
Embodied genomes and metaprogramming

Simon Hickinbotham, Susan Stepney, Adam Nellis,
Tim Clarke, Ed Clark, Mungo Pay, Peter Young

YCCSA, University of York, YO10 5DD, UK
susan@cs.york.ac.uk

Abstract

We model some of the crucial properties of biological novelty
generation, and abstract these out into minimal requirements
for an ALife system that exhibits constant novelty generation
(open ended evolution) combined with robustness.

The requirements are an embodied genome that supports run-
time metaprogramming (‘self modifying code’), generation
of multiple behaviours expressible as interfaces, and special-
isation via (implicit or explicit) removal of interfaces.

The main application of self modifying code to date has been
top down, in the branch of Artificial Intelligence concerned
with learning to learn. However, here we take the bottom up
Artificial Life philosophy seriously, and apply the concept to
low level behaviours, in order to develop emergent novelty.

Introduction
It is proving very hard to develop in silico ALife systems that
exhibit open-ended novelty generation. This may be because
many such systems are closed in that they often have pre-
designed and fixed algorithms, and fixed information repre-
sentations. The scope for these systems to generate novelty
is heavily constrained by these design decisions. This clo-
sure is in sharp contrast to biology, where its ‘algorithms’
and ‘representations’ are themselves products of the novelty
generation processes.

In this paper, we go back to biology, and look at certain
aspects of its processes that are key to its power to gener-
ate novelty. We use these to develop an open computational
novelty generation architecture.

A key source of open-ended biological novelty seems to
be the embodiment of the genome in a form that makes it ac-
cessible to the other active elements of the system: the DNA
can be modified by proteins, changing what future proteins
are expressed, and what future modifications occur.

We propose that an analogous approach is needed for
open-ended computational innovation. The ‘computational
DNA’ (program code) must be accessible to and modifi-
able by the active elements (executing program). This can
be achieved through run-time metaprogramming. (Metapro-
gramming is when programs manipulate programs; here the

Figure 1: (a) Information flow in the central dogma of
molecular biology; (b) control flow in classical computer
programs. The vertical alignments indicate rough analogy,
discussed later.

Figure 2: Control flow in the cell

manipulator and manipulated are the same program, and the
manipulations are performed at run-time. This is also known
as reflective programming in high level languages, and as
self-modifying code in assembly languages.)

Biological models
Self-innovation circular architecture
Crick’s central dogma of molecular biology, first stated in
1958 [5], has a linear flow of information content (DNA→
RNA → protein, figure 1a). This informational statement
is often more strongly interpreted to mean a linear control
pathway, with DNA ‘in control’ of the system, and no re-
turning control paths. The standard paradigm of computa-
tion has an analogous flow of control (source code→ loaded
code→ executing code). The source code is ‘in control’; all
subsequent events are a direct consequence of this code (fig-
ure 1b).

Such linear flow models are a simple way to describe
causality in a system. However, the linear flow of control
in biology is false. Proteins act on the RNA, and both RNA
and proteins act on the DNA, controlling what is expressed,
and even changing the DNA (figure 2). There is no strict



Figure 3: (a) original RNA-world; (b) RNAs and proteins;
(c) today’s DNA, RNA and protein world. Solid arrows rep-
resent the direction of control flow and effect; dashed line
represents a molecular stability spectrum.

linear flow of control; it is a closed loop with all entity types
able to affect all other entity types. This circularity of inter-
action allows the emergent biological properties, including
novelty generation.

We propose that an analogous circularity of interac-
tion is needed for computational novelty generation: self-
modifying self-producing computer code, achieved through
run-time metaprogramming.

A history of specialisation
Prebiotically there were molecules. Novelty generation re-
sulted in molecules with additional behaviours: RNA en-
codes information, and can use that information in two ways,
as an active machine, or as a passive template.

In RNA-world [12, 30], the information-bearing template
and the active machinery are the same kind of molecules:
RNA. However, these two behaviours require different kinds
of properties: information-bearing templates require relative
stability, whereas the machinery requires reactivity. Biol-
ogy’s solution was to specialise with two sets of molecules:
RNA (mainly) for information, and proteins for reactivity.
This specialisation continued until today’s situation, with the
even more stable DNA providing long-term stability for in-
formation storage. (See figure 3.)

