to know the action horizon in order to delay the
execution of the countermeasure. Due to the dynamism of a complex
system, other events could occur and allow the system to recover stability
without executing any action.

Another factor that should be considered by managers is the cost of
executing the actions. The goal of minimising operational costs requires
the analysis of the best moment to act in order to recover the system.

For example, in the case presented, it could be wise to wait for the
action horizon with a 100% rate of success. In this way, new events can
be seen that may restore the system stability, so that no intervention is
needed (e.g. drought finishes), or other events that may push the system
to other kinds of risks, in which case this corrective action could be
harmful.

Future research on action horizon could analyse operational costs.
In this way, it could be calculated what is the action horizon of the
combination of two different actions or how several events occurring at
the same time influence the action horizon. Further studies should also
analyse the costs of recovering the system from its collapse, since this
could be less costly than avoiding its collapse. For instance, feeding hares
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may be more costly than bringing foxes in from other territories after
the drought has ended.

Furthermore, additional events could be considered in order to see
how it could affect to the Action Horizon. Considering the combinatorial
that this may have, in order to reduce the computational costs, it would
be interesting to apply techniques for calculating the number of runs
required to have a certain level of certainty when defining the Action
Horizon [1].

8 Outlook

In the balancing of energy systems, the risk of blackouts has been thor-
oughly analysed. For example, frequency drops due to power unit fail-
ures may lead to blackouts and even complete desynchronisation of the
system. In [5] the impact of distributed load management on system fre-
quency was analysed. Furthermore, controllability of the energy system
in terms of voltage control could be analysed. By optimising the use of
flexible loads at the right moments and right places, voltage drops can
be reduced. The analysis of the action horizon for these cases would lead
to a measure that could serve as a stability indicator of the grid, as well
as system frequency. Taking the flexibility potential into account, this
indicator could show the added value of using local load management,
and serve as risk assessment in real time for grid operation.

The concepts and methodology will be modelled within an energy
system model that allows evaluating scalable, distributed agent-based
load management strategies. The energy system will be a smart grid
at distribution grid level: the modelled distribution network has certain
flexibility potential. Therefore an improved organization and utilization
of its elements will be performed, using a combined methodical approach
based on agent-based simulation (ABS) and energy system model (ESM)
optimization. As the optimization is deterministic, it will not take into
account action horizons, but as the agents performing the optimization
are placed in an ABS, the environment and its agents will be able to per-
form actions that have an action horizon. Flexible load (and generation)
can be supplied by different technologies, such as some already exist-
ing appliances, demand side management (DSM), new system elements,
for example, electric vehicles (EV), stationary batteries, or decentral-
ized generation (for example with photovoltaic panels or microCHP).
In order to ensure an efficient operation of the electricity system, these
examples of flexibility can support the central generation system in dis-
patching and grid balancing which represents the previously mentioned
countermeasures (or actions).
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Conventional optimization of the integral system becomes very com-
plex as the degrees of freedom in a system with large amounts of dis-
tributed resources normally is very high. Therefore, modular and scal-
able management techniques are required to tackle large amounts of
distributed resources. For this reason, in our forthcoming work heuris-
tics based on agent-based models simulation, including the concept of
this paper and optimization of system parts will be analysed and tested
to explore a scalable and multi-level solution in the given context.

The generic approach will be applied to a use case for which we will
model a differentiated load modelling at household level (called micro-
modelling, for detailed representation of load shedding and demand-side
management). Further on, the aggregation of loads to low-voltage trans-
former and the development of distributed, local demand side manage-
ment mechanisms, based on local optimisation including technical and
economical perspectives will be performed. Local and global constraints
will be taken into account and the iteration with a grid model will allow
identifying local grid constraints on the distribution network.
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Abstract. Animations at first, then real-time computer graph-
ics and human-computer interaction techniques have made inter-
active simulations possible. Nowadays, they play an enormously
important role in training the operation of complex technology
such as aircraft, and they have achieved a remarkable share in
the computer gaming industry. The fast emergence of virtual
and augmented reality solutions promises an even wider spread
and a greater impact for interactive simulations in the near fu-
ture. Due to the multifaceted nature of interactive simulations
in terms of confluent scientific fields, due to the underlying it-
erative and agile development processes, and last but not least
due to the inherently central human factors, we have been inte-
grating the CoSMoS process of complex system modelling and
simulation into our course curriculum on interactive simulation
for computer science graduate students. In this work, based on
an overview of the contents and the logistics of the course, we
present our conceptual efforts towards this goal. We emphasise
the role of the CoSMoS process, discuss its impact on the stu-
dents’ projects, and we provide concrete examples.

