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Abstract. Software configurable analogue arrays offer an intriguing plat-
form for automated design by evolutionary algorithms. Like previous
evolvable hardware experiments, these platforms are subject to noise dur-
ing physical interaction with their environment. We report preliminary
results of an evolutionary system that uses concepts from gene expres-
sion to both discover and decide when to deploy analogue circuits. The
output of a circuit is used to trigger its reconfiguration to meet chang-
ing conditions. We examine the issues of noise during our evolutionary
runs, show how this was overcome and illustrate our system with a sim-
ple proof-of-concept task that shows how the same mechanism of control
works for progressive developmental stages (canalisation) or adaptable
control (homoeostasis).

1 Background and motivation

We present a system for the automated discovery and deployment of software
configured analogue circuits. High level circuit components (for example, ana-
logue filters) are modelled as ‘genes’. Genes are ‘expressed’ in response to circuit
output; as conditions change new genes are expressed, triggering the deployment
of a new circuit. Gene characteristics are defined in a genome representation dis-
covered using evolutionary algorithms.

Evolutionary computation has a proven record as a technique for search-
based optimisation [1–3]. The method has also been used to automate design
discovery [4, 5]. To date most work in the field focuses on the performance of
evolutionary search. Fewer researchers are questioning the precepts on which
stochastic, population-based algorithms are founded, whether their evolutionary
model corresponds to modern biological thinking [6] or the role of developmental
processes in evolution [7]. The latter is particularly important with regard to how
gene expression explores the functional search space [8].

Thompson’s ground-breaking work in the mid-1990s established that search
algorithms could be used to discover novel hardware configurations that lie out-
side conventional engineering knowledge [9]. Thompson concentrated on inno-
vation rather than rapid discovery, and was careful to design his experiments so
that the search could exploit physical characteristics not normally incorporated
into an engineer’s design [10]. Following on from this, further examples using
evolutionary algorithms in software configured physical media have come from
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Miller and Harding [11, 12], and in both real and simulated physical environ-
ments from Stoica and others [13].

The problem of analogue circuit design has been met using evolutionary com-
putation by John Koza and his colleagues [14]. In Koza’s work, the evolutionary
design process and fitness evaluations are run as software simulations. How-
ever, physical simulation by software imposes limits on what search algorithms
can find. If one wants to expose the algorithms to resources outside conven-
tional design knowledge, it is necessary to allow software to interact with the
richer physics provided by real hardware. An alternative example using ana-
logue circuit simulation and evolutionary computation comes from Mattiussi
and Floreano [15, 16]. They propose a generic model to represent genetic reg-
ulatory networks, metabolic networks, neural networks and analogue electronic
circuits as ‘analogue networks’. The representation and variable strength of links
between components are found using evolutionary algorithms, and like Koza’s
discoveries, the network designs are claimed to be human-competitive [16].

Most representations in evolutionary computation evolve a single solution
tested against a static problem, often with an almost one-to-one correspondence
between the genotype and phenotype. This rigid translation contrasts with one of
the most remarkable qualities of natural organisms: the ability of their encoding
to permit adaptability in different conditions, particularly during developmental
stages, yet retain a large degree of homoeostasis or canalisation. The eventual
form of a natural organism is taken from a multitude of potential ‘solutions’
within its DNA, each of which differs and only one of which is expressed. We have
tried to increase the distance between digital genotypes and physical, decoded
phenotypes. In our architecture, the indirect translation gives genes different
roles according to their context of expression. The model of gene expression
drew inspiration from the descriptions of evolutionary developmental processes
by Carroll, Wolpert and others [8, 17]. Details of the model and how it maps to
this biology can be found in [18], with more details on the hardware in [19].