The phenotype of the genome
DNA expresses proteins. DNA is composed of nucleotide
bases; proteins are composed of amino acids. These have
different reactivity, yet they interact with each other in a
variety of ways, such as chemical binding and topological
entwining. In particular, different portions of the DNA are
physically inaccessible at different stages of the cell cycle.
These interactions are subject to selection pressures (lim-
ited by physico-chemical constraints), which has led to the

emergence of important biological properties, such as: mu-
tating at differing rates for different genes; specifying when
genes express proteins and at what rates; organising the co-
location of genes for particular metabolic pathways. These
are components of biological innovation.

Analogous properties are not seen to emerge in computer
simulations (although they can be explicitly designed in).

In order to build a computational analogue of the rele-
vant biological processes, we need to carefully distinguish
the genome and the DNA/RNA: (a) the genome is an ab-
straction, a sequence of codes; (b) the DNA (or RNA, in
RNA-world) is a physical molecule, embodying the genomic
information. A protein is another class of physical molecule,
its sequence encoded by the genome, physically expressed
from the DNA/RNA. In many models of biological evolution
the genome and the DNA/RNA that it represents are taken to
be synonymous, and the DNA/RNA is modelled differently
from the proteins. In reality, however, the genome is an ab-
straction, and is a different category from the DNA/RNA
molecule that is the physical embodiment of that abstrac-
tion. The DNA/RNA is an intrinsic part of the phenotype of
the organism, of the same category as the proteins. Being
embodied, it interacts with, and is acted on by, enzymes and
metabolites (though less readily than the other entities in the
cell).

This embodiment, which we hypothesise is necessary for
biological novelty generation, provides the inspiration for
our computational architecture to produce analogous open-
ended novelty generation in silico.

Computational analogues
We take this aspect of biology, of circular interaction en-
abled by an embodied template, as inspiration for the design
of a computational form of novelty generation.

We perform the following process [27] (for two related
biological systems, RNA-world and DNA-world): we pro-
duce a model of the biological system; we abstract this into
a conceptual model of the underlying processes and relation-
ships (not shown here); we instantiate the conceptual model
in computational terms. We use UML class diagrams to ex-
press these models.

AChems as analogues of RNA-world
We first look at the simpler RNA-world (figure 4a). Physics
determines how molecules interact, through features such as
molecular folding and binding affinities. The genome is an
abstraction of the information in the RNA. The biological
RNA is embodied: RNA molecules express and are modified
by RNA molecules.

The computational analogy is self-modifying code (fig-
ure 4b). The analogue of the (disembodied) genome is the
(disembodied) source code. The analogue of the active RNA
is the executing code: for the analogy to hold, the execut-
ing code must be able to modify its own instructions. The



(a)

(b)

Figure 4: UML class diagram of RNA-world: (a) biological
model of embodied RNA; (b) conceptual model instantiated
with an AChem

analogue of the physics (which defines how molecules can
interact) is the virtual machine (which describes the AChem
program language semantics, and how the various AChem
objects can interact).

An assembly language level Artificial Chemistry, where
the executing code is able to modify the instructions (‘em-
bodied source code’), provides a computational model here.
Examples include Tierra [26], Avida [1], and stringmol
[15, 14, 16], where the ‘chemicals’ are direct analogues of
the RNA strands.

Reflection as an analogue of DNA-world
Many modern high-level programming languages are de-
signed to enforce a strict separation between code and data,
and cannot self-modify in this way. But not all.

We next look at ‘DNA-world’, a biologically later spe-
cialisation of RNA-world (figure 5a). The biological DNA
is embodied, and is affected and modified by the proteins it
expresses. (Notice this model does not make the biological
role of RNA explicit in this process. Here we wish to em-
phasise the distinction between stable information archive
and active machine, so we abstract these as ‘DNA’ and ‘pro-
tein’ respectively, and omit the intermediate RNA for the
purposes of our argument.)

Analogously, the computer source code is embodied, and
affected and modified by the executing code it specifies (fig-
ure 5b). Here we need a programming language where there
is a separation between code-representing entities and other
active entities (unlike in the RNA/assembly language anal-
ogy) that can nevertheless interact at run-time. A high-level
language with computational reflection [24] is suitable here:
the source code is embodied in the run-time system, and can
be modified by the executing system, but is (conceptually)
separate from it.

