
Entropy 2012, 14, 1939-1952; doi:10.3390/e14101939
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy
Article

Programming Unconventional Computers: Dynamics,
Development, Self-Reference
Susan Stepney

York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK;
E-Mail: susan.stepney@york.ac.uk

Received: 23 August 2012; in revised form: 8 October 2012 / Accepted: 9 October 2012 /
Published: 17 October 2012

Abstract: Classical computing has well-established formalisms for specifying, refining,
composing, proving, and otherwise reasoning about computations. These formalisms have
matured over the past 70 years or so. Unconventional Computing includes the use of
novel kinds of substrates–from black holes and quantum effects, through to chemicals,
biomolecules, even slime moulds–to perform computations that do not conform to the
classical model. Although many of these unconventional substrates can be coerced
into performing classical computation, this is not how they “naturally” compute. Our
ability to exploit unconventional computing is partly hampered by a lack of corresponding
programming formalisms: we need models for building, composing, and reasoning about
programs that execute in these substrates. What might, say, a slime mould programming
language look like? Here I outline some of the issues and properties of these unconventional
substrates that need to be addressed to find “natural” approaches to programming them.
Important concepts include embodied real values, processes and dynamical systems,
generative systems and their meta-dynamics, and embodied self-reference.
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1. Introduction

Let us look at the genesis of conventional computing. Turing formalised the behaviour of real
world “computers” (the name for human clerks carrying out calculations [1]) following an “effective
procedure” (a finite sequence of discrete, well-defined rules). This formalisation led to the conventional
abstract computational model: the Turing Machine (TM) [2].
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Turning to the real world, there are many natural systems we might want to describe, understand,
exploit or emulate computationally: termites building complex nests following (relatively) simple rules;
slime moulds growing in the topology of road networks [3]; chemical oscillations set up to perform
boolean operations [4,5]. Questions that arise from a TM-model mindset are: How can we interpret these
behaviours as conventional computations? What are the relevant abstractions to build a computational
model? How do they fit within the discrete TM-model?

At this stage in the development of unconventional (or non-Turing) computation, I think that these
are the wrong questions to ask. Instead, we should first investigate these systems to discover what
computationally-interesting processes they perform “naturally”: we should be physical process-driven
rather than abstract model-driven [6,7]. Trying too hard to build conventional models obscures the
potential power of these systems. I would not trust a slime mould computer to spell-check my writing,
or calculate my tax return; its strengths lie elsewhere. Certain forms of computers, for example
analogue devices, can perform their computations much more “naturally” (for example, much more
power-efficiently [8]) than a digital version. So let us start from this point, discover what kinds of
computation are natural to a range of systems, and then abstract our new unconventional computational
models from there.

Furthermore, we should not worry that our current unconventional computers are ridiculously
primitive compared to, say, our smartphones. Granted, some unconventional devices may have scaling
issues (potentially due to their unary data encodings). Granted, we might have to sacrifice some benefits
of classical computation to gain other benefits of unconventional computation; for example, Conrad [9]
argues that “a computing system cannot at the same time have high programmability, high computational
efficiency, and high evolutionary adaptability”. But it is early days yet. Classical computation has
seventy years of an exponentially growing lead on us.

2. Classical History and Unconventional Futures

In a sense, classical Turing-model computation got things backwards: the computational theory
was developed before most hardware and applications (Figure 1): the hardware had to be coerced
into following the dictates of the theory, to compute what the theory demanded, rather than the
theory following from what the hardware could compute naturally. The applications were then doubly
constrained: by the theoretical model, and by the “unnatural” physical implementation of that model.
Transistors in their “natural” state (if anything as highly engineered as a transistor can be considered
to have a natural state) are analogue amplifiers; they are coerced to act as digital switches by being
put in a saturated state. Sloman [10] argues that the TM model, by focusing on computation as a
formal mathematical construct, ignores the important “class of information-processing machines that can
interact causally with other physical systems”, the class “important for AI (and philosophy of mind)”.
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Figure 1. Classical computation: the real world inspiration of human computers led to an
abstract model, the Turing Machine. This was realised in hardware and exploited in software,
and developed for 70 years, into a form unrecognisable to its early developers.
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Unconventional computing seems to be taking a different route: the real world inspiration is leading
to novel hardware (in some cases, wetware) devices, rather than directly to an abstract computational
model. This “hardware first” approach is somewhat analogous to the emergence of life, where the
physical material must exist before it could evolve to perform information processing. Our job as
computer scientists is to work out good underlying computational models and appropriate languages
that naturally fit with the hardware, and also to engineer more efficient and flexible hardware (Figure 2).

