
Reflecting on Open-Ended Evolution

Susan Stepney and Tim Hoverd

YCCSA, University of York, YO10 5DD, UK
susan@cs.york.ac.uk

Abstract

We describe a computationally reflective object-oriented ar-
chitecture suitable for incorporating open-ended innovation
and emergent entities into simulations. This allows emergent
properties to be reified into objects. This requires modify-
ing the model, and the metamodel, by incorporating novel
classes and metaclasses dynamically. The classes and meta-
classes are modified by including them in the model through
reflection. We argue that such computationally reflective in-
troduction of novelty is necessary for true open-ended simu-
lations.

Introduction
Open-ended dynamics, supporting constant novelty genera-
tion, is a goal of ALife simulation.

Open-ended evolution has been defined as “a process in
which there is the possibility for an indefinite increase in
complexity” ([20], which also contains a comprehensive re-
view of the concept in biology). Bedau [2] talks in terms
of systems that exhibit “supple adaptation”, which involves
them “responding appropriately in an indefinite variety of
ways to an unpredictable variety of contingencies”. Open-
ended novelty generation and evolution are features of bio-
logical life, but are proving hard to achieve in silico.

Classical evolutionary algorithms, with their fixed
genome representations, can produce new things only within
that limited representation. Evo-devo algorithms break out
of this limitation, by allowing a genome to develop into a
phenotype, but they are still confined to a single (albeit much
richer) representation.

The desired continual increase in complexity is not
merely a constant supply of new things (variations of a
theme), or even of new kinds of things (speciation), but of
new kinds of new kinds of things (major transitions, rad-
ical novelty, novel concepts). In computational terms, we
might say we need a constant supply of new objects (the
new things), new classes (new kinds of things, new represen-
tations), and new metaclasses (new kinds of kinds of things,
new kinds of representations).

Here we take a computational modelling view of the prob-
lem, and describe what we believe are minimal requirements

for true open-ended dynamics in simulations: simulations
that can modify their own model and metamodel as they ex-
ecute. This implies that they can modify how they modify
themselves. One key step on this route is the need to reify
(“make concrete, or real”) emergent properties, as these are
a rich source of novel concepts outside the language of the
pre-existing system.

The structure of the rest of the paper is as follows. First we
discuss the process of reifying emergent properties, both at
the class and metaclass levels. Then we describe how a com-
putational system can modify its own model and metamodel
at runtime. Finally we specify a bootstrap architecture for
such a self-modifying system.

Extension, Intension, and Emergence
Consider an agent-based flocking simulation, implemented
in some object-oriented (OO) programming language. A
collection of boid objects exhibits various behaviours, and
potentially forms flocks.

Assume the individual boid objects have names, eg
Tweety, Cheeky, Polly, and ages, eg juvenile, adult, old.
We can define particular sets of boids in two ways. An
extensional definition explicitly enumerates the members:
A = {Tweety, Polly}. An intensional definition is an im-
plicit definition of membership in terms of properties of the
members: B = { b : Boid | b is juvenile }.

In an atemporal world of pure logic, a property is eternally
either true or false, so extensionally defined set A and inten-
sionally defined set B are either equal or not equal (have
precisely the same members, or do not), and the difference
in definitional approach is logically unimportant1. How-
ever, when properties are a function of time (as with stateful
objects), an intensionally defined membership need not be
static (for example, the membership of B may change as
boids age). Hence A may equal B at one time, but not at an-
other. In such a case, we need to be clear about whether the

1Except for such paradoxical definitions as “the set of all sets
that are not members of themselves”, and other issues underpinning
the foundations of mathematics, but we are not addressing these
issues.



extent or the intent is the relevant defining property of our
set of interest (for example, are we interested in Tweety and
Polly, and “juvenile” is just a convenient shorthand for de-
noting them at this moment; or are we interested in juveniles,
who just happen to be Tweety and Polly at this moment).