Smalltalk-80 [13] is a good example. In Smalltalk, the

(a)

(b)

Figure 5: UML class diagram of DNA-world: (a) biological
model of embodied DNA and protein machine (omitting the
role of RNA, for emphasis); (b) conceptual model instanti-
ated with metaprogramming

Figure 6: UML class diagram of molecules realising (be-
havioural) interfaces

source code is just another data structure that can be ma-
nipulated by the executing program. Smalltalk is a pure
object-oriented language: every value is an object, includ-
ing classes and code blocks. Code blocks, including ones
that modify and create classes, can be constructed at run-
time and then executed. An executing Smalltalk system thus
has the ability to modify and extend itself: its source code is
embodied in the executing system.

Other computationally reflective languages (ones that can
modify themselves at run-time, to a greater or lesser extent)
include Lisp, Prolog, Python, Ruby, and JavaScript.

Novelty versus specialisation
RNA encodes information, and can use that information in
two ways, as a passive template, or expressed as an active
machine. We can model these two different uses in UML
as interfaces (figure 6). The interfaces capture the specific
behaviours exhibited by certain molecules.

Later (in the RNA-world model), specialisation occurred.
Molecules that had only one of these behaviours, either ma-
chine (protein) or template (DNA), emerged. Once spe-
cialised components (components that have lost an inter-
face) have emerged, they can adapt to perform their speciali-
sation (remaining interface) more effectively. (Biologically,



specialisation to DNA templates and protein machines was
mediated by RNA, and there are still RNA molecules that
can be interpreted as fragments of this mediation in modern
organisms [3].)

So in modelling terms, novelty generation is creation of
new interfaces, specialisation is removal of interfaces from
sub-species of agents. In code terms, removal of an explicit
interface is simple: it is just deleted. However, removal of an
implicit, emergent interface is not so simple: the low-level
behaviour has to change such that the interface behaviour no
longer emerges. This is the case both in molecular terms,
and in low-level AChem systems. In the molecular case
discussed here, this process occurred through differentiation
into molecules with distinct chemical structures (nucleotide
bases in DNA versus amino acids in proteins). This neces-
sitated the introduction of a decoding element to the expres-
sion relation, to translate from one structure to the other.

We suggest that such a differentiation step will be help-
ful in any analogous AChem system designed to progress
beyond RNA-world level behaviour in this manner. Special-
isation of template and machine behaviours requires tem-
plates to be less reactive and machines more reactive. Al-
though such differentiation may be achieved in a homoge-
neous system (for example, by altering ratios of symbols
in the underlying alphabet), it is is made easier by having
some structural difference between them, to help this be-
havioural difference emerge. Given a structural difference,
translation will be required to take the template into its ma-
chine expression. This translation requirement is not incon-
sistent with template and machinery being the same kind
of thing. There is sufficient richness in chemistry to allow
DNA and proteins to be the same kind of thing (molecules)
whilst having different representations of their information
content (nucleotide bases versus amino acids). The similar
form of embodiment allows the information to be modifiable
by the system it encodes, whilst the different representations
provide the separation of properties that help support spe-
cialised behaviour. Chemistry is rich enough to provide this
spectrum: AChems will need analogous richness.

High level languages can provide explicit support for this
process of specialisation. For example, one pattern sup-
ported by refactoring tools is Extract Interface [11, p.341].
Aspect oriented programming [18] allows particular kinds
of behaviour to cut across the code structure. These are both
design time, rather than run time, processes, but some of the
concepts may be automatable. Another concept, relevant to
implicitly-defined interfaces, is duck typing [20], which al-
lows the type to be determined dynamically, based on what
methods a class currently supports.

The ‘softness’ in losing (specialising away) an interface
is an important property in terms of robustness through re-
dundancy and degeneracy. It is not necessary for a special-
ist to lose an interface completely, only for the system to
lose reliance in it on providing the interface. The specialist

can safely modify other things about itself, but it might still
maintain some ability to implement some part of the inter-
face in an ‘emergency’. If enough parts of the system can
implement parts of the interface adequately, then this degen-
eracy amounts to the system as a whole implementing the
whole interface. This provides a form of distributed backup,
in case of failure of the machine that is ‘supposed’ to imple-
ment the interface.