1 Introduction

Since the first human-in-the-loop simulators entered the market in the
1980s [44], interactivity has evolved into an increasingly important aspect
of scientific simulations. Nowadays, established mathematics frameworks
such as Mathematica, Maple or Matlab provide ample support for visu-
alisation routines and interactive parametric exploration of any devised
models, whereas development frameworks such as Unity3D, Unreal En-
gine or CryEngine that primarily target the computer gaming market
are offered and marketed in the context of simulations as well. Due to
the fast-paced strides towards ubiquity of virtual and augmented reality
systems [59], for instance by utilising widely availably smart phones, we
expect an even more accelerated spread of interactive simulations in the
near future.
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Numerous areas of computer science feed into the development of
an interactive simulation—human-computer interaction, real-time com-
puter graphics, visualisation, modelling and simulation approaches, etc.
The according methodologies and techniques are deployed to make a sim-
ulation model accessible to the user. In addition to translating reality
into an adequate domain model and further into a suitable computa-
tional representation, or platform model, the creators of an interactive
simulations are confronted by an abundance of user-related interfacing
challenges. In all brevity, they need to translate the user’s wishes into ef-
fective commands of control and model changes, and they need to trans-
late the matter-of-fact results of the simulation process into visualisa-
tions (mostly), that are quickly understood and capture rather than lose
the user’s attention. To render the trade even more challenging, all of
these translations need to happen at rather high rates that provide for
an uninterrupted interaction experience.

Motivated by their great and growing importance, we set out to teach-
ing students foundational knowledge about interactive simulations. In
particular, we designed a university course to empower computer sci-
ence graduate students with an interwoven in-depth apprehension of
methods in the associated fields. Thus, the students acquire knowledge
to evaluate and skills to contribute to the design and the programmatic
implementation of interactive simulations. In this work, we present our
course concept, focusing on the role of the CoSMoS process of complex
system modelling and simulation. Based on a description of our course
concept (Section 2), we highlight the role of the CoSMoS process in
the curriculum as a whole, and with respect to the accompanying stu-
dent projects, in particular, in Section 3. Next, we present several select
student projects (Section 4), also shedding light on the development pro-
cesses the student went through throughout the term. We conclude this
work with a summary of our findings and an outlook on future work on
CoSMoS for interactive simulations.

2 Synopsis of an Interactive Simulation Course

An interplay of a variety of computer science disciplines provides the
foundation for interactive simulation. Accordingly, the contents of a
course on interactive simulation greatly vary dependent on the expected
knowledge base of the students as well as complementary courses of-
fered by the hosting institution. In our case, we devised a university
course suitable for master students in computer science and closely re-
lated programmes of study. The course runs for four months, staging a
2-hours-lecture and a 2-hours-tutorial each week. In combination with
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the allotted project work, the course demands for a total workload of
150 hours.

In the following paragraphs, we summarise the contents of nine pro-
vided lecture units. After an introduction to the subject matter, we teach
the CoSMoS approach to modelling and simulation. Next, foundations
of computer graphics are conveyed, as well as a mathematical display
of real-time physics computation models and algorithms. Visualisation
methods and an introduction to human-computer interaction techniques
complete the first block of basic lecture units.

The second block of advanced lecture units focusses on model rep-
resentation and process optimisation both of which are important con-
stituents of interactive simulation technology. After presenting the foun-
dations of discrete event simulation and an array of computational repre-
sentations, popular conservative and approximative acceleration mech-
anisms in the realm of interactive applications are discussed. As the
versatility and the transferability of an agent-based modelling (ABM)
approach is rather unique but can easily result in costly computations,
we commit another lecture unit to introducing novel research concepts
that promise to scale ABM to reach interactive performances.

2.1 A Short History of Human-in-the-Loop Systems

The history of interactive simulation begins with efforts to enhance ex-
isting simulation data by means of interactive custom animations. We
present an according example, a SIMAN job shop simulation model of
an automatic guided vehicle system visualised by the CINEMA anima-
tion system [47]. The optimisation of industrial workflows was the most
compelling argument for such animation systems in the 1980s. At the
time, the market offered an array of simulation animation tools, in-
cluding Model Master, XCell, and Performance Analysis Workstation.
Next, solutions were offered that tightly coupled interactive visualisa-
tion with the underlying simulation. See-Why was one of these pack-
ages that promised Visual Interaction Simulation (VIS). An according
example allowing the configuration of a locomotive servicing centre is
shown [45]. Definitions of basic terms such as model [67], simulation [4],
and the early-conceived notion of interactive simulation (‘on-line simu-
lation’) [31] follow the introductory historic examples. The distinctive
feature of interactive simulations is the possibility of human influence
during the simulation process, typically referred to Human-in-the-Loop
systems [52]. We look at the taxonomy of interactive simulations, their
advantages over stand-alone simulations, established fields of application,
technological challenges, and their historic evolution in respect to pro-
gramming paradigms, languages, and interfaces. The basic steps taken in
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a simulation project, especially under consideration of interactivity, and
several examples of state-of-the-art interactive simulation systems round
off this lecture unit. The examples are organised to guide the students
from comprehensive immersive solutions with special hardware configu-
rations (driving and flight simulators) to software-only solutions, which
are the focus of the lecture.