In general, we are interested in intensional property-based
definitions, in potentially-changing collections of things that
have certain properties in common (such as “all the blue
birds more than a year old”), rather than in explicit but ar-
bitrary collections (such as {Tweety, (∅, Rover), 42}). And
we are more interested in generic intensionally-defined con-
cepts (“flock”), than in specific one-off extensional collec-
tions (“those birds over there”).

In an OO program, nevertheless, collection objects (in-
stances of Dictionaries, Sets, Lists, etc) are almost always
extensional: they are static collections of the actual objects.
The intent of such sets is only implicit (not captured in the
code, except maybe through invariants or contracts), and
much coding effort goes into maintaining this intent (ex-
plicitly adding and removing objects from the otherwise-
static collection). This intent-implementing code, with its
property-checking component, can be encapsulated inside a
class. For example, consider the set of “all instances of class
X”. This is an intensional definition: the set will contain dif-
ferent elements at different times, as instances of class X
are created and destroyed. So in Smalltalk-80 [7] the (class)
method allInstances returns an extensional set of all the in-
stances of the class at the time of the message-send. The set
itself does not change as objects are created and destroyed:
a new message needs to be sent to the class to find the cur-
rent value. The implementation hides the details of how this
set is constructed each time; logically it is equivalent to con-
structing the set by examining every object and testing for
the defining property.

Emergence as implicit intension
Now consider the OO boid simulation. We point to an area
of the screen, and say, “the flock is those boids”. So at any
given moment, a flock appears to be an extensionally-def-
ined set of boids: flock = {Tweety, Cheeky, . . . , Polly}.
However, unlike a true extensional definition, the member-
ship of the flock set can and does change, as boids leave and
enter. This demonstrates that the flock is ‘really’ intension-
ally defined: flock = { b : Boid | b has property f }. We just
do not know what the intensional property f is, in advance2.
The flocking property is emergent.

In some sense a flock is a ‘thing’, but it is not an object
in our simulation, and there is no Flock class with which to
capture and hide the intent-preserving code that tracks this

2Additionally, the property is probably somewhat fuzzy. For
example, consider what might be the minimum size of the set flock.
One boid, even two boids, do not make a flock. It has no well-
defined answer; a flock is a fuzzy concept. (See, for example, the
description of the Sorites Paradox in [11].)

set as boids enter and leave the flock. (Of course, we could
have defined such a class, but that would require us to know
beforehand the emergent properties; we assume here that we
have not.)

We need some way to add this class and its intensional
definition to the model and simulation as and when the prop-
erty emerges. First we discuss different degrees of intension-
alisation, and then a method and architecture for modifying
the simulation with novel emergent properties.

Intensionalising Emergence
We reify a specific flock by capturing it as an ex-
tensional object in the simulation, for example, as an
instance of some generic Collection class (theFlock =
collectionInstance(b1, . . . , bn)). We can define the con-
cept of flock in a new class Flock that explicitly captures
the emergent intensional property, and so intensionalise the
flock: theFlock = flockInstance(b1, . . . , bn). We can inten-
sionalise an emergent property in a simulation in the follow-
ing three ways, yielding different dynamics in the resulting
system.

External Instrumentation

Ordinary agents might remain blind to the existence of the
emergent: it has no direct effect on them. For example,
boids in a simple flocking simulation react to other boids
independent of whether they are in a flock. (That is, their
behavioural rules are unchanged, although of course their
resulting behaviour is sensitive to the existence of the flock.)

In a simulation, we might add a FlockRecogniser subsys-
tem, including a class FlockTag whose instances tag the de-
tected flocks, and merely provide statistics on the simula-
tion’s behaviour. Such instances would have no effect on
the individual boids’ behaviour, whether within or outside a
flock.

Internal Detection

External instrumentation is the least interesting kind of reifi-
cation, as the emergent is explicitly visible only to external
observers. Crutchfield [5] talks about “intrinsic emergence”,
where there are internal observer processes that can “take
advantage of the emergent patterns”.

The next level of reification includes internal detection,
whereby ordinary agents notice the existence of the emer-
gent, and change their behaviour based on it. For example,
a more sophisticated flocking simulation could have boids
modified to be able to sense and interact directly with flock
objects, preferring to move closer to a flock than to boids not
in a flock, say. The flock object exists in the simulation, but
is merely a derived consequence of the boids’ behaviours: it
has no active behaviour of its own, it merely influences the
behaviour of other objects.



