
Open-Endedness: Definitions and Shortcuts

Susan Stepney1 and Guillaume Beslon2

1 Department of Computer Science, and York Centre for Complex Systems Analysis,
University of York, YO10 5DD, UK

2 Université de Lyon, INSA-Lyon, INRIA Beagle, CNRS LIRIS UMR5205,
Villeurbanne, France

1 Introduction

The open-endedness of a system is often defined as the continual production of
novelty. Here we report on recent work by Banzhaf et al. [1] that pins down
this concept more rigorously. We define several types of novelty that a system
may exhibit, and classify these as variation, innovation, and emergence. We also
define an architecture suitable for building simulations of open-ended novelty-
generating systems.

2 A meta-model for open-ended systems

Our definition of open-endedness (OE) is relative to the model and meta-model
of the system under investigation. The concepts of “model” and “meta-model”
are used for building both scientific and engineering models of systems: Models
provide an abstract language for the relevant concepts. A scientific (descriptive)
model is used when observing and experimenting on a (natural or artificial) sys-
tem; An engineering (prescriptive) model (often a computational model) is used
to design and implement an artificial system. In the case of a computational
model, the model defines the concepts to be implemented in code. Meta-models
provide the analogous abstract language to define models, comprising the con-
cepts that can be used to build the model. For example, in an object-oriented
system, the meta-model would contain the concepts of ‘class’, ‘object’, ‘method’,
‘association’, and so on.

There are many possible models and meta-models for capturing and analysing
the behaviour of systems. These models and meta-models may be implicit or
explicit. Here we assume that we will implement and analyse agent-based (or
entity-based) systems. A suitable meta-model for such an analysis, which allows
us to capture intuitions about major transitions, contains the following concepts
(figure 1):

– Entity: an identifiable integrated whole within the model: a “thing” with
structure (organisation) and behaviour (activity, processing). An entity may
be an atomic entity, with no (modelled) internal structure, or a system
entity, composed of internal components.

2 Susan Stepney and Guillaume Beslon

Interac(on	

System	 En(ty	 Environment	 Level	

Local	
Environment	

External	
Environment	

Aggregate	
System	

System	
En(ty	

Atomic	
En(ty	

Level	 2	

Level	 1	

Level	 0	

0..* interacts Interacts 0..*

0..* 0..*
2..*

has
0..* 1

at

0..*

0..*

has

1..*

1
at

Fig. 1. Our meta-model, written in UML, defining the concepts to be used in any
model conforming to it. Boxes are classes from which objects in the model can be
instantiated. Links indicate associations between classes (associations being named
and valued), arrows indicate inheritance (“kind of”), diamonds indicate aggregation.
An Environment can be a Local Environment or External Environment. A System can
be an Aggregate System or a System Entity. An Entity can be a System Entity or
an Atomic Entity. A System has a Local Environment and two or more Entities. An
Entity exists at both a system Level and an information structure (model) Level. An
Atomic Entity exists at Level 0. Many Environments and Entities can be involved in
each Interaction.

– Environment: part of the domain of interest not modelled as explicit enti-
ties, for example: space, fields, flows.

– System: a local environment plus a collection of interacting entities, forming
some identifiable whole. A system may be an aggregate system, comprising
a collection of entities in a local environment but not considered to form an
entity in its own right; or a system entity, modelled as an entity at a higher
level than its component entities.

– Interaction: entities interact with each other and with their environment,
potentially forming systems

– Level: level-0 entities are atomic entities; level-N > 0 entities are system
entities that contain lower-level entities, including at least one level-(N−1)
entity.

This meta-model can be used to provide the concepts used in building specific
entity-based models of system.

Open-Endedness: Definitions and Shortcuts 3

3 Definitions

We define types of novelty and OE with respect to the system’s current model
and meta-model. Novelty in an observed system is classified as:

0. Variation: novelty within the model. Variation changes an instance of the
model, such as a change to the values of a variable that exists in the model,
without changing the model itself. Variation explores a pre-defined (mod-
elled) state space, producing new values of existing variables.

1. Innovation: novelty that changes the model. Innovation changes the model:
for example, adds a new type or relationship (that conforms to the meta-
model), or eliminating an existing one. Innovation changes the combinatorics
and the size/structure of the state space, thereby growing/shrinking the
possibilities of variation.

2. Emergence: novelty that changes the meta-model. Emergence changes the
meta-model: a change that adds a new meta-type or relationship, or possibly
eliminates an existing one. A change to our meta-model that adds a new level
is a major transition. Another change to our meta-model might include the
addition of the concept of process as a first-class thing.

An open-ended event is an event that results in innovation or emergence.
An open-ended system is a system with the ability to continually produce open-
ended events.

4 Implementation shortcuts

To study a system such as the ones captured by our meta-model, we need to be
able to simulate multi-level systems. We may need to introduce new components
in our simulation to simplify or accelerate the dynamics of the higher levels. We
call these new elements shortcuts, since they directly implement some prop-
erties of the higher level that, in an ideal simulation, would emerge from the
generative level-0 entities. Shortcuts are hard-coded design optimisations man-
ually introduced into the simulation. See figure 2.

