
12

Embodiment

Susan Stepney

Department of Computer Science, University of York, York, YO10 5DD, UK.
susan@cs.york.ac.uk

Summary. Embodiment may help to reduce the computational burden on a sys-
tem, by transferring some of that burden to the complex embodying environment.
Embodiment can be viewed as a property not just of situated material systems, but
of any suitably complex system engaged in a complex intertwined feedback relation-
ship with its suitably complex environment. Various features and requirements of
embodiment are examined in the context of natural and of artificial immune sys-
tems. This leads to a set of suggested design principles for engineering embodied
systems and their environments.

12.1 Embodiment : what is it?

12.1.1 Embodied in an environment

Consider a system that can sense and manipulate its environment, with its internal
state depending on what it senses, and its manipulations depending on its state.
Those manipulations then change the environment, and hence what is subsequently
sensed, and so change the system’s subsequent state and its further manipulations.
This produces a complex dynamical stigmergic feedback process: the system is em-
bodied in its environment.

Biological immune systems, like all biological processes, are made from physical
material, they are situated in and interact with a physical environment, and they
are constrained by physical laws such as conservation of matter and energy. Arti-
ficial immune systems (AIS) and other software systems, on the other hand, are
informational, exist in the virtual world of the computer, and labour under no such
constraints. Does this difference matter?

266 Susan Stepney

A new generation of roboticists [Brooks 1991a, Brooks 1991b], AI researchers [Mat-
urana & Varela 1980, Varela et al. 1991, Simon 1996], psycholinguists [Lakoff &
Johnson 1980, Lakoff 1987, Lakoff & Núñez 2000], and cognitive philosophers [Clark
1997] insist that it does. They argue that the rich dynamical interaction between a
system embodied in its complex physical environment crucially gives something to
the system not achieved by pure virtual or symbolic or simulated inputs alone.

Much of Brooks’ robotics work has focused on the use of the environment as a
resource; rather than requiring the robot to abstract data from the world, to form
some impoverished model, [Brooks 1991b] exhorts the robot’s designer to “use the
world as its own model”.

As an illustration of the importance of a complex environment, Herbert Simon invites
us to imagine an ant walking on the beach:

Viewed as a geometric figure, the ant’s path is irregular, complex, hard to de-
scribe. But its complexity is really a complexity in the surface of the beach,
not a complexity in the ant . . .The apparent complexity of its behaviour over
time is largely a reflection of the complexity of the environment in which it
finds itself. [Simon 1996]

Clark also emphasises the crucial involvement of the environment:

the deeply misguided vision of the environment as little more than the
stage that sets up a certain problem. ... the environment [is] a rich and
active resource—a partner in the production of adaptive behavior.

[Clark 1997]

So, the environment itself is a resource, and embodiment may help to reduce the
computational burden on the system itself, with some, or much, being obtained “for
free” from the complex embodying environment. Of course, nothing is really for free,
and the requirement for embodiment puts some interesting constraints on the design
and deployment of embodied systems (later).

12.1.2 Coupled to the environment

But what precisely is such “embodiment”? [Kushmerick 1997, Quick & Dautenhahn
1999, Quick et al. 1999, Quick et al. 2000] note that these roboticists and AI re-
searchers rarely bother to define the term beyond saying something like having some
(physical) body interacting with some (physical) environment. They note that this
(lack of) definition, along with the accompanying assumption of material situated-
ness, makes it particularly difficult to use the concept of embodiment when talking
about Artificial Life, or virtual artefacts such as software agents.

12 Embodiment 267

Quick et al. are keen to develop a definition that makes as few assumptions as
possible, in particular, one that has no requirement for the embodied system to be
in some sense intelligent or cognitive or neuronal. So they turn to the concept of
“structural coupling” [Maturana & Varela 1980], and the key idea of

non-destructive perturbations between a system and its environment, each
having an effect on the dynamical trajectory of the other, and this in turn
effecting the generation of and responses to subsequent perturbations.

[Quick & Dautenhahn 1999]

[Clark 1997] dubs such close structural coupling “continuous reciprocal causation”.
These ideas of dynamical trajectories, attractors, and bifurcations, which encom-
pass both situated continuous physical processes and abstract discrete computations
(captured in the appropriate phase or state space), are also important, implicitly
or explicitly, in the writings of [Maturana & Varela 1980, Varela et al. 1991, Kelso
1995, Chiel & Beer 1997].

Focusing on this coupling between the system X and its environment E , [Quick &
Dautenhahn 1999, Quick et al. 1999, Quick et al. 2000] offer the following definition
of embodiment:

A system X is embodied in an environment E if perturbatory channels exist
between the two. That is, X is embodied in E if for every time t at which
both X and E exist, some subset of E’s possible states with respect to X have
the capacity to perturb X’s state, and some subset of X’s possible states with
respect to E have the capacity to perturb E’s state.

They suggest that this definition in terms of coupling can be used as a basis to
quantify the degree of embodiment, in terms of measures of the perturbatory band-
widths and modalities, size of affected state subspaces, size of effect on state spaces,
scope for variation in behaviour, structural plasticity, computational power in the
interaction, and so on. They conclude that for rich embodiment one needs both a
large perturbatory bandwidth (rich sensors and actuators to enable complex cou-
plings with the environment) and large scope for variation in behaviour (complex
internal dynamics for the perturbations to work on).

And most importantly for the arguments in this chapter, they note that their def-
inition is “ontologically neutral”: it is applicable to systems embodied in software
(virtual) environments as well as to those embodied in material (physical) environ-
ments.

In summary, some authors argue that embodiment is essential for certain kinds of
systems, and others argue that it is a property not just of situated material systems,
but of any suitably complex system engaged in a complex intertwined feedback
relationship with its suitably complex environment.

268 Susan Stepney

One feature of embodiment is that, because of the complex feedback relationship, an
embodied system cannot be fully analysed in isolation: it can be analysed only in the
context of the environment in which it is embodied. The fact that this environment
is usually open (unbounded) has interesting consequences for such analysis.

12.1.3 Some terminology

We follow Quick et al.’s definitions, and so have a computational system embodied
in an environment (figure 12.1).

computational
system X,

with complex
internal dynamics

rich dynamical
perturbatory
interactions

environment E,
(complex dynamics

a given)

analogue ... digital
open ... predefined

material ... virtual
open

sensors

actuators

… embodied in ...