Reification

With full reification of the emergent, ordinary agents notice
the existence of the emergent, change their behaviour, and
are also directly affected by it. The emergent becomes an
intensional entity in its own right. Being a component of the
emergent then stops being defined merely as an extensional
property (happening to being in the correct location to be in
the extension, say), and becomes something that is granted
by the emergent entity (membership rules, say).

For example, a reified flock object in a simulation might
actively prevent boids from entering or leaving the flock: it
would then be acting as a kind of ‘membrane’ around the
flock. (We are not suggesting this happens in real-world
flocks. Here we are simply exploring the kinds of ways
that a simulation might react to the presence of an emer-
gent: we are interested in getting complex open-ended dy-
namics in the simulation, not in faithfully replicating how
such processes occur in the real world.) The reified emer-
gent becomes available in the simulation to be a first class
component in further (higher-level) emergent behaviours.

The effect of the reified emergent on its constituent mem-
bers could be considered to be a form of downward causa-
tion [3, 22]. Although such a concept is anathema to physi-
cists, it is an everyday notion to sociologists. Reification
of some societal constructs changes membership properties
(for example, citizenship) from extensional (happening to be
located in the country) to intensional (having the conferred
property of being a citizen) in exactly this way.

Intensionalising Emergence internally

We have discussed modifications to the simulation to
achieve several kinds of intensionalisation, to capture emer-
gent properties as explicit entities within the simulation. In
this section we propose how to achieve this dynamically
within the simulation, through the use of computational re-
flection [16].

Models

When writing a program, it is good software engineering
practice to write a model of the program. For an OO pro-
gram, that model is often written in an OO modelling lan-
guage such as UML, identifying the classes, associations,
interactions, behaviours, and so on. This model provides
the abstract language of the concepts to be implemented in
code. Even if no such model is written explicitly, it is im-
plicit in the structure and dynamics of the written and exe-
cuting code.

For example a (very simplified) class model of an agent-
based boid simulation might look like figure 1. This is a
model of the implemented code. Emergent (unimplemented)
properties do not appear in this kind of model.

Boid

avoid()
cohere()
align()
move()

position
velocity

*
influence

*

Figure 1: A (very simplified) UML class model of a boid
simulation. There is a single Boid class, listing the attributes
and operations of boids. Each boid has zero or more boids
that influence it. (It bases its behaviour on the attributes of
these boids, but that is not captured in this model.)

Flock Boid

model 
(class)

simulation 
(object)

instance

*
1 *

members

influence

*

Figure 2: Model of Boids and emergent Flocks

Emergent classes
Although the model of the simulation code does not include
emergent concepts, we can build a (different) model that
does. In this new model, the emergent is captured as an ex-
tensional object; it can then be intentionalised (its defining
property captured in a class definition).

So we augment our model with an emergent class (which
we draw as a dashed class box)3. This class captures the
emergent property, and its instances. Figure 2 shows two
levels: a model level with a normal class Boid and an emer-
gent class Flock. We also show an object level view (a snap-
shot of the objects present during execution). The boid ob-
jects are instances of the Boid class. Some boid objects are
members of flocks. We say that these emergent flock objects
are instances of the emergent class Flock.

The emergent class might be a subclass of an existing ‘or-
dinary’ class in the model. For example, in an evolution-
ary system, a new kind of mutation operator might emerge
([8] discusses an example of an emergent macromutation,
figure 3). In such a case we assume that the superclass is
abstract, with neither intensional nor extensional instances
of its own. On the other hand, the emergent class might be

3This is not part of UML, and so is an extension of the mod-
elling language.



