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Abstract. We compare the long term behaviour of Conway’s Game
of Life cellular automaton, from initial random configurations, on a
bounded rectangular grid and a bounded Penrose tiling grid. We in-
vestigate the lifetime to stability, the final ‘ash’ density, and the number
and period of final oscillators. Penrose grids have similar qualitative be-
haviour but different quantitative behaviour, with shorter lifetimes, lower
ash densities, and higher ocurrence of long-period oscillators.
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1 Introduction

John Horton Conway’s Game of Life [1][3] is a simple two-dimensional, two
state cellular automaton (CA), remarkable for its complex behaviour [1][8]. That
behaviour is known to be very sensitive to a change in the CA rules. Here we
investigate its sensitivity to changes in the grid, by the use of an aperiodic
Penrose tiling grid [4][7].

2 Varieties of Life

In Conway’s Game of Life CA, the neighbourhood of each cell comprises the 8
nearest cells of the Moore neighbourhood. Each cell has two states, ‘dead’ and
‘alive’. If a cell is alive at time t, then it stays alive iff it has 2 or 3 live neighbours
(otherwise it dies of ‘loneliness’ or ‘overcrowding’). If a cell is dead at time t,
then it becomes alive (is ‘born’) iff it has exactly 3 live neighbours.

Life has grown its own extensive and idiosyncratic terminology over the years.
Much of this is collected in the extensive on-line Life Lexicon [9]. In particular, an
initial random starting state is called a soup, and, mixing metaphors somewhat,
the final resulting configuration is called the ash.

We can run CAs such as Life on aperiodic grids, such as Penrose tilings, with
a suitable definition of the ‘neighbourhood’.

There are two classic sets of Penrose tiles [4][7], kites and darts (so called
because of their shapes) and fat and thin rhombuses. We use the kite and dart
form. A plain kite and dart can be combined into a rhombus, and so tile the
plane periodically. To force the tiling to be aperiodic, matching rules, marks on
the tiles that must be matched together, are used.
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Fig. 1. deflating a kite and a dart (a) minimal deflation; (b) deflation avoiding ‘holes’
in the result

(a) (b)

Fig. 2. variable Penrose neighbourhood: (a) example of kites with eight and nine neigh-
bours; (b) numbers of neighbours in a small deflated grid: light coloured tiles have 8
neighbours; dark tiles have 9 neighbours; grey tiles are edge tiles with fewer than 8
neighbours.

A valid Penrose tiling has no gaps or overlapping tiles. The deflation algo-
rithm [6] guarantees a valid tiling. At each round of deflation, each kite and dart
tile is replaced with smaller kites and darts (figure 1). This leads to overlapping
tiles, but the overlap is exact, and so the extra tiles can be safely removed. Since
we use this deflation algorithm, we are restricted to the sizes (number of cells)
of Penrose grids produced by the successive deflation generations.

In a rectangular grid, four cells meet at every vertex, and every cell has eight
neighbours. In a Penrose grid, three, four or five cells can meet at a vertex, and
Penrose grid cells can have either eight or nine neighbours (figure 2). We have
found no algorithmic way of reducing the neighbourhood of all tiles to eight
whilst maintaining the undirected nature of the neighbourhood graph. So we
leave the neighbourhood as it is, and apply the Life rules to it unchanged.

We need to cope with the edge of the deflated Penrose grid. There are two
conventional ways in CAs of removing the effect of the edge of the grid.

1. periodic boundary conditions: the grid has the topology of a torus,
finite but unbounded (has no edges). This is the approach usually taken for
investigating statistical properties of soups, with the results more or less ten-
tatively extrapolated to infinite grids. However, this approach is impossible for
aperiodic grids such as a Penrose grid.

2. lazy infinite grid: implemented by lazily expanding a finite grid as ac-
tivity nears its edges [5]. This is the approach usually taken for investigating
the properties of particular structures, such as glider guns. It is not practical for



S, small M, medium L, large X, extra-large

Penrose 688 1907 5170 13900
rectangular 676 = 262 1936 = 442 5184 = 722 13924 = 1182

Table 1. The four grid sizes investigated: four Penrose deflations and the corresponding
nearest regular square grid size

implementation on Penrose grids produced by deflation, since the generation n
grid does not clearly appear as a subpart of the larger generation n + 1 grid.