2.2 The CoSMoS Process & Gamification

The orthogonal relationship between descriptive and defining models
precedes the remaining contents of this lecture that primarily aims at
the process of modelling and simulating complex systems. Examples for
seemingly disparate approaches are provided that put different weights
on these respective modelling purposes: In detail, these are understand-
ing complex behaviours of real-world systems, simulating complex sys-
tem themes, engineering complex algorithms, and engineering complex
systems [49]. We consider the means of scientific instrumentation (ex-
trapolation, conversion, augmentation) to become aware of its limits
and limitations [25] and to define the products of the CoSMoS mod-
elling and simulation cycle. The definition of these products motivates
an elaborate discussion of the phases of discovery, development and ex-
ploration [2]. Interactive simulations need to engage their users. The
relatively novel paradigm of turning burdensome chores into games suits
this challenge well. Hence, we proceed with the presentation of game
definitions and, more specifically, aspects of development of computer
games [40]. The short history of serious games (starting in the early
2000s) is summarised [21, 57] and representative examples are demon-
strated (e.g. [9]). Their concrete successes in terms of engagement are
discussed and a comprehensive list of game design elements [11] is pre-
sented that can be utilised to ‘gamify’ an interactive simulation. All of
these elements can be derived from the cornerstones of intrinsic motiva-
tion, namely relatedness, competence, and autonomy which are explained
as well [33]. In the context of interactive simulations, these aspects can
be considered during the discovery phase, whereas gamification typically
takes place during the development phase of the CoSMoS process.

2.3 Computer Graphics Foundations

The increasing availability of dedicated graphic processing units (GPUs)
promotes the utilisation of a standardised 3D rendering pipeline for any
kind of visualisation needs, whether 2D or 3D, vector-based, or other-
wise. Therefore, this lecture units seeks to empower the students with
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a basic understanding of this rendering pipeline [1, 40, 63]. Basic con-
cepts that are presented in this lecture unit are: object definitions based
on geometric primitives and various kinds of textures, the view refer-
ence, spatial transformations (also introducing quaternions in the con-
text of rotational operations), basic types of lighting, shading, and light
sources, shadow definitions and different implementation techniques such
as shadow maps. A short walkthrough of generating 3D graphic assets
suited for real-time rendering rounds off this lecture unit.

2.4 Real-time Physics

This lecture seeks to provide a solid grip on real-time capable approaches
to simulate physical processes [8, 24]. We have a quick look at the taxon-
omy of the vast field of physics simulation [14] but we focus on real-time
methods of forward dynamics, covering three categories: rigid-body dy-
namics [7, 15], soft-body dynamics [13], and particle physics [38]. Next to
the general laws of motion, we look at non-penetration constraints, colli-
sion resolution and friction forces, and complementary constraints in the
context of rigid body simulation. For calculating the respective forces, we
present the penalty force method, Lagrange multipliers, impulse-based
simulation, and reduced coordinate formulation as well as the Coulomb
friction model. We introduce a taxonomy of constraints and explain how
they can serve as representation of mechanical joints of articulated bod-
ies [6]. We follow the steps to transform the resulting differential algebraic
inequalities into an efficiently solvable linear complementary problem.
We conclude the integration of forces with a brief recap of basic meth-
ods of numeric integration, starting with Euler and Runge-Kutta. We
discuss algorithms for efficient collision detection and contact point gen-
eration, e.g. [18, 37]. We then widen the scope of this lecture unit, looking
at one specific approach to computing incompressible deformable mesh
dynamics that is superior to alternative approaches in terms of efficiency
and accuracy [13]. Finally, we introduce to real-time particle physics, ex-
plaining particle approximation functions based on the notion of kernel
functions [38], culminating in recent advancements in unified real-time
physics simulation [39].

2.5 Visualisation Methods

To a large extent, interactive simulations imply some kind of visualisa-
tion of the underlying models and the emerging simulation processes.
In this lecture unit, we emphasise the necessity to consider human per-
ception and information processing when crafting the platform model
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of an interactive simulation and we provide an overview of foundational
visualisation techniques. We follow the structure of numerous textbooks
on this subject matter and motivate the discussion on the human vision
apparatus by providing several examples of optical illusions [62]. In a
7-step guideline, we establish an idea of the selection of the proper vi-
sualisation method embedded in the context of data acquisition and the
intended modes of interactions [17]. Qualitatively, visuals can be mea-
sured in terms of novelty, informativeness, efficiency and aesthetics [56].
We shed light on various scientific, multidimensional, multivariate visu-
alisation methods [65], before we turn to visualisation techniques that
allow for the immersive augmentation of simulation contents, such as ex-
amples of flow visualisation [41], graph-based visualisations [34], or the
transformation of volumetric (4D) data into 3D surfaces [30].