Mutation 
Operator

Molecule

Exchange InDel Macro

* *

modifiers

Figure 3: An example of an abstract superclass with ordi-
nary and emergent subclasses (derived from [8], which has
predefined Exchange and InDel mutation operators, and ex-
hibits an emergent macromutation)

Agent
Type

Aggregate
Type

Behaviour
Type

Figure 4: A (very simplified) metamodel of agent based
models. There is an Agent Type (an instance of which is
the Boid class), and a Behaviour Type (instances include
the boids’ avoid and align behaviours). This metamodel
has been augmented by an emergent Aggregate Type (an
instance is the emergent Flock class).

a genuinely new kind of concept in the model, with no pre-
existing superclass.

Once we have augmented our model with emergent ob-
jects and classes, we could build a new simulation with them
as coded classes. But for an open-ended simulation, we need
a system that can itself recognise such entities, and change
its own model, at run-time, to include such intensionalised
emergent classes dynamically.

Metamodels
Changing the model (to allow for new kinds of executing
objects), although necessary, is not sufficient for full open-
endedness. We also need to change the metamodel, to allow
new kinds of things in the model.

In an analogous way to how a model provides the lan-
guage for writing the code, a metamodel provides the lan-
guage for writing a model: it defines the kinds of things that
can occur in the model (it is the model of the model). UML’s
metamodel includes concepts such as class and association.
An agent-based modelling language metamodel would in-
clude concepts such as agent and behaviour. In the same way
that models need to be augmented to include emergents, so
do metamodels (figure 4).

Models and instances form a two-level modelling archi-
tecture. The Object Management Group (OMG) uses a four
level modelling architecture [12, ch.8]: M0 = base instance
(the objects in the simulation); M1 = model (defining the
kinds of things in the simulation, such as Boid, Ant; written

Flock
Boid

Model 
(Class)

Simulation 
(Object)instance

Meta Model 
(Metaclass)

Agent
Type

Aggregate
Type

Ant
Trail

Behaviour
Type

rules() rules()

Figure 5: Metamodel and Model of an agent-based simula-
tion

in, for example, UML); M2 = metamodel (defining an on-
tology, the kinds of thing in the model, eg Class and Associ-
ation for UML models, AgentType for agent-based models
(ABMs); also written in for example UML); and finally M3
= meta-metamodel (defining the kinds of thing in the meta-
model, written in, for example, OMG’s Meta Object Facil-
ity (MOF) language). Infinite regress is avoided by allowing
the meta-metamodel to be written in MOF. Here we consider
only the bottom three layers, M0-2.

Another example of this four level architecture is: M0
= executing program; M1 = a Python program; M2 = the
Python programming language; M3 = BNF and denotational
semantics. Changing the model is analogous to changing the
program; changing the metamodel is analogous to changing
the programming language.

Emergent Metamodels
The metamodel of an ABM (figure 5) describes the kinds
of things in an agent-based simulation: it has a metaclass
AgentType. The emergent class like Flock in the model also
needs a metaclass: it is an emergent AggregateType. So
there can be emergent metaclasses too (where an emergent
class is not an instance of some existing metaclass).

Speciation and major transitions
We have seen three main kinds of reification:

1. Reifying an emergent subclass (for example, the macro-
mutation class in figure 3). The concept already exists in
the model (the superclass); the reified subclass is a variant
of that concept.



xixixi

X

Model 
(Class level)

(Object level)

Meta Model 
(Metaclass level)

Y

xi
xixixiyj

xixixixi

xixixiyj

X

Y

X class

Y class

X class Y class

Figure 6: (left) the Smalltalk-80 Metaclass/Class/Object model as a three-layer model; (right) the implementation, all in the
Object layer

2. Reifying an emergent class (for example, the Trail class in
figure 5). The concept did not exist in the model (there is
no relevant superclass), but does in the metamodel (once
AggregateType is reified). The reified class is a new in-
stance of that concept: the trail is a new kind of aggregate
object, a new kind of thing with new kinds of behaviours,
roughly analogous to a new species or genus in biology.

3. Reifying an emergent metaclass (for example, the aggre-
gate type in figure 4). The concept did not exist in the
metamodel: the aggregate type is a new kind of meta-
object, a new concept in the language, roughly analogous
to a major transition in evolutionary biology [17] (for ex-
ample, the move from unicellular to multicellular organ-
isms).