Figure 2. Unconventional computation: the real world inspiration of biological and other
systems is leading to novel hardware. This must be abstracted into a computation model, and
augmented with appropriate programming languages and tools. Seventy years from now, the
technology will be unrecognisable from today’s ideas.
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Getting an appropriate abstract model is important. The wrong model (Figure 3), an unnatural model,
will mean that our ability to exploit the unconventional substrates will be compromised.
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Figure 3. The wrong model: screenshot partway through a game of Not Tetris
(http://stabyourself.net/nottetris2, accessed on 6 August 2012).

4http://sites.google.com/site/nottetris/

3. Computational Models as Abstractions of Physics

Whereas classical computation may be charaterised as “theory (mathematics) first”, unconventional
computation might be thought of as “hardware (physics) first”. Our unconventional computational
models must respect, and be constrained by, the laws of physics. These constraints can change as our
understanding of physical laws changes: for example, accelerating Turing Machines [11] are legal under
Newtonian laws (which allow unbounded speeds), disallowed by special relativity (where the speed of
light is an upper bound), and allowed again by general relativity (where the observer and computer can
experience different proper times).

We know that the classical model of computation captures too little of reality: the physical model
implicitly underlying the TM formalises an essentially Newtonian view of physics. Quantum physics
allows more: it allows multiple symbols to be superposed in a single tape position [12] and entangled
between positions. General relativity allows more: it allows the machine’s frame and the observer’s
frame to experience different proper times; in particular a Malament–Hogarth spacetime allows an
observer to experience finite proper time whilst the machine that they are observing experiences infinite
proper time [13]. These two branches of physics are themselves a century old, and ununified. What of
quantum gravity computers, or string-theoretic computers? The Turing model is unphysical.

However, some unconventional computational models capture too much: like TMs they are
unphysical, but in a different way. Analogue computers usually use continuous physical quantities
as analogues of the value being computed. These continuous physical quantities are modelled as real
numbers. A single real number can encode an infinite amount of information in its countably infinite
number of digits. But this does not mean that the physical quantity that it models can similarly encode
an infinite amount of information. This has nothing to do with quantum limits to continuity. Well before
such limits, even the most accurately measured fundamental physical constants are not measured to
more than 10 or 12 decimal places [14]. The most accurately measured physical quantity, the rubidium
hyperfine frequency, is known to an accuracy of 2.5×10−15 [15]. The value of the mathematical constant
π to 39 digits can give the volume of the observable universe to the nearest atom [16]. To measure π
to more precision than this, we would need a measuring device bigger than the size of the universe.
Despite this, π has been calculated to 10 trillion decimal places [17]: an impressive computation, but
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a completely physically unmeasurable value. Computational models need to be based on real-world
physics: not only the laws, but also the practical constraints.

What models of computation are suitable for natural physical computers? This includes not only
exotic physics, but also biological systems. We need good abstractions, ones that do not impose
unphysical requirements, and furthermore that naturally fit the implementations. So, for example, if
a system is naturally noisy and non-deterministic, it is better to find a model that can exploit this, rather
than engineer the substrate away from its natural state to coerce it into one that better matches some
unnatural (for this substrate) deterministic model.

4. Inspired by Biological Modelling

Let us look at how biology is being conceptualised and modelled, in order to get some pointers to
requirements for computational models of biological computers. We start with a pair of quotations,
about organism-centric biology.