2.6 Human-Computer Interaction Techniques

The design of interactive simulations necessitates an interface between
human and computer. This lecture unit provides the necessary back-
ground, starting with a brief history of HCI research [42]. Human inter-
action requires the user to process and translate sensed information into
motor activity [12]. In general, user interactions can be classified as op-
erations of selection, manipulation, navigation, and system control [40].
As any other design task, the design of interactions is the result of a
tradeoff between multiple goals and constraints [16]. We present a top-
down approach to designing interaction scenarios that starts with the
definition of an application’s requirements and arrives at individual in-
teraction tasks. We have a brief look at multimodal approaches, e.g.
affective, perpetual, attentive, and enactive interfaces [29], and we ex-
plore the modes of interaction of an embedded multimodal prototype
game [19]. We quickly step through established and emerging immersive
hardware technologies, including devices of motion sensing and object
tracking capabilities. We convey a general understanding for the hard
latency limitations of interaction hardware and we provide recipes for
rather general issues that arise in real-world sampling, i.e. noisy sensing
and the state estimation problem [40, 63].

2.7 Discrete-Event Simulation

In this lecture unit we provide an overview of computational representa-
tions as well as modelling and simulation approaches. We start out with
explaining the basic terminology of discrete-even stimulation (DES) in
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the context of previous lecture units, especially those described in Sec-
tions 2.1 and 2.4 [3]. To this end, hybrid simulation and combined simu-
lation concepts are of great importance. We roughly trace the history of
this seminal field in terms of DES software packages and languages [43].
Three ‘world views’ on DES (event scheduling, activity scanning, and
process interaction) serve as the starting point for our venture into his-
toric approaches. We meticulously describe the elements of a DES and
provide a glimpse at charts already used for engineering DES back in
the 1960s. These diagrams (activity cycles, wheel chart, flow charts)
are our point of departure towards other computational representations
commonly used for modelling and simulation: Finite state machines,
UML transition diagrams, Petri nets [48], artificial chemistries [5], cel-
lular potts [28], cellular automata [68], random boolean networks [32],
boids [51], L-Systems [50], swarm grammars [60], and the general ap-
proach of agent-based modelling [10, 66].

2.8 Acceleration Algorithms

Low latency requirements of the interaction interface (Section 2.6) as well
as the desire to serve large, complex models for interactive exploration
at real-time demand for the utilisation of sophisticated acceleration algo-
rithms. Computer graphics and real-time physics are currently occupying
this niche and this lecture unit aims at exhibiting their commonly used,
highly efficient approaches [1].

It is divided into four parts: First, we focus on bounded volume hier-
archies (BVHs) and binary space partitioning trees (BSPs). While BVHs
are built bottom-up based on bounding volumes that enclose geometries
or other bounding volumes recursively, BSPs are generated top-down
by recursive division of the simulation space. We also provide guidelines
to coping with (a) mobile and (b) deformable objects [35, 36, 58]. Sec-
ond, we explain different culling techniques which ensure that graphical
objects are not pushed through the rendering pipeline (Section 2.3), if
their contributions to the final rendering are marginal or not existing.
Examples are surfaces that lie outside of the view frustum, those that
are hidden behind objects, or those that are so far away from the cam-
era that they could hardly be seen on the screen. Third, we present
approaches that lower the level of detail (LOD) of the rendered objects
to the match the actual needs—as opposed to always rendering at the
highest possible level of detail [23]. An example of LOD is the number
of triangles of discrete geometries which can, for instance, be selected
according to the distance to the camera. We conclude this lecture unit
showing stochastic acceleration algorithms for collision detection.
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2.9 Dynamic Model Abstraction

Motivated by the outlook on large, multi-scale, multi-representation sim-
ulations [26], we tackle the issue of ever-growing computational com-
plexity by means of dynamic model abstraction techniques in this lec-
ture unit. Particularly, we focus on adaptive optimisation of agent-based
models, as they can serve as a generic computational representation.
Concerning the immense computational costs running large-scale sim-
ulations, we discuss the limitation of different model aspects and how
they could improve efficiency. We conclude this investigation with the
realisation that if we want to model and compute natural systems, we
need to consider dynamic systems with dynamic interaction topologies
(DS2) [20]. In addition to hardware-based solutions (e.g. [27]), we pro-
mote dynamic model adaptation. Agent compression identifies and sub-
sumes clusters of similar agents [55]. The dynamic extension of this ap-
proach considers container agents to maintain similar agents and to of-
fer the possibility to remove or add individuals on demand. Compression
managers are responsible for (a) organising the container agents and their
contents, and (b) representing the compressed agents to the remainder
of the model [64]. Taking this idea even one step further, we provide the
detailed steps of the self-organised middle-out abstraction approach [61]
and we show its capabilities with respect to a decentralised, agent-based
blood-coagulation simulation [53, 54].

3 CoSMoS’ Central Role

The CoSMoS process is introduced right after a general introduction
to the course (see Section 2.2), as it provides a flexible, yet focussed
guideline for all phases of the development of interactive simulations. In
this section, we first detail a way of applying the CoSMoS process to
student projects, following the explanations in [2]. Second, we present a
course infrastructure to realise this approach.

3.1 CoSMoS for Interactive Simulation

We discuss the three phases of the CoSMoS cycle (discovery, develop-
ment, exploration) in the context of interactive simulation based on the
five activities performed during each phase: scoping, modelling, experi-
menting, documenting, and interacting.