Such reification provides the requisite novelty generating
power, when implemented in a computational system.

Dynamic Models and Metamodels

The process of changing the model and metamodel needs
to be dynamic, so that we can add reified emergent classes
and metaclasses as they emerge and are recognised at run-
time. Smalltalk-80 [7] provides an approach to this. Two
fundamental concepts in Smalltalk-80 are: everything is an
object; an object is an instance of some class. Since every-
thing is an object, a class is an object, and so is an instance
of some class, called its metaclass. So object x is an instance
of class X, and class X is the (singleton) instance of its meta-
class, referred to4 as X class. Since everything is an object,

4In Smalltalk-80, metaclasses are not explicitly named. A meta-
class can be referred to by sending the message class to the class’s
single instance. The value of this message expression is the meta-
class. So the metaclass of class X can be referred to as X class.
(Since there is also a class called Class, this terminology can lead
to awkward constructions, such as “the class Class class”.)

a metaclass is an object, and so is an instance of some class,
the class Metaclass5.

So Smalltalk-80 has the objects, the classes (model) and
metaclasses (metamodel) all available as objects at runtime
(figure 6). All can be instantiated, deleted, and modified
at runtime, via this computational reflection (“a reflective
system is a computational system which is about itself in
a causally connected way” [16]). Although Smalltalk-80 is
not a pure reflective language, it does have reflective capa-
bilities, and many others can be added programatically [6].

Other computationally reflective languages (ones that can
modify themselves at run-time, to a greater or lesser extent)
include Lisp, Prolog, Python, Ruby, and JavaScript.

Examples of self-modifying and reflective systems
Suber [23] discusses self-amendment in the context of law
making, and describes Nomic [10][23, appx.3], a (non-
computer-based) law-based game where changing the rules
(including the rule that players must obey the rules) is a
move. Suber asks if it is possible either to make some rules
unchangeable whilst preserving the power to amend others,
or to irrevocably repeal the power to amend the rules.

Reflection is key in the branch of Artificial Intelli-
gence concerned with “learning to learn”, metamemory and
metacognition [4, 14, 15, 18, 21, 24]. Learning changes the
model; learning how to learn, learning a better learning al-
gorithm, is changing the metamodel. Note that our concern
here is not in high-level cognition, however, but in the role
of reflection in open-ended evolution.

Biology is the ultimate self-modifying system. Hick-
innbotham et al [9] describe a self-modifying computational

5Of course, since Metaclass is a class, it is the singleton in-
stance of its metaclass, Metaclass class. And Metaclass class is
a metaclass, so like all metaclasses, it is an instance of Metaclass.
This circularity stops the potential infinite regress of needing meta-
metaclasses, etc. See [7, pp268-72] for details.



architecture inspired by biological DNA, RNA and pro-
tein machines. Tomita et al [25] use graph-rewriting au-
tomata with five kinds of rewriting rules, to implement self-
replication. They discuss the possibility of embedding the
graph rewriting program as a graph itself within the system,
allowing for execution to modify which rules are applied.
This is analogous to modifying the model at run-time; an
analogy to modifying the metamodel would be to introduce
new kinds of rewriting rules.

Reflection is proposed as the route to self-adaptive soft-
ware systems [1, 16]. The architectural requirements spec-
ified in [1] differ from our own here, however, because the
application domain is very different. For example, [1] is
concerned with reflection on programming language con-
cepts, subject to real world domain constraints; we are con-
cerned with reflection on novelty generating mechanisms,
and need to impose constraints in terms of some energy
model (next). They are concerned with software engineering
structuring, clear separation of model and metamodel layers
and their respective concerns, and with performance; we are
concerned with open ended novelty generation, and embrace
the biologically-inspired ‘messiness’ of deliberately mixing
layers of abstraction. Consequently, they carefully separate
domain and reflective aspects, and keep the computation to
do with reflection in the metamodel level only; our archi-
tecture of computation is orthogonal to the model and meta-
model layers (next), to enable reflection at all levels, not only
the metamodel reflecting on the model.