2 Platform and System description

Switched-capacitor based arrays allow the implementation of software config-
urable analogue circuits. Sometimes called Field Programmable Analogue Arrays
(FPAA),1 these platforms implement an analogue circuit by downloading a con-
figuration bitstream onto an integrated circuit (IC). A typical FPAA application
can be thought of as a set of analogue circuits, with a hosted application control-
ling when to reconfigure to a new circuit. Circuits on the Anadigm AN221E04
FPAA are composed of Configurable Analogue Modules (CAMs) that can con-
tain filters, multipliers, integrators, differentiators, etc. or even signal or power
sources. They are configured by setting options, floating point parameters and
clock speeds. An application hosted on a PC is able use the Anadigm API to
both create circuits and control the reconfiguration process.
1 Alternative names for these ICs include Field Programmable Transistor Arrays

(FPTA) or Dynamically Programmable Analogue Signal Processors (dpASP).
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Fig. 1. System overview: analogue outputs are converted into digital binding signa-
tures. Genes with binding sites that match the binding signature are expressed in the
next circuit reconfiguration.

Our genome circuit specifications are represented using an adapted form of
Cartesian Genetic Programming (CGP) [20] in a 4+1 evolutionary scheme. The
genotype in CGP is a list of integers that encode the function and connection of
each node in a directed graph. Nodes correspond to genes in our genome. Each
gene encodes a CAM ID, its parameters, connections to other CAMs and its
binding site. The binding site for each gene is a string representing some com-
bination of the 4 bases (ACGT) in DNA. Reconfiguration is triggered by circuit
output changing and generating a new ‘binding signature’, which is matched
against gene binding sites in the genome. A gene that matches is expressed.

Due to the risk of exceeding the on-chip resources if all genes are expressed,
we limit each genome to 3 genes giving 7 possible circuits (plus the ‘empty’
circuit which is ignored). In our experiments, the number of possible circuits is
more than twice the number that can be deployed, ensuring there a degree of
redundancy in the genome. As the wiring specification of the full genome does not
match the wiring of partially expressed subsets of genes, the decoding process
gives highly context dependent results: being expressed does not guarantee a
gene then plays a functional part in a circuit, as it may have lost input or
output connections depending on which other genes were also expressed [19].

The binding process provides feedback from the functional domain to the ge-
nome. It converts the circuit’s analogue output into a binding signature by taking
a wavelet transform of the output, normalising the coefficients and thresholding
to get a binary valued matrix, with 4 rows corresponding to the 4 DNA bases,
and a task dependent number of columns. More than one value in a column
represents a ‘wildcard’ position that can match several bases, e.g. A{AC}GT is
a signature of length 4 with 2 wildcards in position 2. If a column has no values
above the threshold it is ignored. The grid is read column by column to produce
a binding signature of fixed bases and wildcards which is continuously matched
against the binding sites (see Fig. 1). As many positions are read as required to
match the binding site lengths.
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3 Task description

The prototype was set a task with two primary objectives a) to evolve reliable
reconfiguration b) to configure the IC in stages according to different fitness
criteria. To meet these objectives, it was decided to input a series of frequencies
(1kHz, 5kHz and 10kHz) in steps of fixed duration . The fitness criteria were
to minimise power output from the chip on the 1kHz and 10kHz steps, and
maximise power output from the 5kHz step.

Each phenotype starts against the output of a ‘bare wire’ (i.e. a straight
connection between input and output), so that for the population to move to
higher fitness a reconfiguration must take place. A frequency step is input for
5 seconds to allow the system to settle, after which the wavelet transform is
converted to a binding signature and checked against each gene binding site.
Each match is added to the list of genes that will be expressed to make up the
next circuit. Reconfiguration takes place while input continues for a further 5
seconds, allowing the system to settle again. Finally, the Fourier transform and
power reading for that circuit is taken and converted into a fitness score. The
input is then changed to the next frequency step and the process repeated, or a
new test is started.