Organic life exists only so far as it evolves in time. It is not a thing but a process—a
never-resting continuous stream of events — Cassirer [18]

It must be a biology that asserts the primacy of processes over events, of relationships
over entities, and of development over structure. — Ingold [19]

A process-centric description is arguably also needed in the context of emergence [20]. To summarise
these ideas: “Life is a verb, not a noun.” [21].

So, the emphasis from these authors is of process, dynamics, development (which words, despite
themselves being nouns, describe verb-like properties), rather than of entities, states, events. Let us look
at these three features, how well they are captured by current formalisms, and what more is needed.

4.1. Process

Process might seem like an easy starting point, as we have process algebras and process calculi
galore [22–29] in computer science. These describe the interactions between concurrently-executing
processes, and (one of) the semantics of a process is its trace: a (“never-resting”) stream of events.
There is a move in this direction as process algebras have been used, for example, to model aspects of
systems biology [30,31], and to model slime mould computation [32].

Process algebras, with their non-terminating processes, can have their semantics modelled in
non-well-founded (NWF) set theory [33,34]. NWF set theory replaces the usual axiom of foundation
with the anti-foundation axiom (AFA); many of the well-known operations of set theory (such as
union, intersection, membership) carry across. The crucial difference is that, unlike in the better-known
well-founded set theory, in NWF set theory we can have perfectly well-defined systems with infinite
chains of membership that do not bottom-out, . . . ∈ X3 ∈ X2 ∈ X1 ∈ X0, and cycles of membership,
such as X ∈ Y ∈ X and even X ∈ X . So, for example, the NWF set with (valid) circular definition
C = {t, C} “unfolds” to C = {t, {t, {t, . . .}}}.

Using NWF set theory gives a very different view of the world. With well-founded sets, we can
start at the bottom (that is what the axiom of foundation requires to exist), with the relevant “atoms”, and



Entropy 2012, 14 1944

construct sets from these atoms, then bigger sets from these sets, inductively. This seems like the natural,
maybe the only, way to construct things. But non-well-foundedness is not like this. There are perfectly
good NWF sets that just cannot be built this way: there are sets with no “bottom” or “beginning”: it
can be “turtles all the way down” [35]. NWF set theory also allows sets that are intrinsically circular,
or self-referential. It might well be true that “the axiom of foundation has played almost no role in
mathematics outside of set theory itself” [36], but set theory has had an enormous impact on the way
many scientists model the world. Might it be that the whole paradigm of reductionism relies on the
mathematically unnecessary axiom of foundation? Process algebras, with their NWF basis, might well
offer a new view on how things can be constructed.

But it is not all good news. Well-founded set theory and mathematical induction is taught to school
children (well, it was in my day, at least); NWF set theory, coalgebra, and coinduction are currently
found only in quite densely-mathematical textbooks and papers. We need a Coalgebra for Dummies.
One of the most accessible introductions currently available is Bart Jacobs’ “two-thirds of a book in
preparation” [37].

More importantly for programming unconventional computers, most process algebras cannot exploit
endogenous novelty. Process and communication channel types are predefined; no new kinds of
processes or channels can emerge and then be exploited from within the formal system. This ability
may require a reflective [38] process algebra (one that can represent, reason about, and act on aspects of
itself). Reflective self-modification may be a prerequisite for describing any high-level system displaying
open-ended novelty [39,40]. For example, PiLar [41,42] is a reflective process-algebraic architecture
description language, developed to define software architectures in terms of patterns of change; reflection
allows it to change the patterns of change. The mathematical underpinnings need to incorporate reflective
processes; NWF set theory, with its allowance of circular definitions, is suitable for modelling reflective
systems that can model themselves.

4.2. Dynamics

For a formalism underpinning dynamics, we could consider dynamical systems theory [43–45]. This
is a very general formalism: a dynamical system is defined by its state space, and a rule determining
its motion through that state space. In a continuous physical dynamical system, that rule is given
by the relevant physical laws. Classical computation can be described in discrete dynamical systems
terms [46], where the relevant rule is defined by the computer program. Hence it seems possible
that a dynamical systems approach could provide a route to an unconventional computational view
of physically embodied systems exploiting the natural dynamics of their material substrates (such as
exhibited by Pask’s ear [47,48], Thompson’s FPGA tone discriminator [49], and Harding’s in materio
computation [50]).