During the discovery phase, the greatest challenge to the students is
the primary need to settle on an application domain and to define the
goals of the interactive simulation, e.g. teaching contents or providing for
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a scientific exploration tool. Although the students appreciate the op-
portunity to freely chose an application domain for their projects, they
seem to be more comfortable when provided with a theme, for instance
biology. The only constraints regarding their choice is the projects’ eval-
uation based on the following aspects, which are set to ensure their
usefulness and the comparability.

Science The model that drives the resultant prototype has to be sci-
entific, i.e. it has to be based on scientifically published results. A
CoSMoS compliant development process certainly supports this en-
deavour. In addition, the modelling domain, the validity of the mod-
elled system, its degree of innovation, and the computational repre-
sentation and algorithms used give strong indications for a scientific
approach.

Gamification The prototype has to motivate the user to interact and
explore the simulation space. One can try capturing this aspect quan-
titatively by describing interaction possibilities, user guidance, usage
of game elements, and the factors of intrinsic motivation as refer-
enced in Section 2.2.

Complexity Interacting with the prototype should be rewarding in it-
self, i.e. it should convey insights with respect to the underlying
scientific model. The model complexity defines the scope of poten-
tially educational contents, given the conveyed complexity considers
the full extent of the underlying model.

Aesthetics An interactive simulation has to be aesthetic, not only to
efficiently convey information to the user but also to motivate their
involvement. Aesthetics can be promoted following established de-
sign principles, by utilising beautiful visual assets, and by combining
them in novel ways.

Any steps towards desirable domain attributes, concrete domains, and
even concrete goals and an application concept, necessitate answering
questions about the projects’ criticality, their limitations, and their mea-
surable success. In the context of interactive simulations, the answers
typically stress the relationship between the software and the user. The
utility for the user, for instance, not only considers a final simulation
result but also the benefit of pro-active participation in the simulation
process. Accordingly, limitations are not only considered regarding the
accuracy and efficiency of the simulation but especially with respect to
the degrees of freedom exploitable by the user and the quality of the
communication between the user and the simulation, including aspects
such as clarity and attractiveness. The modelling activity during the dis-
covery phase is rather limited in the scope of a term-long project. Despite
the abundance of scientific data accessible through online libraries and



94 S. von Mammen et al.

the large repositories of computational libraries and tools for numerous
scientific domains, comprehending the elements and their relationships
of a previously unstudied field is a rather difficult task. For this reason,
and also to provide the necessary degree of autonomy to intrinsically
motivate the students, we allow the students to decide on a concrete do-
main and goal by themselves; based on supervisory feedback on a writ-
ten proposal and classroom presentations with subsequent discussions,
the core ideas can then be quickly translated into first proof-of-concept
prototypes. The discovery phase is decisively shaped by documentation
activity—from coarse to fine grained searches for references and tools,
through merging sources, assumptions and ideas into a concept proposal
that includes an early domain model, to creating a first prototype that
provides evidence for the created line of argument.

During the development phase, documentation about the students’
activities is similarly important. However, to a great extent, it coin-
cides with the development of the platform model, an accompanying
commented code base, and its transcription for a given simulation plat-
form. To help reduce the burden that a comprehensive interactive simu-
lation project incurs, we diminished the scoping activity of the develop-
ment phase and taught about various tools of the trade for interactive
simulation development—ranging from 3D asset creation over scripting
and high-level, component based model compositions to utilising third-
party plugins and libraries for the targeted development environments.
In frequent presentation and feedback sessions, we ensured that domain
elements were properly represented and domain behaviours were not
directly encoded in the models. Adding instrumentation to the plat-
form model plays an important role for interactive simulations. This
step should closely follow the interaction concept developed as an exten-
sion of the usual domain model, i.e. one that encompasses the user as
a special model element. Nevertheless, the targeted simulation platform
may provide a rather special interaction infrastructure. For example, the
ubiquity of mobile, multi-touch platforms equipped with relatively weak
processing capabilities competes with the processing power, storage ca-
pacity, and extensibility of desktop systems. Clearly, any specific interac-
tion platform demands for individual adjustments of the platform model
to realise both the interaction and the simulation concept. Experimenta-
tion in the development phase begins with the first prototype supporting
preliminary user interactions. At later stages of the development phase,
it increasingly involves feedback from testers not directly involved in
the development work. Beyond honing the visualisation, consistent de-
sign, usability and the scalability of their platform models in terms of
parameter settings, numbers of interacting agents, increasing levels of
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difficulty and the fine line between balanced, rewarding interaction and
user boredom and frustration.