An open-ended architecture
As discussed above, computational reflection provides a
route to open-ended novelty. As Maes [16] says: “A lan-
guage with reflective facilities is open-ended: reflection
makes it possible to make (local) specialised interpreters of
the language, from within the language itself.”

Reflection provides the computational mechanism, but
we also need an architecture within which to generate and
run the open-ended code. Here we describe an architecture
for such a system. We use OO terminology; this specific
paradigm, although well-suited, is not necessary for the ar-
chitecture, just some analogue of the underlying concepts in
a reflective programming language.

We define only a bootstrap architecture. The whole point
of computational open-ended novelty generation is for the
system to modify this architecture at run-time.

The key feature is that the three levels – instance, class,
and metaclass – all exist as executing and modifiable objects
in the system at run-time. For the bootstrap, we separate the
system into three subsystems: an initial seed application, the
observer-reifier-modifier (ORM) intentionaliser, and the vir-
tual machine (VM). The seed application, for example, some
agent-based simulation, acts as the raw material from which
the open ended novelty grows. The other two subsystems
are described below. See figure 7.

ORM Intentionaliser: modifying the models
Our framework for intensionalising emergent structures has
three components:

1. emergence observers, that observe novel emergent struc-
tures and behaviours

2. emergence reifiers, that intensionalise the recognised
types, and add the relevant classes or metaclasses into the
run-time, thereby changing the model or metamodel

3. model modifiers, that modify the simulation (instances,
classes, or metaclasses) to exploit the reified structures

In [1], a distinction is made between structural reflection
(reification of structural aspects such as data types) and be-
havioural reflection (reification of computations and their
behaviours). It is crucial that emergence recognisers capture
patterns both of structure and of behaviour: at different lev-
els of emergence features can appear to be either ‘particles’
or ‘processes’ [22].

The ORM subsystem therefore includes ObserverType,
ReifierType, and ModifierType metaclasses, and bootstrap
class instances of these, to provide the meta-functionality.
For example, we might have the class Eye as a bootstrap in-
stance of ObserverType, whose own instances observe the
simulation for particular spatial and temporal patterns that
indicate emergence. An Eye instance might detect a flock-
or trail-like emergent. It notifies a suitable Reifier instance,
which can appropriately intensionalise the emergent, for ex-
ample, as an internally detectable object. A suitable Mod-
ifier instance then modifies other classes in the simulation
so that their instances can detect the new objects. It might
also modify their behaviours to use the detected informa-
tion, or, in an evolutionary simulation, allow these modified
behaviours to evolve.

Key to the overall architecture is the fact that the simulator
is reflective, not just at the core agent level, but throughout.
Hence a bootstrap observer (for example) can observe not
only novel agent patterns, but also novel observation, reifi-
cation, and modification patterns, which can then be reified
and modified appropriately. We bootstrap with Hammer and
Eye classes; later Spanner and Ear classes can emerge and
be reified. Eventually new ModifierType metaclasses could
be reified. Hence the simulation can not only change itself,
it can change the way it changes itself (this does imply re-
quirements on the representation of modifier rules [14]).

Being able to modify the modifier, being able to produce
new kinds of ways of recognising, reifying and modifying
the simulation, closes the self-referential loop, and produces
a truly open-ended system.

Virtual machine: constraints
The virtual machine provides whatever run-time support is
needed for the ORM architecture, in the usual manner (at



Ant

Observer
Type

Reifier
Type

Modifier
Type

Trail

Agent
Type

Aggregate
Type

EyeCondenseHammer

Virtual
Machine

Engine

Energy

Phero

Ant

Observer
Type

Reifier
Type

Modifier
Type

Trail

Agent
Type

Aggregate
Type

Eye

Ear

CondenseHammer

Spanner

Virtual
Machine

Engine

Energy

Phero

Figure 7: The architecture, showing metamodel, model (class boxes show an instance icon), and instance layers (horizontal
dashed lines), and VM, ORM, and ABM subsystems (vertical dashed lines). (left) Minimal self-modification: the layers and
subsystems are well-defined, the bootstrap ORM objects observe and reify the emergent trail class and modify the ABM objects,
the ORM model and metamodel are fixed. (right) Constrained self-modification: the ORM components observe and modify
the ABM and ORM objects, model, and metamodel (but not the VM), reifying emergent ORM components, and potentially
modifying the kind of modifiers.