Fig. 12.1. A computational system embodied in an environment

The computational system itself necessarily runs on some form of physical hard-
ware platform, but that hardware does not constitute the embodiment: it is the
coupling with the environment that provides the embodiment. (The boundary be-
tween the computational hardware and its environment may be drawn in differ-
ent places, depending on the analysis being performed. For example, in a robot, it
might sometimes be useful to consider the robot body as part of the environment,
and sometimes as part of the computational system.) The computational hardware
platform may be analogue, digital, or a hybrid. The computational processes may
be predefined (fixed code running on fixed hardware) or open (which could include
dynamic binding, self-modifying code, self-reconfiguring hardware, and so on).

Following Quick et al., we require that the computational system has a suitably
rich complex internal dynamics. While most computational systems do indeed have
a complex internal dynamics, this may not be “suitably rich”, rather, it tends in-
stead be distressingly fragile and impoverished. Engineering a suitable dynamics for
exploiting embodiment may be non-trivial.

The environment in which the system is embodied may be material (for exam-
ple, the physical world in which a robot is situated), or virtual (for example, the
Internet). Again, a virtual environment necessarily has some underlying physical
(hardware) implementation, but its behaviour may be abstractable from the details

12 Embodiment 269

of the particular implementation in terms of certain logical properties only. The
environment is required to be open, hence its behaviour cannot be captured in some
predefined description. A physical environment is always open: the world does what
the world does, and any model we have of it is just that: a model, that abstracts
away from some details. A virtual environment may also be open: for example, the
capabilities and topology of the Internet cannot be captured in some predefined
description, but are changing and growing in unpredictable ways on a daily basis.

The environment may be relatively passive, changing only in response to the system’s
actuation, or it may be following its own physical laws over time, so the effect of
actuations decay or grow, or it may contain other embodied computational systems
(a social environment), each capable of being sensed, each acting on the rest of the
environment, and each altering its state based on what it senses.

The embodiment is provided by the coupling between the computational system
and its environment, and is a rich complex feedback process. Inputs to the system
from the environment are through its sensors, and it outputs to the environment
through its actuators.

The effect of an actuation might be minimal, merely change the system’s location
or orientation in the environment, thereby changing what it senses. Such actuation
is perturbing the environment in a relativistic sense only: we can choose to say that
the actuation causes the environment to move relative to the system.

A more fully embodied effect of the actuation is to alter the environment in some
explicit stigmergic way, such as by making or erasing a mark, thereby transferring a
memory burden to the environment, or by building or changing a structure. Subse-
quent sensing, by this system or by other systems in the environment, may perceive
these alterations, and thereby alter behaviours.

If the environment adapts in some way to the embodied system’s change, it needs
to be aware of this change, unlike in the case of mere relativistic movement. For
example, a virtual environment might allocate more resources to the region that the
system is currently inhabiting.

A materially embodied system is a computational system embodied in a physical
environment; a virtually embodied system is one embodied in a virtual environment
(that is, the terms material and virtual refer to properties of the environment, not
of the computational system).

270 Susan Stepney

12.2 Rich dynamics

12.2.1 Physical and virtual constraints

Laws. A physical structure (here, either system X or environment E) labours un-
der the physical constraints of the material from which it is constituted. These con-
straints include such things as: basic laws of physics, from speed of light constraints
to energy density constraints; physical properties of the material, its strength and
resistance; natural length scales and timescales governing the dynamics and the
attractor structure of the phase space.

A virtual structure similarly labours under various computational constraints. The
most obvious of these is computability. If the virtual structure in question is a
Turing-equivalent machine, then the Church-Turing thesis states that it is limited
to performing effectively computable functions. Some argue that this computability
constraint applies to all physical and virtual systems; others disagree. For a good
discussion of this point, see [Copeland 2002].

Questions of computability notwithstanding, the issue of computational complexity
is crucial for virtual systems. Certain computations can be performed in principle,
but in practice they take too long (longer than the age of the universe, say). This
is a direct analogue of the speed of light constraint in physical systems: in principle
any destination is reachable if one travels for long enough, but it may take an
infeasibly long time to travel there. A class of problem whose solution time scales
at most polynomially with the problem size is classed as efficient ; one that scales
exponentially with problem size is infeasible. It should be noted, however, that
feasibility is a technical “worst case” measure: even if a class of problems is infeasible,
particular instances of that problem may be relatively simple, and even if an exact
solution is infeasible to find, a good enough approximate solution may be feasible.
AIS are one bio-inspired approach to providing feasible approximate solutions to a
subset of infeasible exact problems.

Even if one has efficient computation, there are further constraints when considering
an embodied system. The computational system is coupled with the environment,
and the environment is acting and reacting on certain timescales, constrained by the
relevant laws. So it behooves the computational system to act and react on appro-
priately similar timescales, which puts constraints on its implementation technology.
Speed matters. A Turing machine built from beer cans, or John Searle locked in his
Chinese Room [Searle 1980], would not be able to constitute appropriate embodied
intelligences with respect to our everyday environment, since they would be acting
on glacially slow timescales, and could not engage in rich perturbatory interactions
on our timescales.

One of the tenets of embodiment, certainly from an artificial intelligence point of
view, is that an embodied system transfers some of its computational burden to the
(much larger, much richer) environment. Thus new classes of problems may become
feasible for it to solve, and others may even disappear altogether [Kushmerick 1997].

12 Embodiment 271

Initial conditions. Physical structures are constrained by their history and dy-
namics: there may be certain physical states that, although potentially physically
realisable, are unreachable from the system’s starting state under the physical laws
of the system. [Goodwin 1994] argues that such physical constraints and processes
play the major role in the evolutionary and developmental dynamics of an organism,
and that genetic variation provides a relatively small modulation to this.

Virtual structures are similarly constrained by their initial conditions and the dy-
namics of the computation. For example, it has been found, in the context of genetic
programming, that there are some potential solutions that cannot be found by an
evolutionary search process, given a certain class of move function [Daida et al.
2003a, Daida et al. 2003b, Daida & Hilss 2003]. Analogous constraints are doubtless
features of other bio-inspired algorithms, such as AIS, that develop from some ini-
tial population using their own move functions, although the precise forms of these
constraints are yet to be uncovered.

Viability. Natural biological systems are constrained by viability: individuals must
be viable at all stages of their life, and members of species must be viable at all
stages of their evolutionary history. Additionally, individuals have many functions
that are necessary simply for maintaining their life.