During the final stage of the course project, the experimentation
phase, the students focus on logging and analysing user responses to
their simulations. To keep the amount of work at a level reasonable in
the context of our course, the students are asked to try each others’ sim-
ulations and to ask their friends and relatives to provide them with some
preliminary feedback. This exposure typically already provides compre-
hensive insights into the users’ general interest in the topic, their opinion
about model complexity and aesthetics, and whether they think it is ed-
ucational. Based on these evaluations, the students are encouraged to
hone their software and to launch more comprehensive online surveys.
However, these more rigorous steps are not mandatory course stipula-
tions. Nevertheless, the gathered preliminary data in combination with
the initial motivation of their projects, the development processes and
the implementation results, serves as an extensive basis for fleshing out
their final report. It culminates in conceptual improvement that could
instigate the next development cycle.

3.2 Course Project Infrastructure

Above, we already touched upon the students’ deliverables and how their
realisation is backed by the CoSMoS process. Now, we briefly present the
logistical infrastructure of the course setup to support the traversal of
the CoSMoS process throughout the term.

During the first lecture, the students are first informed about the
course contents and its stipulations. For the remainder of the lecture,
we present and explain several examples of possible project concepts.
Although the students may conceive a project idea completely on their
own, providing examples proved important to communicate the expected
scope and the imparted opportunities. Within ten days’ time, teams of
two students need to author a proposal of their projects. On two pages
(ACM double-column format), the students need to motivate, present
and detail their concepts. Hereby, the envisioned user experience plays
an important role as it ties different aspects of the envisioned simulation
together and it implicitly underlines its goal. From a CoSMoS perspec-
tive, the project proposal is part of the documentation activity of the
discovery phase. As such it serves not only as a platform for the students
to substantiate their initial ideas and consistently brush up their findings
but also to communicate their concept to the instructors.

At the time of the proposal submission, a second lecture unit has
introduced the general topic of the course (Section 2.1) and a first tutorial
session has familiarised the students with the development environment
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that we recommend (in previous years, we recommended Unity3D). The
day after the submission of the proposals, the students are asked to
present their concepts in short 3-minute presentations during the tutorial
session. In this way, all the students in the course would gain an overview
of their peers’ projects and learn about new ideas, possibly even about
the usage of previously unknown code snippets, etc. The quick start into
the projects and presentations early in the term help the students build
up momentum for their projects. In fact, until the last few weeks of the
term, the students would present the state of their projects bi-weekly.
This fosters a certain sense of togetherness and it ensures guidance to
maintain high productivity and to avoid frustration.

Two weeks before the end of the term, final reports are due (six
pages, ACM double-column format) that should ideally condense the
documentation recorded throughout the whole term. One week later,
the students need to submit their projects, including batches of slides
for the final presentations which are given in front of faculty and students
of the whole department. The audience is asked to vote for the best entry
in terms of the generic project criteria: science, complexity, gamification,
and aesthetics (Section 3.1). A 15-minute brief oral exam at the end of
the term makes sure that the students have learned and understood the
diverse contents of the course and their relationships.

4 Select Student Projects

In this section, we present select student projects that were developed
in two iterations of our interactive simulation course. First, we describe
some of the outcomes exemplarily. Second, we shed light on the CoSMoS-
driven development process of a specific project.

4.1 Examples

During the first iteration of the course, the majority of the students chose
“technical systems” topics such as routing in communication networks,
smart cars, and power networks. Figure 1(a)-(c) shows according screen-
shots. The user is tasked to build and maintain power or communication
infrastructures to ensure their proper functionality. In the network rout-
ing and the smart car example, the user also had to guide the network
activity itself by laying out flow paths of the respective traffic. Some
students also journeyed towards biological themes such as cellular au-
tomata as seen in Figure 1(d). Here, a game of life variant served as
the basis for a two-person game with the goal of conquering as much
space as possible solely by adjusting the cells’ rules. During the second
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iteration of the course, we proactively advertised biological and natural
phenomena as an exciting and multifaceted field to motivate the student
projects—yet, they were still free to take their projects into other direc-
tions. As a result, three groups let their projects revolve around bees (we
had not motivated this trend), see Figure 1(e)-(g). In the first one, the
user had to guide a bee’s waggle dance to point its peers to the location
of a food source outside the hive. Figure 1(f) shows a screenshot of a
bee simulation that focusses on the challenge of gathering nectar and
thereby helping flowers pollinate. Lastly, a complex real-time strategy
simulation is presented in which bees need to gather resources, maintain
their hive and defend it against wasp intruders. Other examples included
the user-guided migration of a flock of geese (Figure 1(h)) or the estab-
lishment of a fine balance of interdependent inhabitants in a simulated
aquarium (Figure 1(i)). The interdependency of species provided the ba-
sis of yet another title where a new ant species threatens to overrun a
native species and the user is tasked to maintain a balance by building
barriers or proactively diminishing one or the other ant population (Fig-
ure 1(j)). Focussing on solitary species, a squirrel simulator offered the
experience of sharing a rodent’s worries: collecting, burying, and finding
enough nuts to survive the winter season (Figure 1(k)). The importance
of climate also inspired “Cloud Computing”, where a user was tasked
to set the environmental conditions in such a way that certain weather
phenomena such as rain or tornados would emerge (Figure 1(l)).