a minimum, compilation, dynamic object communication,
and error handling). In addition, it provides some form of
constraint on the modification processes. The research chal-
lenge is to achieve framework behaviour that allows a sim-
ulation to exploit emergent novelty without dissolving into
chaos. A completely unconstrained framework could well
modify itself out of existence. Some form of constraint, for
example an analogue of conservation of energy, might be
needed to allow the system to develop in interesting direc-
tions without devolving into a mess of object soup.

However, a completely constrained system, that allows
no modification, no intensionalisation, is static and cannot
achieve open-ended dynamics. This is the state of most clas-
sic ABM simulations.

It seems plausible that some degree of constraint between
a totally static mode and meta model, and total freedom, is
required; this is possibly some “edge of chaos” [13] require-
ment. Hence the role of the constraint is to help the system
self-organise to maximally complex patterns of structure and
behaviour.

Modifying the VM
If the virtual machine is implemented in the same language
and at the same level as ORM, it could potentially also be
a target of the self-modification process. Here we assume
that the constraint part is to be unmodifiable, for the reasons
given above, but the interpreter or message handler part is a
valid target of modification.

Consider a Smalltalk-80 implementation. The simulation
and modifier objects are Smalltalk-80 objects, and are im-

plemented (given their execution semantics) in a Smalltalk-
80 VM. A suitably defined physics engine could be included
at the object level, and be subject to the same modification
processes as the objects themselves.

Discussion
Consideration of a metamodel of emergence has led to the
insight that emergent properties are emergent intensional
definitions. The difference exhibits itself in simulations,
where the emergent properties are observed via instrumen-
tation, rather than reified directly. If the emergent proper-
ties are reified and intensionalised, with their own defini-
tions and behaviours, they can become the kind of agents
that result in (further) emergent properties.

In order for these kinds of emergent innovation to be in-
cluded in a simulation, the simulation needs to be able to
modify its own model, and metamodel, dynamically (at run
time). We contend that for a simulation to exhibit open
ended dynamics, it must include a form of computational
reflection that allows it to modify its own model and meta-
model as the simulation is running.

We have specified the design of an open-ended archi-
tecture. (The next stage of work is to develop a proto-
type implementation.) This architecture has the instances,
model, and metamodel all available for modification at run-
time. It has three subsystems: a virtual machine providing
run-time support and modification constraints, an observer-
reifier-modifier intensionaliser, and a seed application. This
is a bootstrap architecture: successful self-modification will
modify this architecture.



Rosen [19, §10a] argues that the difference between an
organism and a mechanism is that an organism “is closed
to efficient causation”, and that a mechanism cannot be so
closed. He uses Aristotle’s term “efficient cause” as the
cause that brings something about. He argues that life is
self-defining, self-causing, autopoietic; but that simulations
cannot be, that simulations require something outside the
system to define them. We claim that the reflective approach
and bootstrap architecture described above can allow sim-
ulations to be similarly self-defining, self-generating, self-
causal, and hence to exhibit some of the properties Rosen
requires for life.

Acknowledgments
Out thanks to Paul Andrews, Ed Clark, Tim Clarke, Si-
mon Hickinbotham, Adam Nellis, Mungo Pay, Fiona Po-
lack, Adam Sampson, Jon Timmis, Emma Uprichard, and
Peter Young, for helpful discussions, and to the anonymous
referees for their suggestions.

The work described here is part of the CoSMoS6 project,
funded by EPSRC grant EP/E053505/1 and a Microsoft Re-
search Europe PhD studentship.

References
[1] Jesper Andersson, Rogerio de Lemos, Sam Malek, and

Danny Weyns. Reflecting on self-adaptive software systems.
In SEAMS’09, pages 38–47. IEEE, 2009.