Computational architecture
The previous discussion leads us to the notion that, to get
emergent novelty in simulation, we should look to run-time
metaprogramming. In such a system the code has never fin-
ished being written, so the program cannot finish running.
Open ended computation is obtained, allowing unprescribed
novelty generation within the computer. The main applica-
tion of self modifying code to date has been top down, in the
branch of Artificial Intelligence concerned with learning to
learn [22, 28, 29]. However, here we take the bottom up Ar-
tificial Life philosophy seriously, and apply the concept to
low level behaviours, in order to develop emergent novelty.

Run-time metaprogramming on its own is not sufficient;
we also need an architecture within which to run the code.
The biological models above can help us here, too. There
are two aspects to the architecture. One comes from the class
box Physics in figures 4a and 5a, one from the roles modifier
and expressor.

Physics engine
Underlying biology there is physics and chemistry: the pro-
cesses that define how molecules move around, how they can
interact (for example, binding affinities), what the result of
the reaction is, and the constraints on the system (for exam-
ple, conservation laws). In an artificial system, we have to
explicitly implement analogues of many of these processes.
The usual way to do this is in terms of a virtual machine
(VM), often referred to as a ‘physics engine’, that provides
the execution environment in which the molecule-analogues
exist. Tierra [26], for example, has an explicit VM that exe-
cutes the Tierra assembly language.

The first point to note is that physics is uncrashable:
there is no real world analogue of a computational core
dump or fatal exception. There are two ways to achieve this
in the computational architecture: language design or VM
handling. The molecular language can be designed such that
any molecular interaction results in a legal behaviour. This
is relatively straightforward at the assembly language level
(care still has to be taken not to access areas outside legal
memory). Alternatively, the VM can be designed to trap
and isolate any unhandled exceptions. For higher level lan-
guages that are modifying themselves, this will become the
necessary route.

Next, the VM provides the spatial dynamics: how the
entities move around, and so who can interact with whom.



This can be explicitly spatial, or be a ‘well mixed’ aspatial
model, or even a hybrid (a spatial arrangement of containers
with aspatial contents, for example).

We want a system that can generate open-ended novelty
without dissolving into chaos. A completely unconstrained
system could well modify itself out of existence. Some form
of constraint might be needed to allow the system to de-
velop in interesting directions without devolving into a mess
of molecule soup. However, a completely constrained sys-
tem, that allows no modification to its architecture and repre-
sentations, is static and cannot achieve open-ended dynam-
ics. This is the state of most classic agent-based simula-
tions. The VM should provide such constraint through an
energy model. This is some analogue of the constraints that
real-world physics provides, such as conservation of energy.
This provides a limited resource for the various entities; in
particular, it prevents ‘free copying’, or unlimited replica-
tion, and so provides an evolutionary pressure [8, 17]. It is
important not to have a ‘closed’ energy system, however:
this would lead to equilibrium. Biological systems are far-
from-equilibrium systems, maintained there by an energy
flux. More sophisticated VMs might also provide an ana-
logue of entropy.

It seems plausible that some degree of constraint between
a totally static model, and total freedom, is required; this is
possibly some edge of chaos [21] requirement. Hence the
role of the constraint is to help the system self-organise to
maximally complex patterns of structure and behaviour.

Some choices of what goes in the VM and what goes in
the molecular language are design decisions. For example,
it can be beneficial if the entities have a limited lifetime:
this results in entities having to renew themselves to sur-
vive, which imposes a natural evolutionary pressure on the
system. Whether such a decay process is implemented in
the VM or in the entities themselves is a design decision:
the choice will determine how much the decay can be af-
fected by the intrinsic evolutionary process. The presence of
such a decay mechanism has consequences. For example, it
means that there will need to be multiple copies of certain
machine templates (or templates need to have very different
decay properties from active machine molecules), so that the
decay of a template does not permanently lose a solution.

Modification and expression machines
The physics engine provides the VM within which entities
can interact and generate novelty (novel entities, novel be-
haviours, novel interactions). We need some initial entities
to set the system going.

Consider the roles modifier and expressor in figures 4a
and 5a. In biology, these are embodied, ‘implemented’
by specific machine molecules (ribosomes, transposons,
chaperone proteins, etc). Additionally, there are machine
molecules that do things not related to self-modification:
these are the active molecules performing the external ‘func-

tion’ of the system. This provides a route to embedding
application-specific behaviours into a novelty generating ar-
chitecture.