The set of presented examples emphasises the flexibility of the course
project in terms of contents, perspectives and goals of the student project
while addressing the project requirements as outlined above (Section
3.1). Next, we dive into one specific project and shed light on how the
CoSMoS process informed its development.

4.2 A CoSMic Case Study: “Drink & Drive”

One student team decided on creating a serious game about the negative
effects of alcohol on traffic participants. They understood that although
some accurate simulators exist for this purpose (e.g. [22]), they don’t pro-
vide for a stimulating, engaging experience. At first the students were
hesitant whether their idea was acceptable as it attempted to approach
a serious topic in an engaging, fun way. We encouraged them to try any-
way. Findings about games that had been developed for this purpose,
such as [46], further boosted the students’ ambitions. These preceding
titles had disconnected from the actual problem too much, for instance
by assuming a third-person perspective on the driving situation. Quickly,
the students realised that their interactive simulation should fill this gap
and make their title “Drink & Drive” both fun and educational, so that
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(a) Network Routing (b) Smart Cars (c) Power Networks

(d) Cellular Automata (e) Waggle Dance (f) Pollination

(g) Beehive Defence (h) Migrating Birds (i) The Aquarist

(j) Invasive Species (k) Squirrel Simulator (l) “Cloud Computing”

Fig. 1. Screenshots of interactive simulations developed as student projects in
two iterations of the course.

the target group of soon-to-be drivers and young drivers would engage
in and learn about this fundamentally serious topic. The second part
of the discovery phase of their project shed light on actual models of
impairment of drunk drivers. Its last part posed the greatest challenge:
Merging the seemingly conflicting concepts of learning about the severe
consequences of drunk driving on the one hand, and the need for user
engagement on the other hand. They achieved this by two means. First,
they decided to represent the game itself at a level of abstraction different
from the effects of alcohol. In particular, the game implemented widely-
known “Mario Kart”-style game mechanics and a simple, cartoonish look
(Figure 2(a)), whereas the impairment of alcohol was reflected by real-



CoSMoS in Interactive Simulation 99

istic effects, including the deterioration of clear-sightedness, darkening
the edges of the vision, attenuating sounds, and prolonged reaction times
(realised by increased simulation speed), see Figure 3. Second, they in-
troduced gamification elements including timed laps and collecting high
scores by picking up precious diamonds from the track (Figure 2(b)).
However, fundamental game mechanic to engage the users was invented
later during the experimentation activity of the development phase. The
students laid out the development phase very professionally and, to-
gether with the other students, received bi-weekly feedback to stay on
track. Knowing that experiments could yield the key to an engaging user
experience, the students tested various parameter settings of the driv-
ing model, its reactivity to the user input, as well as different interaction
modes between the steered vehicle and the environment. From what they
learned they were able to invent a mechanism to ensure a challenging
and well-directed user experience. In particular, they translated the idea
of collectibles on the track to their application domain and positioned
beer cans at certain locations (Figure 2(b)). Their uptake would increase
the blood alcohol level and driving would be impaired. The impairments
would render it difficult to complete a track within a certain amount of
time. Given the mechanics of driving, impaired driving, high-scores and
time-laps, the students just needed to find the right balance to finish the
development phase of their simulation. “Drink & Drive” was voted best
entry in the public presentations at the end of last term’s interactive
simulation course. In addition, it stirred a lot of excitement when it was
offered for play as part of the Girls’ and Boys’ Day at our university.
Based on these successes, the students feel that the most fundamental
aspect that could drive a second development cycle would be the port of
“Drink & Drive” to mobile devices for reaching a greater audience.

5 Conclusion and Future Work

In this paper, we presented an experience to adapt, teach and apply the
CoSMoS process in a graduate computer science course on interactive
simulation. We first laid out the multifaceted synopsis of the course be-
fore elaborating on the central role of the CoSMoS process in the context
of the students’ term-long projects. Finally, we briefly presented some
of the results of the students’ works and expanded on one of them, ex-
emplarily. The scientific claim, the notion of self-organising processes
with a focus on the interaction of numerous interwoven parts, as well
as the agility of the CoSMoS process lend themselves well for backing
interactive simulation projects.
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(a) (b)

Fig. 2. (a) A first-person default view is reduced to a simple steering wheel
dashboard and a few icons that represent the time left to complete the track
(the heart icon in the upper-left corner), the achieved score (the diamond icon
next to the heart icon), and the alcohol blood concentration (to the right-hand
side). (b) Alcoholic beverages and diamonds can be picked up from the road -
the first increases the driver’s blood alcohol concentration, the latter his score.

Although both the results and the students’ feedback have been
rather encouraging regarding the course contents, its layout and its gen-
eral methodology, we are eager to further improve several aspects. It
might, for instance, be beneficial to have certain activities of the differ-
ent phases of the CoSMoS process take place in groups during the tuto-
rial sessions. Scoping during the discovery phase has repeatedly proven
difficult to students. An experienced teacher could guide the process
and ensure that multiple options are considered by each group. More
generally, we believe the CoSMoS process could still be more tightly
integrated in both the lectures and the tutorials, by providing an out-
look of its application to the lecture units’ contents. For instance, one
could illustrate the application of the CoSMoS phases not only to the
project as a whole but also to individual aspects such as computer graph-
ics and visualisation—from the goals and ideas of the used assets, the
designed environment, over their creation and programming to experi-
menting with their parameters.