Dynamical systems can be understood at a generic level in terms of the structure of their state
space: their attractors, trajectories, parameterised bifurcations, and the like [43–45]. Trajectories may
correspond to computations and attractors may correspond to computational results [46]; new attractors
arising from bifurcations may correspond to emergent properties [20,51].
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A dynamical systems view allows us to unify the concepts of process and particle (of verb and noun).
Everything is process (motion on a trajectory, from transient behaviour to motion on an attractor), but
if viewed on a long enough timescale, its motion on an attractor blurs into a particle. “An attractor
functions as a symbol when it is observed . . . by a slow observer” [52]. On this longer timescale the
detailed motion is lost, and a stable pattern emerges as an entity in its own right. This entity can then
have a dynamics in a state space of its own, and so on, allowing multiple levels of emergence.

However, the mathematical underpinnings support none of these exciting and intuitive descriptions.
Classical dynamical systems theory (which pertains to nonlinear differential and difference equations)
deals with systems in a static, pre-defined state space.

The closest the state space itself comes to being dynamic is by being parameterised, where a change
in the parameter value can lead to a change in the attractor structure, including bifurcations. Here
the parameter links a family of dynamical systems. If the parameter can be linked to a feature of the
computational system, then it can be used to control the shape of the dynamics.

Ideally, the control of the parameter should be internal to the system, so that the computation can have
some control over its own dynamics. Current dynamical systems theory does not have this reflective
component: the parameter is external to the system. A full computational dynamical systems theory
would need to include meta-dynamics, the dynamics of the state space change. Currently meta-dynamics
is handled in an ad hoc fashion, by separating it out into a slower timescale change [53,54].

4.3. Development

The requirement for (the state space of) systems to “grow” is addressed biologically as the study of
development: the growth from egg or seed to mature organism. Death is also a fundamental part of this
process; certain structures die off in order to produce the mature patterns (for example: during neural
development [55]; removing webbing between fingers and toes [56]). This process is referred to in
biology as “programmed cell death”. Programmed death can be thought of as a kind of non-conservative
extension.

State space growth happens naturally in most classical programming languages: for example,
statements such as malloc(n) or new Obj(p) allocate new memory for the computation to use, thereby
increasing the dimensionality of the computational state space. Death happens when the memory is later
freed. However, these everyday programming actions are rarely cast in explicit developmental terms.
One notable exception is Fontana’s λ-calculus-based “algorithmic chemistry” [57,58].

Mathematically, such dynamic changing of the state space itself is less common. For example, a set
of coupled differential equations might be used to model multiple reacting chemical species, with the
rate of change of each species being modelled by its own equation, and dependent on the concentrations
of the other species. The state space is given by the individual species and their concentrations, one
dimension per species. However, there is no way within the system for new equations to be added to
cater for new species that may develop; there is no way for the system to change its own state space.
Any such addition has to be done from outside the system of equations. For example, a metadynamics
approach can be used whereby a graph is overlaid on the system of equations, controlling which ones are
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active at any time [59]; this approach, however, still requires prior knowledge of which equations will be
needed.

One example of a formal logical system that can be grown (non-conservatively) is Leśniewski’s
inscriptional logic [60], although again, this growth must be performed outside the system itself.

Explicit development is captured by generative grammars such as L-systems [61], where symbol
growth rules are iteratively applied to all the symbols of a string in parallel, and by rewriting systems
such as P-systems [62] and other membrane computing systems. These discrete systems can be cast
as special cases of “dynamical systems with dynamical structure” within the MGS language [63–65],
based on local transformations of topological collections. There are further models of computational
morphogenesis, for example [66–69].

These formalisms capture mainly the growth of discrete state spaces. There is still the interesting
question of growing continuous state spaces: how does a new continuous state space dimension appear
in continuous time? How does a hybrid system containing both discrete and continuous state space
dimensions grow?