A novelty generating system could be bootstrapped with
some specialist machines for these various tasks. this in-
volves writing the bootstraps as code for the embodied tem-
plates that, when expressed, becomes the active machine.
The key point is that these bootstrap machines are all en-
coded on the template, and so are themselves subject to
modification, either directly, by a modifier machine chang-
ing their encoding, or through imprecise replication by a
‘sloppy’ replicator machine. And these various modifica-
tion machines are themselves subject to modification. This
is why we are describing only the ‘bootstrap’ architecture:
the self-modification processes will then develop new ma-
chines, new kinds of machines, and new ways of expressing
and otherwise generating machines. This self-modification
is what breaks away from fixed algorithms and fixed repre-
sentations, and allows open-ended novelty generation.

Different kinds of bootstrap machines are suggested by
different stages of biological evolution. We could bootstrap
with only replicator machines (machines that can copy tem-
plates). This is the approach we have taken in our original
stringmol AChem [14, 15, 16]. Here we wish to short-circuit
the process of evolving all novelty from scratch, but in a way
that does not compromise further open-ended novelty gener-
ation. We can do so by bootstrapping the system with some
more sophisticated machines, some inspired directly by the
biological processes of figures 4a and 5a, and some higher
level ones implementing ‘non-atomic’ functionality. There
is a tension between performance (composing the actions of
low level machines versus the single action of a ready-made
higher level machine) and flexibility (being able to compose
low level machines in novel ways, and having their mod-
ifications being more likely to produce viable variant ma-
chines). The aim is to engineer a sufficiently powerful and
flexible bootstrap that the system can smoothly self-modify
into an open ended novelty generator.

Candidate bootstrap machines (which would need to be
designed both for the implementation language, and for any
application) include those to perform the following func-
tions:

• expression: a machine that takes a template, and ex-
presses (instantiates) some machine encoded there. This
does not need to be restricted to simple ‘gene expression’:
some machines might use information in the template in
different way, for example, analogous to the use of ‘gene
libraries’ in assembling antibodies. The expression ma-
chine might be ‘sloppy’, expressing a range of similar ma-
chines, with this sloppiness subject to modification.

• modification: a machine that takes a template, and modi-
fies its content in some language dependent way (possibil-
ities include low level machines analogous to transposons



[10], retroviruses [2, 23], and F-plasmids [19], and higher
level machines analogous to the processes of gene error
correction and crossover, for example).

• regulation: a machine that regulates the action of expres-
sion machines (this is not explicitly included in the UML
models above, but gene regulation is a known critical as-
pect of biological control, and the regulation is performed
by machine-class molecules).

• replication: a machine that replicates templates. There
will be a constant turnover of templates in RNA-world
analogues, and a slower turnover in the more template-
stable DNA-world analogues. The replication machine
should be ‘sloppy’, providing a source of variation, with
this sloppiness subject to modification.

• translation/transduction: machines that translate be-
tween different information-bearing formats (both inter-
nal, and input/output)

• application: machines that perform application-specific
tasks (the analogue of protein machine behaviours that are
not related to modification and expression)

As well as these directly biologically inspired machines,
other ‘higher-level’ bootstrap machines might be developed,
to help kick-start specific kinds of novelty generation. These
are inspired by even later developments in biological evolu-
tion. Such machines might include:

• sensors: machines that can sense the internal state of the
system (for example, via quorum sensing), which infor-
mation may be used by transducers, regulators, etc

• generators: machines that write new templates based on
observed behaviours in the system (for example, ‘reverse
engineering’ the composed behaviour of several low level
machines into a single high-level machine, or breaking
down a high level machine into component behaviours)

Other application-specific bootstrap machines can be de-
signed as required. Design of such machines needs to re-
spect the architecture of the system, in particular, the ‘soft’
nature of the mechanisms [4], and the continual turnover of
the machines (a good solution, once found, must then be
maintained).