So far, we have not considered building on the CoSMoS process for
evaluating the students’ works or their performances during the exams,
except for considering CoSMoS-supported project criteria (Section 3.1).
Yet, the students frequently utilised the structure of the process for clas-
sifying and presenting their work. In particular, they frequently referred
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0.0h 2.0h 3.3h

Fig. 3. The alcohol blood level directly translates to impairments of vision,
hearing, and reactivity.

to its phases and activities during their bi-weekly oral presentations and
let their final project reports revolve around them. Hence, one research
question that remains is whether and to which extent the individual
phases of the CoSMoS process could be coupled a priori with the stu-
dents’ evaluation.

Last but not least, the CoSMoS process could be expanded to even
better accommodate the development of interactive simulations. As they
are typically designed for learning and training, an according ‘engage-
ment model’ could, for instance, be an additional, desirable product of
the discovery phase, complementing the domain model. It could com-
prise learning targets, explicitly visualised versus implicitly utilised data,
the tasks and mechanics of the interfaces provided for interacting and
exploring the domain model, as well as means of motivation, such as
gamification elements. In combination with the domain model, such an
engagement model would provide for a clear conceptual foundation for
the development phase.
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The Nuclear Factor-kappa B (NF-κB) signalling pathway is one of the
key signalling pathways involved in the control and regulation of the im-
mune system [3]. Activation of the NF-κB transcription factor is a tightly
regulated event, with NF-κB normally sequestered in the cytosol of non-
stimulated cells. Following activation of a cell membrane receptor and
propagation of the signal via intracellular signalling to the IκB Kinase
(IKK), phosphorylation-induced degradation of IκB inhibitors occurs to
facilitate the release of NF-κB and its translocation to the nucleus. Dys-
regulation of the pathway is known to be involved in a large number of
inflammatory diseases.

Although considerable research has been performed since its discov-
ery in 1986, we are still not in a position to control the signalling pathway,
and thus limit the effects of NF-κB within promotion of inflammatory
diseases. Through adherence to the CoSMoS framework, we are devel-
oping a computational model of the IL-1 stimulated NF-κB intracellular
signalling pathway, to assist in promoting our understanding of the mech-
anistic behaviours within the signalling network, and therefore identify
potential targets for therapeutic interventions. We have previously de-
veloped a separate domain model [4, 5] as advocated by the CoSMoS
framework, which captures the essential processes and entities of the
system under study using; in particular, the emergent behaviour, at an
appropriate level of abstraction using a mixture of cartoon and UML di-
agrams, along with statistical techniques to define the temporal-spatial
dynamics.
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The next step in the CoSMoS framework is the development of a plat-
form model, which details how the simulation is designed and provides
an intermediate model that links the domain model to the forthcoming
agent-based computational model (the simulation platform). We have
developed our platform model, through the use of UML diagrammatic
notations for modelling the high-level interactions between agents and
the activities that they may perform; along with X-Machine mathemati-
cal notation, X-Machine diagrams and stategraph diagrams for modelling
the low-level detailed specification of (programming language and archi-
tecture specific) interactions between agents, and the internal processing
logic of individual agents.

As per our previous domain model, UML class diagrams were used
in our platform model to represent the containment, inheritance and
association characteristics of agents. The order of interactions within
the system has again been documented through UML sequence, commu-
nication and activity diagrams. UML state machine diagrams were also
used to express the detailed biological state changes of individual system
components, however these were also complemented with X-Machine dia-
grams to express the detailed internal state changes of individual system
components.

As found when developing the domain model, we believe that the
activity diagram with swim-lanes has been the most useful notation for
conveying the technical specifications of the system regarding the con-
sequences of interactions between components, and that state machine
diagrams are the most useful notation for defining the technical spec-
ification of individual system components. Unlike the domain model,
the platform model also includes implementation specific details and as
per [1] we have found it useful to document the various assumptions and
constraints (regarding the technical scope of the computational model)
as bullet points.

One of the key strengths of the CoSMoS process is the advocation of
separating the abstracted view of biology (documented within the do-
main model) from the technical specification of the computational model
(documented within the platform model). This separation ensures the
abstracted view of biology and the technical specifications of the system
remain discrete models, and thus aims to minimise confusion during the
development of the computational model around what aspects of the
programming code relate to biology requirements, and what aspects are
necessary as technical workarounds due to constraints of the specific pro-
gramming frameworks being used (e.g. communicating X-Machines and
FLAME). As such, we believe the process of platform modelling to be
an integral part of the development lifecycle for computational models
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of biological systems, and believe that our platform model will provide
an unambiguous specification for the simulation platform, which will be
developed using the FLAME simulation framework [2].
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