The fitness scores are based on a formula that moves the selection process in
the direction of circuits that maximise power in the middle frequency band:

Fitness = (B + R)− (A + C) (1)

where B, A and C are the power readings at mid, lower and upper frequen-
cies respectively. R is the reconfiguration bonus. As mentioned previously, the
phenotype must initially respond to the output of a bare wire that passes the
input signal through unaltered (except for a slight reduction in voltage). If no
reconfiguration occurs, the power readings return negative fitness values. Due to
noise in the system and a result of elitism in a 4+1 evolutionary scheme, pheno-
types that do nothing (i.e. fail to reconfigure) can get selected above those that
reconfigure badly if power readings are used exclusively as the basis of selection.
As this imposes an unacceptable delay for the search process to ‘get started’, we
penalise any phenotype that fails to reconfigure from the initial setting. Con-
versely phenotypes that reconfigure — even to a bad circuit — have their fitness
scores augmented by a small bonus (usually less than 10% of final fitness score).
On runs for random sequence frequency steps (see §6), more reconfigurations
are required so bonuses are accordingly reduced.

4 Preliminary Runs

4.1 Noise

There are two principal areas for noise to affect testing phenotypes. The first is
during wavelet transform, where wavelet coefficients measure similarity of the
wavelet to a signal as it is time shifted at different scales. Part of our binding
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Fig. 2. The circuits deployed by an unreliable champion phenotype. Left circuit (Hold-
VoltageControlled) was downloaded at 1kHz, the circuit on the right (with SumFilter
added) was downloaded at 5kHz and 10kHz.

process converts the wavelet coefficients into a four-row grid of binary values
determined by a threshold. The more noise present in a signal, particularly a very
weak signal, the more likely it will have coefficients scaled over the threshold.
This translates into columns with more than one value — giving ‘wildcards’ for
that binding position — meaning that more genes will be expressed as a result.

During evolutionary runs, no attempt is made to ensure gene expressions
make valid circuits and it is possible that circuits may be broken (no output)
or the signal output may be severely reduced or otherwise made noisy. In these
cases, as coefficients are scaled, the noise introduced into the binding process
results in many wildcards being produced for all positions. An unexpected ef-
fect of this is that a particular circuit can be downloaded by a ‘lucky’ binding
sequence (i.e. one brought about by random noise due to a previous stage’s bad
circuit). The new circuit may get a high fitness score. However, the binding that
caused the good circuit to download might never be repeated. Elitism results
in the evolutionary process being ‘conned’ into keeping and mutating the poor
solution for many generations. The mutations never make successive phenotypes
improve above the lucky fitness score of the original phenotype, as the binding
that allowed the good circuit to be downloaded occurred by chance, leaving the
evolutionary process stranded on a false peak of high fitness.

A second source of noise in the system comes from the Fourier transforms
at each frequency step. These readings are susceptible to fluctuations due to
variations in heat and interference from surrounding electrical and computer
appliances. Power readings of the same circuit configuration will therefore always
vary from one test to another. These fluctuations are small but can vary by as
much as 40%, although the figure is generally closer to 10% depending on the
CAMs involved.

Aside from these examples, a more serious source of fluctuations was noticed
after the first week of preliminary runs. Despite the degree of expected noise,



6

some champion phenotypes would not reproduce anything close to the scores
they achieved during the evolutionary run. For example, a phenotype that had
scored 4130 during one run was re-tested five times at the end of the run. It scored
successively -1067, -1036, 300, 4096, -1993. On closer inspection, it was noticed
that despite the huge variation in fitness scores, the phenotype was reconfigur-
ing using the same circuits at each frequency step. Two circuits were used (see
Fig. 2) by the phenotype. The tests were repeated with the circuits loaded sepa-
rately to observe their behaviour at each step. Neither circuit produced the high
power rating in any of the frequency steps. In fact the circuits seemed inert and
produced no output at all. Each of the circuits was then downloaded while input
signals were being put through the chip. At first nothing happened, but then at
random the switch in one circuit latched producing a high power output. Once
downloaded the circuit reversed the switch at high frequency so that no output
signal was produced at that frequency and no reconfiguration was required to
produce a high fitness score. The reason for this behaviour lies in the fact that
CAMs such as those shown in Fig. 2 exhibit hysteresis. Certain CAM behaviour
depends on the input to a comparator (GainSwitch, GainPolarity, etc.). If the
two inputs of the comparator are connected together then even small amounts
of noise are going to lead to the CAM behaviour ‘flipping’.2