Artificial systems (virtual or physical) potentially suffer fewer such constraints. They
need not be viable until their construction is complete. Also, they often need have
little or no functionality beyond that needed to support their primary purpose:
any resources they need merely to “survive” are usually supplied by some external
agency.

As these artificial systems become more complex, however, and particularly as de-
signers look to biology for inspiration, some of the constraints of natural systems
are in turn added to artificial ones: they may be artificially evolved and grown,
with some requirement for intermediate viability, and they may need to compete for
resources with other artefacts.

An AIS certainly has a competitive element to it, in that the individual elements
within the system may compete with other such elements; the overall system, how-
ever, is usually situated in a more computationally traditional non-competitive en-
vironment.

12.2.2 Natural physical richness

As argued above, physical and virtual systems both labour under certain constraints,
and it might therefore seem that (physical) embodiment adds nothing to the equa-
tion. However, physical systems are essentially rich, whereas virtual systems tend to
be impoverished unless specially designed for richness. It is here that the effortless
richness of physical embodiment can offer new opportunities, and where analogous
properties may need to be designed in to virtual embodiment.

272 Susan Stepney

Physical systems can exploit continual novelty. It is in this sense that they are rich:
they can, and often do, use any feature of the real world to perform their task,
not just the ones abstracted out for analysis in the mathematical or computational
model. Physical systems can move outside the model, and evolve new representa-
tions. “Evolution tends to produce designs that take full advantage of the available
freedom” [Beer 1995]. Computational systems embodied in a physical environment
can exploit this richness.

The classic work that demonstrates such physical richness is [Thompson & Layzell
1999], who use a genetic algorithm to evolve a two-frequency discrimination al-
gorithm running on an unclocked Field Programmable Gate Array. The resulting
solution circuits perform their task, but are bizarrely inexplicable in operation. In
particular, some solutions have unconnected components, yet if these apparently
irrelevant components are removed, the circuit fails to operate. Also the circuits are
not portable: they cannot be moved to other places on the chip’s array, or to other
chips, or run at different temperatures. The circuits appear to be exploiting extra-
logical properties of the chips, such as capacitances between components (even ones
not directly connected); these properties are not controlled by design or manufacture
to be the same in all places or at all temperatures.

Even with a conventional digital microprocessor, such extra-logical properties can be
important. For example, recent breakthroughs in cryptanalysis exploit extra-logical
side-channels, for example using timing or power measurements in correlation with
the computation being performed, in order to break the cryptographic systems. See,
for example [Kocher 1996, Kocher et al. 1999, Clark et al. 2005b].

12.2.3 Achieving virtual richness

Physical systems do not need to develop any special mechanisms to obey the laws
of nature: they just naturally follow such laws, and can evolve to exploit these
laws. In contrast to physical environments with their open range of extra-logical
properties occurring “for free”, most virtual environments are severely constrained
and impoverished. Typically they are closed systems with a pre-defined finite discrete
logical representation, and cannot move out of this (or if they do move out, it
constitutes an error).

The Internet/Web provides an interesting open virtual environment, in that it is
constantly changing and growing. [Quick et al. 2000] describe Phenomorph, a system
designed to be embodied in the open virtual environment of the Web. The system’s
sensors parse pages for keywords while its actuators select and navigate links. The
sensory input alters the system’s behaviour (in a way inspired by the locomotive
behaviour of E. coli), which alters the actuator’s choice of link to follow, which
affects where the system is located in the environment.

12 Embodiment 273

The work is an initial attempt to explore the question: Can a purely virtual embodied
system (that is, a system embodied in a virtual environment) experience the same
degree of richness as a physically embodied system?

The answer appears to be a qualified ‘yes’, provided that the system and its virtual
environment are designed to achieve a suitably complex dynamics, and that the
environment is sufficiently open, allowing it to remain far from equilibrium.

12.2.4 Suitably complex dynamics

It is not sufficient for the system or the environment merely to have a large state
space, or phase space: that space must also have a “suitably complex dynamics”,
that is, have a complex structure, neither too regular, not too random. The rich
perturbatory interactions then make suitably complex changes to this structure.

The dynamics is described in terms of the trajectory that the system follows through
its relevant state space. This trajectory is governed by the attractor structure of the
state space. Inputs can change the system, possibly by altering the values of param-
eters describing the space, thereby altering its attractor structure, for example by
moving attractors, or causing attractors to merge or bifurcate. [Beer 1995] provides
a concise overview of the relevant dynamical systems theory.

A dynamics is suitably complex when it results in complex emergent properties,
which may be identified with attractors or with other complex structures in the dy-
namics. These emergent properties are new higher level properties (patterns, agents)
in space and time, and they have their own structure and dynamics, their own higher
level state space, trajectories, and attractors. This higher level state space can then
support the emergence of still higher level patterns, and so on. In an open system,
where arbitrarily many levels of patterns can emerge, it is impossible to pre-define
all the state space: the higher level state spaces emerge along with the patterns
[Kauffman 2000], resulting in the potential for constant novelty.

Some authors argue that to achieve such richness, the state space must be con-
tinuous, rather than discrete: “It is my belief that the versatility and robustness of
animal behavior resides in the rich dynamical possibilities of continuous state spaces”
[Beer 1995]. However, research on Cellular Automata and other similarly “simple”
systems shows that these discrete spaces can nevertheless have amazingly rich dy-
namical possibilities. See, for example, [Gardner 1970, Langton 1991, Wuensche &
Lesser 1992, Wolfram 1994, Wuensche 2002].

It is an open question whether finite discrete systems can provide a sufficient rich-
ness of multiple levels of emergent structures, or whether continuous systems are
qualitatively different. There has been much debate, and no doubt will be much
more, on both sides of the argument.

274 Susan Stepney

Fractal proteins [Bentley 2004] provide one form of computational richness. The
aim is to achieve the “complexity, redundancy and richness” of natural protein sys-
tems, without using (or simulating) the actual real-world mechanisms. Each fractal
protein is a triplet of real numbers that encodes a small square patch of the Man-
delbrot set centred at (x, y) and with size z. The rich and diverse shapes of natural
proteins are mirrored in the complex and diverse shapes of these patches of the Man-
delbrot set. Natural protein interactions are mirrored by intersecting fractal patches
to measure their affinity, or how closely they match. An evolutionary or other search
process searches for sets of triplets that exhibit appropriate dynamics under such
intersection. The aim is for a sufficiently complex artificial chemistry, provided by
the complexity of the highly non-linear Mandelbrot set.