Some of these bootstrap machines (particularly higher-
level ones) will be easier to implement in high level lan-
guages than in assembly-level AChems. However, they are
constrained by the particular physics of the system. For ex-
ample, if the system’s physics does not support global ob-
servation, then a global observer machine will not be di-
rectly implementable in the system (however, a property
akin to global observation could potentially emerge). Ma-
chines in high level languages can nevertheless be boot-
strapped to have potentially sophisticated memories and be-

haviours. There is, however, a tension between the sophis-
tication of the machine that allows it to perform complex
functions, and the simplicity of the machine that allows it to
be modified in useful ways. Any higher level bootstrap ma-
chines should be implemented as compositions of simpler
machines wherever possible, allowing modification both of
the machines themselves and the ways they are composed.
That is, the representation of these machines should also be
modifiable.

Biological messiness
Bio-inspired systems are abstractions of the myriad emer-
gent phenomena seen in biology. Their goal is to develop
toolsets that efficiently distil the unique properties of robust-
ness and adaptability seen in biological systems. Care has to
be taken not to throw the baby out with the bathwater, how-
ever. We propose that biology generates emergent phenom-
ena by coupling together two phenomena. The first of these
is massive redundancy and degeneracy, observable in many
biological networks: entities are rarely the ‘sole providers’
of all their functionality. This generates massive ‘baseline
diversity’. The second is natural selection, which builds
hierarchical emergent behaviours by reinforcing beneficial
interactions. Crucially diversity is maintained, both within
and between units of selection, allowing further interactions
to be developed and built upon.

This messiness, redundancy and degeneracy that pervades
biology has ‘function’, in that it provides a sort of embod-
ied memory. It endows the system with robustness, and
alternative pathways should the environment change. It is
important not to simplify this away when building abstract
models of the processes. In terms of the models introduced
above, components should be allowed multiple interfaces,
with different components realising different subsets of the
complete set of interfaces.

Multiplicity and concentration of machines are an impor-
tant part of this messiness. Many molecules need to exist in a
concentration in order to collectively fulfil their role (DNA
being the exception). Given the vast multiplicity of some
molecules, ‘erroneous’ molecules that have partial function-
ality cannot be easily removed, if they do not result in the
death of the organism before reproduction. Checking the vi-
ability of a molecular unit is an extremely expensive process
in biology and is not normally attempted (DNA again being
the exception). The continual decay and replenishment is
the preferred mechanism. For example, the cell membrane
is continually created and consumed [6], and there is a dy-
namic turnover of flagella motors [7].

This further suggests that there should be multiple copies
of templates and machines in the computational system.

Comparison with existing systems
We are not aware of any high level reflective language sys-
tems that fit our DNA-world framework.



A good example of such a computational system that fits
our RNA-world framework is an assembly language where
the executing code is able to modify the instructions (‘em-
bodied source code’). For example, consider an Artifi-
cial Chemistry such as Tierra [26], Avida [1], or stringmol
[14, 15, 16], which take approaches that are direct analogues
of RNA-world. Their chemicals affect and modify each
other, by the computational execution of the AChem. How-
ever, none fits all the requirements of our framework.

Tierra, directly inspired by RNA-world, fits quite closely
with part of our architecture, but has two major differences.

Tierra has an explicit VM to execute its assembly lan-
guage, designed to be “especially hospitable to synthetic
life”: non-brittle and evolvable. The spatial model is pro-
vided by location in computer memory (although instruc-
tions can point to anywhere in space). The entities are ana-
logues of “creatures of the RNA world”, although the indi-
vidual machine instructions are considered to be more anal-
ogous to the more chemically active amino acids than to
RNA’s nucleotide bases. Tierra uses CPU time-slices as an
analogue of energy, with the size of the time slice being a
tunable function of the entity’s size: small size can be re-
warded, discouraging ‘bloat’, or large size can be rewarded,
encouraging complexity. It has a decay mechanism in the
VM: killing entities when the memory space is close to full.
The code can generate errors, which are used to increase
the probability of the offending entity being killed. Slop-
piness is hardcoded in the VM as bit-flip mutation rates (a
background rate, and a higher rate on copy) [9], and through
flawed instruction execution. The system is initialised with
a single hand-crafted self-replicating entity.