Rather than exclude such CAMs from the pool of ‘primitives’ that evolution
could select from, we decided to test each phenotype 5 times, taking the median
result for our fitness scores. This strategy, although increasing the length of
each run fivefold, had the effect of reducing the worst variability due to noise or
unexpected CAM behaviour such as hysteresis. The results can be seen in Fig 3,
where the heavy lines are the champion phenotype scores, while the light lines
are the best of a generation. Runs that tested each phenotype once show best
of generation scores varying considerably from the current champion. Taking
the median of 5 tests gives best of generation scores much closer to the current
champion, and produces final solutions that seem more stable with respect to
the forms of noise mentioned.

4.2 Evolutionary parameters

Tests were performed over 75 generations using a 4+1 evolutionary scheme.
In this scheme, the best of previous generations is cloned, mutated and the
selection process repeated. In our scheme, it was necessary to introduce variable
mutation. Variable mutation is based on the numbers in each generation, so that
the first clone receives no mutations per gene, the second one mutation per gene,
the third two mutations and so on. This gave a maximum of 4 mutations per
gene — enough to move poor phenotypes some distance from their parents, but
also allow gradual mutations of good phenotypes. This can be verified from the
selection history, where early progress is often made by the most heavily mutated
phenotypes, but later stages rely on small improvements to good solutions.

2 Our thanks to Dave Lovell of Anadigm for this explanation.
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 Power Band Task, signature length = 2, median of 5 tests per phenotype
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Fig. 3. Five runs using a binding signature length of two: one test per phenotype (left)
and median of 5 tests per phenotype (right). The charts show current champion score
(bold lines) against the best of each generation. Taking the median results in more
stable phenotypes.

Initial tests tried up to 500 generations, but further improvement was rare
after 50 or 60 generations. This may be because the tests were too easy for the
phenotypes to solve, as it became clear that there were many ways of achieving
similar levels of high fitness. Another possibility is that relatively few mutations
were required to reach the higher levels of fitness once an initial solution had
been found.

In addition to reconfiguration bonuses, further ‘bootstrapping’ assistance was
provided by allowing genes to have ‘seeded’ binding sites. Thus for a bare wire
configuration, the binding signature produces a set of signatures that run through
the frequencies (if no reconfiguration occurs) from AA, C/G, to TT. Having
binding sites of length 2 gave a good chance of matches being found, but to
speed up the search we seeded initial generations with binding site bases known
for signatures with a bare wire configuration at the initial frequency step. For
example, the first generation in a step-up specialist environment might have all
binding sites seeded with A or C bases, as the bare wire output signature for
1kHz is generally AAAA (only first two positions used).

5 Experiment

As part of our interest in gene expression during developmental stages, we set
up a simple hypothesis to test not only if phenotypes could be adaptable, but
also whether having such adaptability incurs a fitness cost.

Hypothesis: phenotypes that evolve to cope an in unpredictable environment
perform less well than phenotypes that evolve as specialists when both phenotypes
are placed in a predictable environment.