Fractal proteins were originally designed to “provide a rich medium for evolution-
ary computation” of artificial gene regulatory networks (GRNs) [Bentley 2004]. Al-
though originally designed for GRNs, fractal proteins, or related concepts, may also
provide a rich medium for other bio-inspired processes, including immune ones. Anti-
gens are a kind of protein, and [Bentley & Timmis 2004] use “fractal antigens” in the
context of an artificial immune network, to represent the shape space and affinity
functions.

The scheme works well in practice, but as used it may not be achieving its full
potential. The search process as described [Bentley 2004] modifies the z parameter
(patch size) by a random additive rather than multiplicative factor, making “deep
zooming” (very small values of z) unlikely, and hence not exploiting the deep self-
similar nature of the fractal. It also uses a relatively coarse-grained sampling grid
on the patches to calculate their affinity. However, there is no reason in principle
why a more fine-grained approach could not be used to produce arbitrarily complex
chemistries.

It would be interesting to explore the effects on the generated dynamics of the precise
choice of fractal, and even of (co-)evolving the underlying fractal itself.

12.2.5 Far-from-equilibrium openness

A closed dissipative system will reach equilibrium: it will converge on an attractor
and stay there. If that attractor is a strange attractor [Lorenz 1963, Strogatz 1994],
the system can exhibit complex-looking behaviour, but it will still be bounded, and
in a form of “steady” state. This is why we desire the environment (at least) of our
embodied system to be open. This openness (a constant flow of matter, energy, or
information through the system) allows constant novelty, by allowing the combined
system to be far from equilibrium.

A far-from-equilibrium system, rather than converging, may self-organise [Bak 1997]
to the computational edge of chaos [Langton 1991]. There it can form stable struc-
tures, patterns, emergent properties, that persist; yet it is simultaneously “poised”
[Kauffman 1995] in that it can readily change in response to inputs. This is what we

12 Embodiment 275

want from an adaptive learning system: the stable patterns form the memory, and
the poised response forms the adaptation.

A physical environment is naturally open, with its noise, unpredictability, and com-
plexity. Some virtual environments (such as the Internet) are also open. How can
we provide other virtual environments with desirable open properties?

A source of noise, or randomness, to simulate richness is not suitable, because it
has no underlying structure for the system to exploit (or, in the case of pseudo-
randomness, it may have the wrong kind of structure). To get at least the flavour of
the right kind of complexity [Crutchfield 1994], an otherwise impoverished virtual
environment could be coupled to some suitable “edge of chaos” or other complex
non-linear device. Depending on the nature of this device, it might still be difficult
to achieve multiple levels of emergence. But in the short term, this is a potentially
valuable approach to the openness problem.

12.3 Rich coupling

12.3.1 Co-evolution of sensors/actuators and processing elements

In addition to a suitably complex dynamics of the individual components (both
system and environment), embodiment requires rich perturbatory channels between
the systems. Similar to the argument about the state space, this does not merely
mean a high bandwidth, it means a communication flow that affects the various
dynamics in a suitably complex way.

If we want to engineer such a system, how can we find suitable state spaces and
communication channels in the truly vast space of possibilities?

Species are not created with a given complement of sensors and actuators, filtering
their interaction with their environment in fixed ways. These filters, their modalities,
number and positioning, have evolved to suit the needs of the particular organism
in its particular environment. Different species have different modalities (bats and
dolphins “see” with sound; ants communicate by pheromones; certain fish and birds
can usefully sense magnetic fields; etc), and different manipulatory appendages.

[Chiel & Beer 1997] discuss this cooperative coevolutionary history. [Percus et al.
1993] note that immune receptors and the antigens they sense have competitively
coevolved. Kaufmann [2000] goes further, and suggests the reason why biological
evolution works so well as a search technique in organism space is that organ-
isms and evolution have themselves coevolved. Polani and co-workers [Polani et al.
2001, Klyubin et al. 2005] use a mutual information-theoretic approach to quantify
informational and bandwidth requirements, given particular tasks or goals, which
might be used to help evolve suitable sensors and actuators.

276 Susan Stepney

For artificial systems, it is possible for the environment to provide a system with
inputs (or “insults”) other than through its designed sensors, such as by impact,
heat, etc. A sufficiently flexible system may be able to adapt to exploit these inputs,
and an adaptive environment then learn to exploit them more explicitly. Similarly,
an adaptive environment might learn to interpret some non-designed outputs in
a useful manner: a sufficiently flexible system may be able to learn or evolve to
modulate those outputs. These evolutions will simultaneously adapt the system’s
state space and internal dynamics.

So, for an artificial embodied system, it is essential to coevolve (or at the very least
codesign) the system’s computational engine along with its sensors and actuators,
including the bandwidths and formats of the input/output data, in the context of the
relevant environment. And ideally, for an adaptive and learning system, its sensors
and actuators should be able to adapt as well.

This is contrary to the classical software engineering view that interfaces need to
be clean, well-defined, controlled, and that the low-level implementation details of
data representations (once a standard format has been agreed) are unimportant.

12.3.2 Co-development of system and environment

Embodiment can affect many processes, including, for example, the rate of evolution.
Johan Metz [private communication, 2005] says that embodied development is a
reason why mammalian morphology evolves much faster than the morphology of,
say, indirectly developing insects. Mammals interact with and use cues from their
environment during their development in the womb, and so bones and muscles, for
example, can develop in a coordinated manner according to their use. On the other
hand indirectly developing insects develop “ballistically” in the pupa, and so have
no such environmental cues to exploit.

Indeed, [Riegler 2002] argues for a stronger definition of embodiment than Quick el
al.’s. Not only must the perturbatory interactions with the environment exist, but,
he claims, additionally “embodiment of a system is synonymous with competence
in its environment”. He goes on to claim that this competence cannot arise by en-
gineered design, but requires “historical development in synchronization with their
environment”. He allows that artefacts may be embodied in virtual environments,
but requires them to have developed their own goals, their own competences: de-
signed systems whose main goals are those of the designer are merely “embedded”,
not embodied.

Although we do not adhere to Riegler’s strong view about the source of the system
goals, it is clear that the developmental process plays a key role in embodiment.
Embodied systems do not spring into existence fully formed; they grow and adapt
in an environment that, due to the close coupling, shapes, and is shaped by, that
growth and adaptation. The same “seed”, planted in two different environments, can
develop into two quite different embodied mature forms. The growth itself is part

12 Embodiment 277

of the adaptive process of the computational system, with its complex dynamics
changing as it grows.