Tierra does not fit our architecture in two important ways.
Firstly, and most importantly, although entities can read

and execute the code of other entities, they can modify only
themselves (each entity’s memory space is write protected).
This disallows the emergence of a population of mutually
self-modifying entities, other than by copying foreign code
into the host entity (a ‘pull’, rather than a ‘push’, mecha-
nism). It is a model of single active machines, not of mutu-
ally interacting machines mutually defining their properties.
This design decision, along with making a less ‘brittle’ pro-
gramming language, was made with the aim of overcoming
problems in earlier ‘Core Wars’ implementations (eg, [25]),
where mutations mostly just destroyed the system. We be-
lieve that the biological inspiration strongly supports mutual
modification, however, and that the routes to overcoming the
Core Wars issues are a more sophisticated energy model, and
a ‘softer’ language, particularly in respect to binding prop-
erties [4].

Secondly, the Tierra energy model is limited. There is no
analogue of an energy store (battery, fat reserves) that would
enable entities to ‘time-shift’ their use of the resource, or
hand on a surplus to their progeny; Tierra is a ‘use it or lose
it’ model. (Ray [26] mentions a possible extension allowing

capture of CPU slices.) Nevertheless, Tierra evolves an in-
teresting diversity of entities, particularly a range of parasite
types.

Avida, although directly inspired by Tierra in the sense
that it is an assembly-language based AChem using CPU
time slices as a selection pressure, has a very different archi-
tecture and motivation from our approach. Entities, in fixed
locations in 2D space, interact only with their neighbours,
and then only through replication, which copies the repli-
cated entity over its oldest neighbour. Bonus time slices,
which can accumulate, are used as an explicit reward mech-
anism to evolve entities to perform certain tasks.

Stringmol is an assembly language AChem that fits our
architecture quite closely, but not perfectly. It is a ‘soft’
replicator system that has generated novel emergent macro-
mutations and hypercycles (two co-dependent species that
replicate each other, but are not self-maintaining) [4, 14]. Its
execution model involves two strings, and active machine
and a passive template; however execution can change ei-
ther string. The system is initialised with multiple copies
of a hand-crafted replication machine, that can replicate any
template string it binds to. We have not investigated its be-
haviour with other kinds of bootstrap machines.

Stringmol has an explicit energy model, in that a certain
number of units are added to the container at each timestep,
and molecules need to use an amount to execute each in-
struction. Hence there is a pressure to be small, to enable
faster replication cycles. However, the energy is a global re-
source (energy is not stored in individual entities, but in the
system and accessible to all). This removes any incentive for
an individual entity to be frugal (beyond replication speed);
stringmol exhibits the ‘free rider’ problem.

Summary and Conclusions
Biology uses a variety of processes to generate novelty and
robustness. Fundamental is the capture of genomic infor-
mation in an embodied genome (DNA or RNA) that is the
same kind of structure (molecule) as the active machinery
(RNA or proteins). This embodiment allows the active struc-
tures to interact with, control, and modify the information
that defines them. Once novelty has been generated, it can
be specialised into different components (DNA as informa-
tion template, protein as active machine), allowing more ef-
fective behaviours to evolve, as the competing requirements
of different behaviours are isolated in different components.
Specialisation of template and active machinery is aided by
different representations (at some level), which require a
translation step from information encoded in the template
to its expression in the machinery. Specialisation should not
go too far: degeneracy and redundancy are also crucial com-
ponents of biological robustness and adaptability.

Taking these concepts, and abstracting them, we can de-
velop a set of requirements for analogous AChem and AL-
ife implementations: (1) run-time metaprogramming, where



the executing system changes the program that defines its
execution, including novelty generation as addition of inter-
faces; (2) a physics engine VM; (3) specialisation in terms
of removal of interfaces (either explicitly, or implicitly by
separation of implementation structure); (4) an expression
step that decodes information on the template into a differ-
ent representation on the machine (allowing different kinds
of behaviour); (5) redundancy and degeneracy in terms of
allowing multiple interfaces per component, and multiple
copies of components; (6) sufficiently sophisticated boot-
strap machines to short-circuit the origin of life process.

We claim that a suitably ‘rich’ computational environ-
ment based on an embodied, modifiable genome that allows
novelty generation (adding interfaces) and specialisation (re-
moving interfaces) is a necessary component in maintaining
diversity and producing novelty.

Acknowledgments
This work is part of Plazzmid, EPSRC grant EP/F031033/1.
Thanks to Alastair Droop and Tim Hoverd for helpful dis-
cussions, and to the anonymous referees for their helpful
comments.