To test this, the three frequency steps were considered developmental stages
during which different behaviour was required from the phenotype. In special-
ist environments the steps in frequency either increased or decreased, in non-
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Fig. 4. Results of specialists (left) and non-specialists (right) tested across all environ-
ments. Dark bars show phenotype scores in their own environment.

specialist environments all possible transitions occurred. In all environments the
fitness test remained the same: maximise power in the 5kHz band, minimise it
elsewhere. As a phenotype uses circuit output to trigger a reconfiguration, the
current configuration is crucial to how the phenotype configures the next step.
For example, a specialist phenotype may have configured to a high pass filter
with gain suitable for high fitness during a 5kHz stage. On stepping up to 10kHz,
this filter produces a binding signature that the phenotype can use to configure
to the next circuit. However, if the same step occurs as part of a sequence that
runs from 10kHz to 5kHz and back to 10kHz, the previously unknown step from
10kHz to 5kHz may cause the phenotype to configure the chip to another circuit.
The step from 5kHz to 10kHz now results in a different output signature and the
previously used genes for the good circuit no longer match. Specialists evolving
in predictable environments can therefore both profit and suffer from previously
encountered steps in a non-specialist environment. To counter this potential bias,
the non-specialist environment starts with a bare wire configuration at 5kHz and
tries to avoid known steps where possible.

6 Results

Each of the specialist and non-specialist phenotypes were evolved over 75 gen-
erations. The champion phenotype was then tested in environments it had not
evolved in. The tests used the average of 2 results (each the taking median of
5 scores, as during evolutionary runs). The results, shown in Fig. 4, show poor
capability for specialists in their ‘opposite’ specialist environment (where the
frequency steps are reversed) and in the non-specialist environment. The reason
seems largely the result of a strategy employed by phenotypes in the final stage
of specialist environments. Circuits that reconfigure to ‘broken’ last circuits (at
1kHz or 10kHz stages) help their fitness scores and have nothing to lose from re-
configuring to a circuit that no longer uses circuit input or one that produces no
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output. But the same phenotypes suffered badly if they needed to recover from
that stage in the non-specialist environment, and generally failed to reconfigure.

The runs for non-specialist phenotypes show a slightly reduced fitness in their
environment compared to specialists. This would seem to back the hypothesis
given in §5, however it should be borne in mind that reconfiguring to manage
seven frequency steps is more difficult than reconfiguring for three, and the added
difficulty may have led to lower fitnesses. This conclusion has some backing from
test results for non-specialists in specialist environments. In all cases, the non-
specialists performed well. Not as well as specialist phenotypes, but their scores
were higher than the scores they achieved in the environment they evolved in,
leading us to suspect that the specialist environments were easier. Examination
of the reconfiguration patterns show that the non-specialists were able to go back
and forth using the same good circuits in both forms of specialist environment,
demonstrating robust homoeostasis.

7 Conclusions and future work

Our system has demonstrated the potential of using a feedback mechanism as
a means of reconfiguring solutions specified by an evolved genome representa-
tion. The representation is capable of maintaining multiple solutions and a large
degree of redundancy. This redundancy has the potential to be expressed if con-
ditions change, something which could be valuable where evolution is carried
out in situ (see Stoica et al in [13]). The downsides to the technique are that
the total number of potential gene expressions quickly rises as genome length
increases. In such cases, it may be impossible to predict what solutions may be
expressed if the conditions used to trigger reconfiguration change unexpectedly.

Biological control through stages of development relies on gene expression
triggered by the context of transcription factors present in the nucleus of the
cell at that moment in time. Homoeostatic control relies on gene expression
controlled in a similar fashion, but with the option of reversibility. In our ex-
periment, we wanted to see if our system could devise mechanisms of control
of either type. The specialist phenotypes show in many cases the ‘blindness’ of
their future proofing after evolutionary runs have left them stranded up spe-
cialist peaks of perfection. Non-specialists cannot afford the luxury of such high
fitnesses, as it means they won’t remain adaptable in the face of unexpected
changes in the environment.

Our next plans are to take our system and investigate the effects of scaling
upwards. Long genomes, with many thousands of potential solutions, require
an equally wide set of reconfiguration triggers to allow phenotypes to explore
functional search spaces. We want to understand the role of developmental stages
in these large evolutionary searches, and by scaling up see whether our system
can evolve adaptability in more complex environments.
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