[2] Mark A. Bedau. The nature of life. In Margaret A. Boden,
editor, The Philosophy of Artificial Life. Oxford University
Press, 1996.

[3] Donald T. Campbell. ‘Downward Causation’ in hierarchi-
cally organised biological systems. In Francisco Jose Ayala
and Theodosius Dobzhansky, editors, Studies in the Philoso-
phy of Biology: reduction and related problems, chapter 11,
pages 179–186. Macmillan, 1974.

[4] Michael T. Cox. Metacognition in computation: A se-
lected research review. Artificial Intelligence, 169(2):104–
141, 2005.

[5] James P. Crutchfield. The calculi of emergence. Physica D,
75:11–54, 1994.

[6] Brian Foote and Ralph E. Johnson. Reflective facilities in
Smalltalk-80. In OOPSLA’89, pages 327–335. ACM Press,
1989.

[7] Adele Goldberg and David Robson. Smalltalk-80: The Lan-
guage and its Implementation. Addison-Wesley, 1983.

[8] Simon Hickinbotham, Edward Clark, Susan Stepney, Tim
Clarke, Adam Nellis, Mungo Pay, and Peter Young. Diversity
from a monoculture: effects of mutation-on-copy in a string-
based artificial chemistry. In ALife XII, pages 24–31. MIT
Press, 2010.

6http://www.cosmos-research.org

[9] Simon Hickinbotham, Susan Stepney, Adam Nellis, Tim
Clarke, Edward Clark, Mungo Pay, and Peter Young. Em-
bodied genomes and metaprogramming. In ECAL 2011. MIT
Press, 2011.

[10] Douglas Hofstadter. Metamagical themas. Scientific Ameri-
can, June 1982.

[11] Dominic Hyde. Sorites paradox. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Fall 2008 edi-
tion, 2008. http://plato.stanford.edu/archives/fall2008/
entries/sorites-paradox/.

[12] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ex-
plained: the Model Driven Architecture: practice and
promise. Addison-Wesley, 2003.

[13] Chris G. Langton. Computation at the edge of chaos: phase
transitions and emergent computation. Physica D, 42:12–37,
1990.

[14] Douglas B. Lenat and John Seely Brown. Why AM and EU-
RISKO appear to work. Artificial Intelligence, 23:269–294,
1984.

[15] Luı́s Seabra Lopes and Aneesh Chauhan. Open-ended cate-
gory learning for language acquisition. Connection Science,
20(4):277–297, 2008.

[16] Pattie Maes. Concepts and experiments in computational re-
flection. In OOPSLA’87, pages 147–155. ACM Press, 1987.

[17] John Maynard Smith and Eörs Szathmáry. The Major Tran-
sitions in Evolution. Oxford University Press, 1995.

[18] Thomas O. Nelson. Metamemory: A theoretical framework
and new findings. Psychology of Learning and Motivation,
26:125–173, 1990.

[19] Robert Rosen. Life Itself. Columbia University Press, 1991.

[20] Kepa Ruiz-Mirazo, Jon Umerez, and Alvaro Moreno. En-
abling conditions for open-ended evolution. Biology and Phi-
losophy, 23:67–85, 2008.

[21] Jürgen Schmidhuber, Jieyu Zhao, and Nicol N. Schraudolph.
Reinforcement learning with self-modifying policies. In
Thrun and Pratt [24], pages 293–309.

[22] Susan Stepney, Fiona Polack, and Heather Turner. Engineer-
ing emergence. In ICECCS 2006, pages 89–97. IEEE, 2006.

[23] Peter Suber. The Paradox of Self-Amendment: a study of law,
logic, omnipotence, and change. Peter Lang, 1990. http:
//www.earlham.edu/∼peters/writing/psa/.

[24] Sebastian Thrun and Lorien Y. Pratt, editors. Learning to
Learn. Kluwer, 1997.

[25] Kohji Tomita, Satoshi Murata, and Haruhisa Kurokawa.
Self-description for construction and computation on graph-
rewriting automata. Artificial Life, 13(4):383–396, 2007.