If we are thinking of systems that can exhibit perpetual novelty and emergence, then we also need
a system where the growth rules can grow. The growing state space (new dimensions, new kinds of
dimensions) should open up new possibilities of behaviour. One way to do this is to embed the rules
into the space itself, so that as the space grows, the rules governing how the space grows can themselves
grow. Such an approach can be used to program self-replicating spaces [70]. Self-Modifying Cartesian
Genetic Programming (SMCGP) [71,72] is an evolutionary algorithm that includes a self-modifying
developmental process: the digital genome encodes a phenotype that is a graph program; some of the
graph program operations can be instructions that change the graph structure, including changing the
self-modification itself.

In such cases of growth, the computation is not a trajectory though a static state space; it is the
meta-trajectory of the growing space itself.

4.4. Self-reference

Although self-reference is not one of the features identified from the biological modelling inspiration
above, it has come up in the discussions around each individual feature, and is a crucial aspect of classical
computation and biological self-reproduction.

The biologist Robert Rosen claims that there is a sense in which self-definition is an essential feature
of life that cannot be replicated in a computer [73]. He defines organisms to be “closed to efficient
causation”: Aristotle’s “efficient cause” is the cause that brings something about; life is self-causing,
self-defining, self-building, self-maintaining, autopoietic [74–77]. Rosen claims that “mechanisms”,
including computer programs (and hence simulations of life), cannot be so closed, because they require
something outside the system to define them: they have an arbitrary non-grounded semantics. That
is, there is an arbitrary separation of the semantics of a program (a virtual machine) and of its
implementation (the physical machine); life however has only the one, physical, semantics.

However, it is not as straightforward as that. Organic life also has a degree of arbitrariness in its
semantics. As Danchin points out [76], there is a level of indirection in the way organisms represent their
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functionality: the mapping from DNA codons to the amino acids they code for is essentially arbitrary.
Additionally, there is the observation that emergent properties (such as life itself) can be relatively
insensitive to the details of the substrate [78], suggesting the possibility of a certain arbitrariness in
the allowed mappings from physical substrate to emergent process. So life too may be embodied in a
virtual machine with arbitrary semantics.

What is common to biological and computational self-reference is that the “data” and “program” are
the “same kind of stuff”, so that programs can modify data that can be interpreted as new programs. In
biology this stuff comprises chemicals: a chemical may be passive data (uninterpreted DNA that codes
for certain proteins); it may be an executing “program” (some active molecular machinery, possibly
manipulating DNA).

So self-referential, self-modifying code is crucial in biology. It is achievable in classical computation
through reflective interpreted programs. It is plausible that this capability is also crucial for
unconventional computation executing on the natural embodied dynamics of physical substrates.
Embodied developmental computation could have software processes that in part control the growth
of new hardware, which in turn supports novel software capabilities [79].

5. Conclusions

Unconventional computers, particularly those embodied in biological-like substrates, may require
novel programming paradigms. By looking to biology, we see that these paradigms should include
as first class properties the concepts of: process; dynamics and meta-dynamics; development; and
self-reference.

The challenges to the unconventional computing research community are to develop such paradigms
in a manner that supports powerful models of computation, and to engineer varieties of programmable
hardware that implement such models “naturally”. The noted formalisms merely suggest appropriate
starting points; much yet remains to be done. This should not be surprising: classical computation has
matured tremendously over the last seventy years, while unconventional computing is still in its infancy.
If over the next seventy years unconventional computing can make even a fraction of the advances
that classical computing has made in that time, that new world of computation will be unrecognisably
different from today.
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41. Cuesta, C.; de la Fuente, P.; Barrio-Solórzano, M.; Beato, E. Coordination in a Reflective
Architecture Description Language. In Coordination Models and Languages; Arbab, F., Talcott, C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2315, pp. 479–486.

42. Cuesta, C.; Romay, M.; de la Fuente, P.; Barrio-Solórzano, M. Reflection-Based, Aspect-Oriented
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