A requirement for embodied development is rather daunting for physical systems,
but may be less so for virtual ones. Recent research on virtual developmental systems
might hold a key: the system is encoded as a “seed”, then “grown” into its final
complex adult form. See, for example, [Prusinkiewicz & Lindenmayer 1990, Kumar
& Bentley 2003]. This is relevant for embodiment when the system is coupled with
the environmental during its growth [Měch & Prusinkiewicz 1996].

Such an approach may help to overcome some of Riegler’s arguments against de-
signed systems. The computational system is deployed as a “seed”, and grown to
maturity in its specific environment, rather than designed in an explicit fully grown
form; the seed itself, however, may be designed.

As a consequence, a mature embodied system cannot be simply transplanted to a
different kind of environment. It must develop and learn in the relevant environment.
This has been noticed in practice, for example with work on developing an AIS for
fault prediction in Automatic Teller Machines (ATMs), where an AIS trained on
data from an ATM in one location is ineffective when transferred to a machine in
a different location [Ayara 2005]. Hence one will not be able to develop a virtual
embodied system, make multiple copies of its mature form, and then deploy them
in other environments, unless those environments are sufficiently similar.

12.4 Design principles for embodied systems

[Kushmerick 1997] begins a computational analysis of embodiment that could be
used for the design and characterisation of virtual as well as physically embodied
systems. Although his emphasis is on intelligent behaviour, some of the points are
relevant to AIS.

One key aspect of Kushmerick’s analysis is that intelligent embodied systems (ani-
mals) have a high bandwidth of high quality input from their environment. Vision,
in particular, is a high bandwidth channel, and involves a variety of filters (such as
gaze direction and attention) to control the data flow. This does not mean that all
embodied systems require visual sensors: plants, for example, are embodied, but are
not renowned for their sharp eyesight. What is important is the bandwidth on the
relevant timescales of interaction, which is much slower for (most) plants than for
(most) animals.

Another aspect is that the sensory flow is continuous: it is always present and does
not have to be requested. Once an animal has focused its visual attention on a
part of its environment, it does not have to “request” or “poll” for its visual input;
the channel is broadcasting continuously. [Kushmerick 1997] argues that this is an
important part of the interaction that allows the computational and memory burden

278 Susan Stepney

to be shifted to the environment (cf Brooks’ “the world is its own best model”). The
system lives in a sea of constantly updating data, and much of the problem of
perception is what to throw away, not what to request.

[Kushmerick 1997] notes that the task that an embodied system has to perform is
often more highly constrained that the general class of tasks of which it is a member,
because of existing environmental constraints on the solution, or because the system
itself imposes extra constraints via the coupling that reduce the number of degrees
of freedom. Those constraints can then be exploited to simplify the computation
needed to perform the task. (Recall that computational complexity is a worst case
property of a class of problems, and individual instances may have much lower
complexity.)

Finally, [Kushmerick 1997] observes that physically embodied systems are usually
satisfied with approximate “good enough” solutions, rather than optimal or exact
solutions, particularly when the approximate solution can be achieved with signifi-
cantly reduced computational burden.

These observations, along with arguments discussed earlier, suggest some design
principles for embodied systems.

1. Design the system X with sufficiently complex dynamics, that can execute this
dynamics on the relevant timescale(s) of the environment E .

2. Design a sufficiently high interaction bandwidth on the relevant interaction
timescale(s).

3. Ensure that input from the environment is constantly available and up to date.
4. Ensure that the system perturbs the environment, rather than being merely a

passive observer.
5. Ensure that the environment has sufficiently complex dynamics.
6. Allow the system to exploit structure and constraints in the environment in

order to simplify its tasks.
7. Apply embodied systems only in “softer” problem domains where approximate

solutions are appropriate and acceptable.
8. Co-design the system and its interface (sensor and actuator numbers, positions,

data formats, etc).
9. Design the system to develop, “grow”, in the relevant environment.

These principles apply both to material and to virtual embodied systems, but the
emphases and difficulties are different in each case. For example, complex dynamics
may be easier to achieve for a physical than a virtual environment, whereas the co-
design of sensors and actuators may be easier to achieve for virtual than for physical
interactions.

Of course, how to design and ensure many of these things are still open research
problems. Certain aspects of the “design” may need to be accomplished by some
evolutionary search process. However, one point to note is that some of these design
principles refer to the environment, not just to the computational system. This is

12 Embodiment 279

not unexpected: we noted earlier that it it impossible to analyse an embodied system
in isolation, and so it is impossible to design it in isolation. (In chapter 16 of this
book, Hone and Van Den Burg analyse an isolated AIS. This does not contradict
the claim here, since their AIS is not embodied: it does not have rich perturbatory
interactions with its environment.)

12.5 Embodiment in the natural immune system

12.5.1 Instantiating the model of embodiment

Let us now consider the natural immune system as an embodied computational
system. (The following discussion is necessarily a gross simplification of the actual
biological processes, omitting many constituent agents and processes, but is sufficient
to illuminate the key concepts.) We instantiate the generic embodied system of
figure 12.1 with immune system concepts (figure 12.2).

immune system,
antibodies, ...

binding, shape
recognition

environment,
antigens, self, ...

analogue + digital
open

material
open

… embodied in ...

Fig. 12.2. A computational immune system embodied in an environment

The immune system contains, among other things, a population of antibodies, which
are particular kinds of proteins. The system is hybrid: partially digital (proteins are
strings of amino acids drawn from a small alphabet of possibilities, partly coded for in
the DNA) and partially analogue (the proteins fold into complex three-dimensional
shapes whose physical properties determine their behaviour). The system dynamics
includes the modification of the population by the production, modification, and
destruction of different kinds of antibodies, in response to events sensed in the
environment. See, for example, [Nowak & May 2000].

The environment is the open material environment of the body, taken here as con-
taining the antigens to be handled, and self proteins that should not be attacked.
The environment is modified by the immune system, and some of its components

280 Susan Stepney

evolve to resist this modification, some to aid it. It is open in that there is a flow of
matter through it.