Since neither of these standard approaches is suitable for investigating Pen-
rose soups, we choose to investigate the effects of having a bounded grid, ex-
plicitly noting the effect of the edges. We have to decide how to handle the
boundary. We can choose the border cells to stay ‘dead’, no matter what their
neighbours’ states, or choose them to have a reduced neighbourhood of five (or
three at the corners). These choices are equivalent for CA rules like those of Life,
where the state transition depends only on the total number of live neighbours
(so permanently dead neighbours are equivalent to no neighbours).

3 Experimental set-up

For both the regular and Penrose grids, to compare like with like, we investi-
gate the behaviour of a finite grid, initially empty except for a smaller patch of
soup. Given that we are restricted to certain Penrose grid sizes by the deflation
algorithm, we restrict the rectangular grid to the nearest similar sizes (table 1).

So our investigations are parameterised by the initial soup patch size S, initial
soup density D, and fixed grid size G. The questions we pose are:

– what are the lifetimes of the initial random configurations?
– what are the final ash densities?
– what are the periods of the oscillators at the end of the lifetime?

A pattern is called a period n (pn) oscillator if it repeats after n generations.
We define the lifetime of a configuration as the number of generations from the
initial random starting configuration until it stabilises to ash, where a stable
state comprises only oscillators, including ‘Still Life’ p1 oscillators. So we wait
until any gliders have been absorbed by the boundary.

For example, on an infinite grid, the well-known ‘r-pentomino’ initial config-
uration reaches a stable state after 1103 generations, when it comprises several
Still Lifes and p2 blinkers, and six escaped gliders. On a finite but large enough
grid it stabilises to ash once the six gliders reach the boundary.

4 Lifetime results

We use 1000 runs with each parameter set, but different random starting con-
figurations.
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Fig. 3. Frequency against lifetime to stability on a regular grid, for initial density
D = 20%. Columns are increasing grid sizes G, showing lengthening lifetime tails; rows
are increasing soup patch sizes S, peaks move to longer lifetimes.

4.1 Classic Life

Previous results Achim Flammenkamp has an extensive list of ash objects
grown from soup [2]. He starts with initial densities D = 0.371 − 0.375, on
toroidal (periodic boundary condition) grids of sizes 212× 212 (4096× 4096) and
214 × 214 (16384× 16384). These experiments give an asymptotic ash density of
0.0287115 bits per cell. There are no reports of the time taken to stabilise.

The grids we test here are much smaller (the largest grid we test is X =
118× 188), but we test a much broader range of grid sizes and initial densities.

Distribution The distributions of lifetimes are highly skewed (figure 3). There
is a peak in the distributions at low lifetimes, with a long tail of high lifetimes.
This tail is longer on larger grids, that is, larger grids can support longer lifetime
structures, implying that there is a correlation between a structure’s lifetime and
its size. The peak lifetime is higher with larger initial patches: small patches tend
to die more rapidly than larger patches.

Effect of initial density We expect a short lifetime at low density, because
there are too few live cells to cause more to be born. We might also expect short
lifetimes at high density, as everything dies of overcrowding.

We can see these effects qualitatively from the following approximate argu-
ment. (It is only an approximation to the real behaviour, because we treat the
distribution as smooth, yet clumpiness has an important effect; however, the
intuition it provides is sound.) Let the average density at time t be ρt. Then the
average density at time t + 1 will be (approximately):

ρt+1 = ρtP (staying alive) + (1− ρt)P (being born) (1)
= ρt (P (2 nbrs) + P (3 nbrs)) + (1− ρt)P (3 nbrs) (2)
= ρt

(
nC2 ρ2

t (1− ρt)n−2
)

+ nC3 ρ3
t (1− ρt)n−3 (3)
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Fig. 4. Density against timestep for smoothed evolution of initial densities
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Fig. 5. Density against time on an M grid, of 10 initial random densities D

where P (m nbrs) is the probability that m neighbours are alive. For a neigh-
bourhood of n = 8, we get

ρt+1 = 28ρ3
t (1− ρt)5(3− ρt) (4)

For an initial ρ that is not too large or too small, the density rapidly converges
to ρ∞ ≈ 37% (figure 4a). However, for low initial densities (ρ0 ∼< 20%), there
is not enough activity to sustain Life, and the density rapidly falls to zero. For
high initial densities (60% ∼< ρ0), there is massive death in the first generation,
and the resulting density ρ1 is less than the critical value, and so again rapidly
converges to zero.