Shortcuts provide optimisations by explicitly constraining structures and be-
haviours at their level, rather than requiring these constraints to emerge from
the system’s behaviour. Hence, specific shortcuts will enable or constrain certain
classes of open-endedness.

When designing the simulation of an open-ended system, one crucial design
step is then the identification and implementation of relevant shortcuts. These
will be research-dependent: they will depend on the specific question one wants
to answer with the simulation. Examples of shortcuts used (usually implicitly)
in simulations are:

– Individuality: entities at level N>0 are hard-coded rather than emergent.
– Replication: the explicit implementation of operators that replicate the

entities at level N external to the entities.

4 Susan Stepney and Guillaume Beslon

Observed,
program data

Hard-‐coded,	
program	 code	

Sets of rules:
A.  Generative rules compressing level 0
B.  Shortcuts (optimization rules compressing

parts of levels 1, 2…)

B

A

?

Level 1

Level 2

Level 3

Fig. 2. Simulation with shortcuts. Levels 0 is abstracted by the set of generative rules
encoded in “A”. Levels 1 and 2 are predefined by the simulation (parts of them are hard-
coded) but they include emergent parts that enable variation, differences or innovation.
Level 3 is fully emergent, not at all included in “B” (but may be anticipated by the
modelers when designing “A” and “B” since they want to observe 3). If level 3 is a
system made of entities of lower levels, then its emergence is a transition. If the level
3 entities are replicators, then emergence of level 3 is a major transition.

Open-Endedness: Definitions and Shortcuts 5

Engineering	 model	
specifying	 explicit	 code	

behaviours	

Scien9fic	 model	 of	
(emergent)	 code	

behaviours	

Executing code

Implement Observe

Run

Executable
code

Fig. 3. Two kinds of computational model. An engineering model is used to specify
the software to be implemented. A scientific model is derived from observations of the
execution of the software. These models can have different structures, even about the
same software.

– Fitness: replacement of the differential reproductive success emerging from
the difference between entities by an explicit computation of reproductive
success according to some target task.

5 Open-ended simulations

We have defined OE in terms of innovation and emergence: changes to models
and meta-models. In classical software simulations, a model is designed (say, in
UML) conforming to some meta-model (e.g. of object orientation, or agent-based
systems), and then implemented. The running code conforms to the model. That
model does not change as the system runs. Therefore, can such simulations ever
exhibit innovation or emergence? Can they be open-ended?

The short answer is that they exhibit innovation and emergence. The im-
plementation model is an engineering model. However, the running system can
be analysed with a scientific model, and this model can change. (See figure 3.)
Consider Conway’s Game of Life. The engineering model consists of dead/alive
cells, which interact with their neighbours. This model is (typically) fixed. How-
ever, the model used to analyse the running system can include concepts such as
blocks, and gliders, and other higher-level components. These higher levels are
emergent, according to our definition.

The longer answer, however, is that they probably cannot exhibit OE, i.e. the
continual production of open-ended events. The reason is that the code, con-
forming to the fixed model, cannot directly exploit the (scientifically modelled)
innovations and emergents. It may well be the case that changes to the scientific
(observational) model need to be fed back into changes to the engineering model.
Steps along the way include:

6 Susan Stepney and Guillaume Beslon

1. The emergent novelty is recognised outside the simulation, by analysing the
scientific model.

2. The emergent novelty is anticipated and recognised, using pre-coded recog-
nisers present in the code (hence in the engineering model), available to
report it once it appears.

3. The type of emergent novelty is anticipated and captured, using pre-coded
rules available to recognise it, and make it a component of the simulation
once it appears.

4. The emergent novelty is somehow emergently recognised by the simulator,
and new code is generated by the simulator to capture the recognition.

5. The emergent novelty is somehow emergently captured by the simulator:
once recognised, new shortcut is generated by the simulator to capture the
specific emergence.

How to realise the later steps remains an open research question. Until then,
simulations can use hard-coded shortcuts to overcome some of these issues.

6 Conclusion

We have defined open-endedness in terms of novelty, and identified three classes
of novelty in terms of models and meta-models. We have sketched a meta-model
for entity-based simulations, and a shortcut architecture for efficient implemen-
tation. We have outlined research requirements for fully open-ended simulations
that can incorporate model changes and meta-model changes automatically.

Acknowledgments

We acknowledge funding from the European Commission (FP7-ICT-2013.9.6
FET Proactive: Evolving Living Technologies) EvoEvo project (ICT-610427).
We are grateful to Wolfgang Banzhaf, René Doursat, and the rest of the team
behind [1], for their contributions to the ideas outlined in this abstract.

References

1. Wolfgang Banzhaf, Bert Baumgaertner, Guillaume Beslon, René Doursat, James A.
Foster, Barry McMullin, Vinicius Veloso de Melo, Thomas Miconi, Lee Spec-
tor, Susan Stepney, and Roger White. Defining and simulating open-ended nov-
elty: Requirements, guidelines, and challenges. Theory in Biosciences, 2016. doi:
10.1007/s12064-016-0229-7, 54pp.