The interaction between the system and the environment occurs by antibodies bind-
ing to antigens. This binding depends on shape recognition (hydrogen bonds form be-
tween the molecules; if the shapes are sufficiently complementary, enough hydrogen
bonds can be created to form a strong enough aggregate bond to stick the molecules
together), and other environmental factors (for example, water molecules can plug
gaps between the shapes and form additional hydrogen bonds). The stronger the
bond, the higher the affinity the antibody has for the antigen.

12.5.2 Danger Theory as embodied sensing

There may be hierarchies of embodiment. Here we have described the immune system
as being comprised of its cells, with the host organism and pathogens acting as
its environment. The host organism itself is also a system, embodied in its own
environment. We could instead consider the immune cells to be embodied in their
host, with the pathogens acting as an external environment, much in the way a robot
controller is considered to be embodied in the physical robot host, in the environment
of the world. However, in our case, such a choice would beg the question of precisely
what comprises the host organism, and what comprises the pathogenic environment.

There are several theories, all more or less contentious, of how the natural im-
mune system determines what of its environment is host organism, and what are
the pathogens. These range from externally directed self-non-self learning, to fully
autopoietic ideas of self-assertion (summarised in [Bersini 2002]).

Danger Theory [Matzinger 1994a, Matzinger 2002] sits towards the middle of this
spectrum, and says that the immune system reacts to danger, or rather, to damage,
by reacting to certain chemicals given off by distressed cells. When it senses such a
“danger signal”, it reacts by associating “nearby” cells with the danger, and so they
are classified as the cause of the problem, in a form of “guilt by association”. Danger
Theory helps to explain why an adjuvant (essentially, a poison) is a necessary part
of some vaccines: it causes the required damage.

In Danger Theory, the immune system has cells with sensors that detect danger
signal chemicals: specific chemicals given out by damaged or killed host organism
cells. It also has sensors to detect nearby cells, and a system dynamics that correlates
the inputs from these sensors. Additionally, it has actuators (further cells) that then
respond to (kill) these associated cells, whether or not they subsequently occur in
proximity to any danger signal.

Under this theory, the immune system has evolved its internal computational dy-
namics and its sensors to respond to danger signals. One can also postulate that the
host organism part of the environment may have coevolved to enhance these signals,
and that the pathogens have coevolved to evade the associated recognition, provid-

12 Embodiment 281

ing the environment with its own complex dynamics. Thus we see the evolution of
a rich embodied computational system.

Ideas from Danger Theory are now being incorporated in AIS models. See, for ex-
ample, [Bentley et al. 2005, Greensmith et al. 2005]

12.5.3 Shape space in the natural immune system

As noted earlier, the interaction between the immune system and its environment
is in terms of shape recognition.

[Perelson & Oster 1979] introduce the concept of an abstract shape space, S, in
which the shape of an object is represented by a single point. They take S to be an
N -dimensional Euclidean vector space, S = !N . They use the N shape parameters
as a model of the relevant features of an antibody combining region, and represent
these values by a point Ab in S. They do not identify these parameters further,
beyond suggesting that they could be physical properties such as size, charge, and
dipole moment. [Lapedes & Farber 2001] use multidimensional scaling techniques to
derive further geometrical properties of shape space from influenza data.

[Perelson & Oster 1979] then capture how well an antibody combining region Ab
and antigen Ag fit together in terms of the distance between the shape of the
antibody and the complementary shape of the antigen, ‖Ab,Ag‖, measured using
an “appropriate” metric on S. A small distance represents a good fit, and hence a
high affinity. They explicitly decline to define this metric, its being “a complicated
chemical problem”, and continue their analysis in terms of the well-known Euclidean
metric. (See appendix A for some other possibilities.)

What is the distribution of antibodies and antigens in this shape space? Perelson and
Oster note that it is almost certainly not random, since the components will have
been subject to negative selection (in order not to recognise self) and evolutionary
selection respectively. It is presumably also affected by the physical constraints of
embodiment: certain combinations of parameters may be physically impossible, or
at least highly unlikely, to be realised.

Since nothing is known of the actual distribution, analyses tend to proceed on the
minimal assumption of random distributions within some finite volume V ⊂ S (or
are parameterised by the actual, but unknown, distribution). Perelson and Oster
analyse the size of the antibody repertoire needed to cover this volume, in terms
of a recognition specificity ε̂ and of the dimensionality N . Their analysis shows
that higher values of N need significantly larger antibody repertoires to cover a
given volume of shape space, for a given specificity. They argue that this is why
recognition uses only a small portion of each antigen, to limit the complexity, and
hence to limit N and the required size of the repertoire. For typical animals, they
estimate that N = 5− 10.

282 Susan Stepney

Using different techniques, [Lapedes & Farber 2001] recover N = 5 from various
influenza data. [Smith et al. 1997] find that N = 5− 8 is consistent with their data;
using a Hamming metric (see appendix A) instead of a Euclidean metric, they find
N = 20− 25, for an alphabet of size 3− 4, is consistent with their data.

[Perelson & Oster 1979] define their recognition specificity ε̂ as the radius of an N -
sphere centred on Ab in S, scaled by the radius R of the full N -sphere of volume V ,
making it a non-dimensional quantity with 0 ≤ ε̂ ≤ 1. The number of such spheres
needed to fill V goes like 1/ε̂N . Keeping ε̂ fixed whilst varying N corresponds to
a keeping a fixed specificity along each individual dimension whilst changing the
number of dimensions. This form of scaling is (most of) the reason for the dependence
of repertoire size on N : if one fixes specificity along each dimension whilst increasing
N , the number of antibodies in the repertoire needed to cover the space increases.

One can look at this argument from another perspective. Consider a fixed repertoire
size 1/ε̂N ; then as N increases, ε̂ also increases. For example, for a repertoire size
of 64, then N = 1 has ε̂ = 1/64; N = 2 has ε̂ = 1/8; N = 3 has ε̂ = 1/4; and
N = 6 has ε̂ = 1/2. So, for a fixed repertoire size, one can trade off specificity
against dimension: a larger N requires less precise discriminations along each of its
individual dimensions, which might be easier to realise.

Shape space is an essentially physically embodied notion, as further demonstrated
by the following quotations from [Perelson & Oster 1979] (our italics):

multisite recognition is a more reliable method of distinguishing between
molecules than single site recognition. This may have been an important
evolutionary consideration in the selection of weak non-covalent interactions
as the basis of antigen–antibody bonds.