Similarly, for a neighbourhood of n = 9 (relevant to some cells in the Penrose
grid), we get

ρt+1 = 12ρ3
t (1− ρt)6(10− 3ρt) (5)

For an initial ρ not too large or too small, the density rapidly converges to
ρ∞ ≈ 35%.

We compare these calculations with actual runs, on an M grid (44×44 cells),
with initial densities of 20%, 40%, and 60% initially covering the entire grid, for
10 runs each. The evolutions of the densities are shown in figure 5. We see that
the evolution is qualitatively similar, but the actual densities are lower than the
calculation, at closer to 10% whilst still evolving, and 2–5% once stabilised to
ash. (This latter figure is consistent with Flammenkamp’s asymptotic value of
≈ 2.9%.) The lower densities demonstrate the importance of clumpiness. There
is no correlation between lifetime to stability, and ash density (figure 8a).

Figure 6 shows graphs of mean lifetime against density, for various grid sizes
and initial patch sizes. At low densities, they have low lifetimes, and as the
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Fig. 6. Mean lifetimes to stability against initial density, on a regular grid, for different
soup patch sizes S = 20× 20, 40× 40, full grid

density rises, so does the lifetime. Once the density gets too high, lifetimes start
to drop again. But then, for very high densities, the mean lifetime starts to rise
once more (except when the initial patch completely fills the grid). Why?

These experiments are run on patches of initial random soup that are smaller
than the total grid size. For very high densities, this initial patch is essentially
a solid square. Note that the average density at the edge of a patch is half the
interior density. So for solid patches, their edges are at a density suitable for
sustaining Life. The centre rapidly dies, but the edges survive and propagate for
a long time. So the entire graph can be thought of as having two components:
one due to the central region, peaking near Dmax ≈ 50%, and one due to the
edges, peaking at ≈ 2Dmax.

Detailed effect of patch and grid size The earlier figure 3 shows that both
average and maximum lifetimes increase with initial soup patch size S, and grid
size G.

The bigger the grid, the longer the lifetime: the boundary does seem to be
‘killing’ the life. Clearly, if some central region shoots out gliders, then bigger
grids will give longer lifetimes, because the lifetime is taken once all the gliders
have hit the boundary, which will take longer for larger grids. But ours are all
relatively small grids, and that is not the dominant effect: the soup is ‘boiling’
over the whole grid.

We can see that 5 neighbours (the case on the boundary) is not enough to
maintain Life, using equation 3 for n = 5 neighbours. We get

ρt+1 = 10ρ3
t (1− ρt)2(2− ρt) (6)

In this case, whatever the initial value of ρ, it quickly converges to zero (fig-
ure 4b): all Life dies.

4.2 Penrose grid lifetimes

Now that we understand the effect of grid size, patch size, and initial density on
the regular grid, we can investigate the effect of using an aperiodic Penrose grid.
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Fig. 7. Mean lifetimes to stability against initial density, on a Penrose grid, for different
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Fig. 8. lifetime to stability against ash density, for initial densities D = 20%, 40%,
60%, on M size grids: (a) rectangular grid (b) Penrose grid

Distribution The lifetime distributions show the same qualitative behaviour as
for a regular grid: the skewed distribution, and the increasing lifetimes with grid
and patch size. However, the mean lifetimes to reach stability are approximately
an order of magnitude smaller (figure 7).

The densities drop much faster than they do on the rectangular grid, last
for a much shorter time at the low density before stabilising, and produce lower
density ash, 1–3% (figure 8b).

5 Oscillator distribution

It appears that the aperiodic grid stops structures propagating any distance
and affecting distant objects. So everything becomes ‘Still P-Life’, or an oscilla-
tor, much sooner. We investigate this further, by looking at the distribution of
oscillator periods in the ash.