References
[1] C. Adami, C. T. Brown, and W. Kellogg. Evolutionary learn-

ing in the 2D artificial life system “Avida”. In Artificial Life
IV, pages 377–381. MIT Press, 1994.

[2] J. M. Bishop. Cellular oncogenes and retroviruses. Ann. Rev.
Biochem., 52:301–354, 1983.

[3] T. R. Cech. Exploring the new RNA world, 2004.
http://nobelprize.org/nobel prizes/chemistry/laureates/
1989/cech-article.html.

[4] E. Clark, A. Nellis, S. Hickinbotham, S. Stepney, T. Clarke,
M. Pay, and P. Young. Degeneracy enriches artificial chem-
istry binding systems. In ECAL 2011. MIT Press, 2011.

[5] F. Crick. Central dogma of molecular biology. Nature,
227:561–563, 1970.

[6] E. A. Dawidowicz. Dynamics of membrane lipid metabolism
and turnover. Ann. Rev. Biochem., 56(1):43–57, 1987.

[7] N. Delalez and J. P. Armitage. Parts exchange: tuning
the flagellar motor to fit the conditions. Mol. Microbiol.,
71(4):807–10, 2009.

[8] P. S. di Fenizio. A less abstract artificial chemistry. In Artifi-
cial Life VII, pages 49–53. MIT Press, 2000.

[9] A. P. Droop and S. J. Hickinbotham. Application of small-
world mutation topologies to an artificial life system. In
ECAL 2011. MIT Press, 2011.

[10] C. Feschotte and E. J. Pritham. DNA transposons and the evo-
lution of eukaryotic genomes. Ann. Rev. Genetics, 41:331–
368, 2007.

[11] M. Fowler. Refactoring. Addison-Wesley, 1999.

[12] R. F. Gesteland, T. R. Cech, and J. F. Atkins. The RNA World.
Cold Spring Harbor Press, 3rd edition, 2005.

[13] A. Goldberg and D. Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[14] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Diversity from a monoculture: effects
of mutation-on-copy in a string-based artificial chemistry. In
ALife XII, pages 24–31. MIT Press, 2010.

[15] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Specification of the stringmol chemical
programming language v 0.1. Technical Report YCS-2010-
457, University of York, 2010.

[16] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Molecular microprograms. In ECAL
2009, volume 5777 of LNCS, pages 291–298. Springer, 2011.

[17] T. Hoverd and S. Stepney. Energy as a driver of diversity in
open-ended evolution. In ECAL 2011. MIT Press, 2011.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP, volume 1241 of LNCS, pages 220–
242. Springer, 1997.

[19] B. C. Kline. A review of mini-F plasmid maintenance. Plas-
mid, 14:1–16, 1983.

[20] A. Koenig and B. E. Moo. Templates and duck typing. Dr.
Dobbs, June 2005.

[21] C. G. Langton. Computation at the edge of chaos: phase
transitions and emergent computation. Physica D, 42:12–37,
1990.

[22] D. B. Lenat and J. S. Brown. Why AM and EURISKO appear
to work. Artificial Intelligence, 23:269–294, 1984.

[23] R. Lower, J. Lower, and R. Kurth. The viruses in all of us:
Characteristics and biological significance of human endoge-
nous retrovirus sequences. PNAS, 93:5177–5184, 1996.

[24] P. Maes. Concepts and experiments in computational reflec-
tion. In OOPSLA’87, pages 147–155. ACM Press, 1987.

[25] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm.
The coreworld: Emergence and evolution of cooperative
structures in a computational chemistry. Physica D, 42:111–
134, 1990.

[26] T. S. Ray. An Approach to the Synthesis of Life. In Artificial
Life II, pages 371–408. Addison-Wesley, 1992.

[27] S. Stepney, R. E. Smith, J. Timmis, A. M. Tyrrell, M. J. Neal,
and A. N. W. Hone. Conceptual frameworks for artificial im-
mune systems. IJUC, 1(3):315–338, 2005.

[28] P. Suber. The Paradox of Self-Amendment: a study of law,
logic, omnipotence, and change. Peter Lang, 1990.

[29] S. Thrun and L. Y. Pratt, editors. Learning to Learn. Kluwer,
1997.

[30] C. Woese. The Genetic Code. Harper & Row, 1968.