. . . a large repertoire of antibody molecules with different three-dimensional
binding sites specific for the different chemical groups . . . found on antigen
molecules.

because of physical restrictions on the manner in which molecules fold,
smaller regions can take on fewer shapes

Shape space as originally envisaged is a metric space, where the only property of
interest is the distance between pairs of points in the space. Spaces with more
structure, with a value at each point (for example a scalar value that might represent
a fitness, or a vector value that might represent a force), are also of potential interest
for modelling the interaction between a system and its environment. Entities can
then have a dynamics, can move around in these spaces, affected by the values at
various points. The values in turn can be affected by how things move, and thus
provide even richer dynamics [Saunders 1993]. In Chapter 4, Lee and Perelson discuss
further models of affinity, and their dynamics.

Complementarity revisited. Care needs to be taken with the various forms of
complementarity used in different shape space arguments. The idea is that com-

12 Embodiment 283

plementary shapes match well. However, the complementarity may be included at
different points in the argument, resulting in different interpretations of the metric.

The original shape space arguments [Perelson & Oster 1979] consider a specificity
“ball” around an antibody, with this ball containing the antigens recognised. The
antigens are located in the shape space according to the complement of their shape.
The Euclidean metric measures how well antigen and antibody match, where small
values correspond to good matches, that is, to high affinity. So in this case, high
affinity corresponds to small values of ‖Ab,Ag‖E . [De Boer et al. 1992] take a
slightly different interpretation: shapes have good matches in shape space when
their coordinates are “equal and opposite” (thus putting an explicit interpretation
on complementarity), so high affinity corresponds to small values of ‖Ab,−Ag‖E .

The “lock and key” metaphor [Percus et al. 1993] has a more direct measure of
complementary shapes matching well. Here r-contiguous bits (which measures com-
plementary contiguous subsequences) is used, and high values correspond to good
matches. So high affinity corresponds to large values of ‖Ab,Ag‖C .

In practice, it is common for artificial immune system researchers to neglect comple-
mentarity when using real-valued artificial shape spaces, and instead measure direct
matching, and use a large (or sometimes, small) value of ‖Ab,Ag‖E to represent a
high affinity.

Discussions of the role of complementarity and metrics in the context of artificial
immune systems can be found in [Garrett 2003, Hart & Ross 2005]. It is clear that
great care should be taken in choosing, and precisely documenting, what measure
of matching is being used.

12.6 Embodied artificial immune systems

Engineered embodied systems must have their own suitably complex internal dy-
namics and complex perturbatory interactions with a suitably complex open envi-
ronment. This is a potentially enormous class of systems, and so we seek inspiration
from existing natural systems to help us to constrain our design space.

As discussed in Chapter 3, Artificial immune systems (AIS) are computational sys-
tems that take their inspiration from various theories of the natural immune system.
However, research has tended to concentrate more on the complex internal dynamics
than on the complex perturbatory interactions, and the systems are often situated
in a closed and impoverished virtual environment: AIS tend not to be embodied. Let
us look at the design principles suggested earlier, to see how they might be used to
achieve (materially or virtually) embodied AIS.

Timescales. Physically embodied systems usually interact on “human” timescales
(seconds, hours, days), whereas virtual systems may have to react much faster.

284 Susan Stepney

There may be more than one relevant timescale, for example, for immediate reaction
to a novel situation, and for slower adaptation/learning of that novelty. One of
the reasons that AIS have not managed to act as fully effective “immune system”
defences against computer viruses may be that, although the analogy holds between
the two sets of terminologies, it does not hold between timescales. A computer virus
can destroy an entire network on the same timescale that the defences react.

Bandwidth. A physical environment naturally offers high bandwidth, so the AIS
merely needs to be supplied with sensors and actuators to access the relevant portion
of it. A virtual environment may need to be adapted to provide a richer source
of data: not simply, say, packet headers, process ids, or return codes, but more
contentful information. This may pose a problem on, say, a network where all traffic
is encrypted. It is worth considering if “side channel” information (such as timing,
power consumption, etc [Kocher 1996, Kocher et al. 1999, Clark et al. 2005b]) are
also available, as these provide rich extra-logical resources.

Constantly available up-to-date input. The AIS should be able to directly sense
the relevant data streams, rather than explicitly request data. The requirement to
be up to date might imply that virtual data streams have limited temporal and
spatial extent, so that they “decay” before they have become outdated.

Actuation. An embodied system perturbs its environment: it takes actions based
on what it senses, and these actions in turn change the environment. The AIS must
interact, and be able to change aspects of the environment (for example, by injecting
packets into relevant data streams). Thus purely passive recognisers or monitors (the
major application areas of AIS to date) cannot be considered to be embodied.

Sufficiently complex environmental dynamics. This should be a “given” for
truly physical embodiment. However, in some cases the physical world may instead
be severely impoverished, by design. For example, many robot control experiments
take place in sterile featureless mazes that offer few environmental cues. These are
not appropriate environments for embodiment.

A virtual environment may have to be designed explicitly to have sufficiently com-
plex dynamics; this may be simulated by artificially hooking up the environment
to an edge of chaos generator. “Sufficient” complexity allows the actuations of the
system to affect the dynamics of the environment in complex ways.

Environmental structure and constraints. Exploiting these requires an under-
standing of the constraints (for example, restricted network topology resulting in
restricted navigational opportunities) and their effects, and how they might change
over time.

Approximate solutions. In most physically embodied cases, approximate solu-
tions are acceptable, because the system is interfacing with the continuous, analogue
real world, and there is always limited precision. The acceptable degree of approx-
imation still needs to be ascertained. In the virtual world, crisp digital problems
are not appropriate: this excludes many classical computer domains, from word pro-

12 Embodiment 285

cessing to payroll systems. Even for softer domains such as pattern recognition, it
requires consideration of the acceptable false positive and false negative rates.

Co-design the system with its sensors and actuators. Natural immune sys-
tems interact with the environment by shape recognition and binding, modelled by
shape space. The analogue for AIS is an artificial shape space (sensing affinities),
and artificial binding (actuation).

Relatively simple shape space arguments show how the choice of geometrical param-
eters such as representation dimensionality, alphabet size, and specificity, determine
the antibody repertoire size needed to cover shape space. This is a crucial design
consideration for artificial immune systems. Evolution appears to have settled on
a value of N ∼ 5 for real immune system shape space. Design choices include the
actual dimensionality N , what each axis of dimension represents, the metric used to
measure affinity distance, and the specificity ε̂.