5.1 Life oscillators

The Flammenkamp web site [2] has an extensive list of oscillators grown from
soup. The vast majority are p2. Why do we find so very few p3 and higher
oscillators in the ash?

There are many kinds of p2 oscillators. The blinker has only three active
cells; there are also three 6 cell p2 oscillators (beacon, clock, and toad). These



Fig. 9. Examples of Penrose still lifes. All the small examples were found in the ash;
the large ring was hand constructed.

readily form by chance in the ash. Similarly, the commonly-occurring glider has
only five active cells.

The smallest p3 oscillator, the caterer (discovered by Dean Hickerson in
1989), however, has 12 cells active in its smallest configuration. This is much
less likely to occur by chance than smaller period oscillators, and so is unlikely
to be found in the ash. Our tests never discovered a caterer oscillator.

The p3 oscillator that does occur in our tests is the pulsar, which has 24 cells
active in its smallest configuration. Surely this is even less likely? However, the
pulsar has a 10 state predecessor, which is more likely to occur than the caterer.

The smallest p4 oscillators (mazing and mold) have 12 cells active in their
smallest configuration, and the smallest p6 oscillator (unix) has 16 cells, so these
are also unlikely to occur by chance, unless they have small state progenitors,
too. They never occurred in our tests.

5.2 Penrose oscillators

Although the Penrose grid is aperiodic, any Penrose oscillator is of general inter-
est, because a Penrose tiling has the recurrence property: any given finite patch
of Penrose tiling recurs in infinitely many other patches, in any Penrose tiling.
(This does not conflict with what we said earlier about being unable to find
the deflated generation n grid within the generation n + 1 grid: these grids are
finite, whereas the recurrence property applies to full, infinite, tilings.) Hence a
given oscillator confined to a particular patch of a given tiling can also occur in
infinitely many other patches, in any Penrose tiling.

This property also means that we are justified in confining our experiments
to just those Penrose grids obtained by deflating a single dart: any finite patch
that occurs in any Penrose tiling will occur in our grids (provided that they are
big enough, of course).

We have discovered a rich zoo of small-period P-Life oscillators in the ash.
There are many p1 still lifes (a few examples are shown in figure 9), including
one with three cells, some forming closed loops, and some disconnected.

Because of the two different cell shapes, and the different neighbourhood
sizes, many oscillators come in several variants. For example, the ash contained



Fig. 10. Two of the p2 Penrose oscillators, named plinkers by analogy to the Life three
cell blinker

Fig. 11. A 6 cell p4 Penrose oscillator, the bat

six different three-cell p2 oscillators, analogous to the single blinker (figure 10).
Some of these visually distinct variants look more similar when considering just
the neighbourhood topology, rather than the different tile shapes.

There is a 6 cell p4 oscillator that we dub the bat (figure 11); the ash exhib-
ited four variant bats. The ash also threw up a symmetrical 8 cell p8 oscillator
(figure 12).

Perhaps most amazingly, we discovered an 8 cell p15 oscillator (figure 13).
When animated it appears that the live cells are ‘dancing’ around the central
star formation. This movement is reminiscent of the behaviour of a glider on
the regular grid: the p15 dancer is moving, but is confined to perpetually move
in a circle because of the nature of the Penrose grid. We found no long range
propagating structures, because of the aperiodic nature of the grid. However,
the possibility of arbitrarily large rings (figure 9) hints at the possibility of
arbitrarily large period dancers around such rings: such will almost certainly
need to be hand constructed.

These relatively long period Penrose oscillators are more common than their
regular Life equivalents, because they are so small. This still raises the question:
why are smaller oscillators possible? The occasionally larger neighbourhood is a
possible contributor. It certainly allows constructs such as arbitrarily large rings.
Future work will investigate oscillator distributions, and the precise effect of the
extra neighbour.

6 Conclusions

Life on a Penrose grid has similar qualitative behaviour to regular Life, but
different quantitative behaviour. The lifetime to stability is an order of magni-
tude shorter, the ash density is about half, and there are more spatially small
long-period oscillators.



Fig. 12. An 8 cell p8 Penrose oscillator (read across the rows, then down the columns)

Fig. 13. An 8 cell p15 Penrose oscillator, the dancer (read across the rows, then down
the columns)
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