The data representation also matters. For example, interpreting a b-bit string as rep-
resenting a low dimensionality, large alphabet system, rather than as a b-dimensional
binary hypercube, results in smoother measures [Smith et al. 1997], which may be
beneficial to the behaviour of the system. It may be that the use of complementarity
and the choice of metric (or non-metric distance measure, see appendix) have subtle
effects on the underlying dynamics of the system [Hart & Ross 2005], and so should
be designed into artificial systems with care.

Grow the system in the relevant environment. Essentially this affects the initial
conditions of the system. A system should start as small as possible (maybe from
an embryonic or an infant state), and develop in the context of its environment,
learning and adapting as it goes. It should not merely accrete: the dynamics of
its growth should be complex, and affected by the environmental inputs. It should
be a continually developing system. This implies that the system should undergo
continual online learning, and not be a system that has an initial learning phase,
then a frozen deployment phase.

12.7 Conclusions

Embodiment offers substantial advantages in allowing a computational system to
offload much of its computational burden to the surrounding rich environment. This
advantage comes at a price, however, as the design of such a system is non-trivial.

Despite embodiment seeming to require a physical body, many of the advantages can
also be achieved in systems embodied in a virtual environment, provided that the
design of both system and environment supports the rich dynamics and interactions
necessary.

286 Susan Stepney

Current artificial immune systems tend not to have the properties necessary for
embodiment. Several design principles for embodied systems have been abstracted,
and their application to potential embodied artificial immune systems explored.
The next step is to attempt to build some fully embodied artificial immune systems
according to these principles.

A Metrics

A metric is the mathematical abstraction of the intuitive concept of distance. It
is a function that maps pairs of points x, y in a space S to a real number, the
“distance” between them: ‖x, y‖ ∈ !. To qualify as a metric, the function must
obey the following properties.

1. distances are not negative: ∀x, y : S • ‖x, y‖ ≥ 0
2. the distance from a point to itself is zero; the distance between different points

is not zero: ∀x, y : S • ‖x, y‖ = 0 ⇔ x = y
3. distance is symmetric (the distance from x to y is the same as the distance from

y to x): ∀x, y : S • ‖x, y‖ = ‖y, x‖
4. distance obeys the triangle inequality (detours are further than direct routes):
∀x, y, z : S • ‖x, y‖+ ‖y, z‖ ≥ ‖x, z‖

Give a prospective metric, usually the first three properties are immediate from the
definition and only the triangle inequality property needs further demonstration.

There are many metrics; we consider here those most often used in the AIS literature.
In what follows, we take the points in space to be vectors x in the N -dimensional
shape space of an antibody Ab or antigen Ag. A vector x can be written in terms of
its components xi, with x =

PN
i=1 êixi, where the êi are a basis set of orthonormal

vectors.

The Euclidean metric, favoured by mathematicians because of its nice analytical
properties, is

‖x,y‖E =

vuut
NX

i=1

(xi − yi)
2

For example, ‖3ê1, 4ê2‖E =
q

(3− 0)2 + (0− 4)2 = 5

The Manhattan metric, favoured by computer scientists because it is simple and
cheap to compute, is

12 Embodiment 287

‖x,y‖M =
NX

i=1

|xi − yi|

For example, ‖3ê1, 4ê2‖M = |3− 0| + |0− 4| = 7

The Hamming metric is even simpler. Let the components of x be drawn from
some finite alphabet Σ (so x ∈ ΣN rather than x ∈ !N). Then

‖x,y‖H =
NX

i=1

δ(xi, yi)

where δ(x, y) = if x = y then 0 else 1

So, for example, ‖120001, 020020‖H = 1+0+0+0+1+1 = 3. For binary alphabets
(that is, Boolean vectors), the Hamming metric is the total number of complemen-
tary bits, and is the same value as the Manhattan metric over the N -dimensional
hypercube.

The r-contiguous bits distance [Percus et al. 1993] is also applicable to Boolean
vectors. It measures the longest contiguous subsequence of complementary bits. The
definition, expressed in the Z mathematical language [Spivey 1992, Valentine et al.
2004], is as follows. Let s be the sequence of vector components of x − y, that is,
s = 〈|x1 − y1|, . . . , |xN − yN |〉. So, for complementary bits,

‖x,y‖C = max { t : seq{1} | t infix s • #t }

Consider the distance ‖110001, 010010‖C . The sequence s = 〈1, 0, 0, 0, 1, 1〉. So
‖110001, 010010‖C = max {# 〈1〉 , # 〈 〉 , # 〈1, 1〉} = max {1, 0, 2} = 2.

[Percus et al. 1993] motivate this choice of distance in terms of the immunological lock
and key metaphor, that the 1s and 0s of each bit string are modelling the relevant ups
and downs of the key teeth and complementary lock shape, and that a contiguous
run is needed to generate sufficient affinity. They also allow the shape space vectors
to have non-Boolean-valued components (they find evidence for a trinary alphabet
of values in natural immune systems, corresponding to positively, negatively, and
neutrally charged regions), with matching being all (for complementary values) or
nothing.

Formalising this, each vector component is drawn from some alphabet Σ. Each
element σ ∈ Σ has a complement σ̄ ∈ Σ. An element may be self comple-
mentary, τ̄ = τ . Complementarity is a symmetric relation: σ̄ = τ ⇔ τ̄ = σ.
Now define the sequence of components as s = 〈δ(x1, y1), . . . , δ(xN , yN)〉 where
δ(x, y) = if y = x̄ then 1 else 0. Then r-contiguous bits is as defined earlier, using

288 Susan Stepney

this s. For example, consider the alphabet Σ = {+,−, 0} with complementarity re-
lation +̄ = −, 0̄ = 0. Now consider ‖−+000+, +++−0−‖C , which has the sequence
s = 〈1, 0, 0, 0, 1, 1〉, and so ‖−+000+, +++−0−‖C = 2.

It should be noted that r-contiguous bits does not form a metric (the notation
we use above notwithstanding). To see this, consider the binary vectors x = 0000;
y = 1010; z = 1111. If we consider the usual complementarity relation, 0̄ = 1, we
have that ‖x,y‖C +‖y, z‖C = 1+1 < 4 = ‖x, z‖C , which does not obey the triangle
inequality. If we take the self-complementarity relation, 0̄ = 0, 1̄ = 1, then we have
‖x,x‖C = 4 -= 0, which violates another of the metric conditions.

