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1 Introduction

Our artefacts, from small devices to buildings and cities, are, or are becoming,
cyber-physical socio-technical systems, with tightly interwoven physical material
and computational parts. We build such systems, laboriously placing material
components, laboriously programming computational ones, laboriously integrat-
ing the parts, laboriously maintaining the resulting structures. In contrast, trees
grow, adapting their form and function to the environmental conditions, and
trees self-repair, using the same mechanisms as for growth. These properties al-
low trees to be gardened—planted, fed, pruned, trained—to meet human needs.

Many authors have expressed the desire to replace our current laborious
classical engineering with a more agile “self-*” approach, for example (Abel-
son, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman & Weiss,
2000; Doursat, Sayama & Michel, 2012; Lalanda, McCann & Diaconescu, 2013;
Würtz, 2008). Our vision here is of construction by directed growth, through gar-
dening macroscopic cyber-physical artefacts formed from a growing, integrated
combination of material and virtual subsystems. This is a novel approach to
designing, implementing, and maintaining the wealth of cyber-physical artefacts
that comprise our “built environment”, including: housing, schools, hospitals,
shops, and factories; transport, power, and communication infrastructures. The
objective is an unconventional embodied computational process (Stepney, Ras-
mussen & Amos, 2018) that will produce autonomous, adaptive, robust systems
in a controllable and cost-effective manner.

The overall objective of computational growth is to be able to “grow” macro-
scopic objects that comprise both physical and computational aspects (cyber-
physical systems, “smart” materials, etc). The related field of physical self-
assembly focuses on the material side: evolving or designing nano- and micro-
scale assemblers, or micro-scale artificial cells, that can manipulate and position
matter. The computational control of such devices (how and where to position
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the relevant material; how and when to divide and replicate) is typically assumed
to be a relatively trivial matter of programming. Little consideration is given to
scalability, adaptability, correctness, or other computer science issues relating to
the macro scale of cyber-physical artefacts. Here we consider the matters in the
context of an unconventional computational framework.

The structure of rest of the chapter is as follows. In §2 we introduce our
proposed Gro-CyPhy architecture for designing, growing, and gardening com-
plex cyber-physical systems. In §3 we outline how this process might work for
a substantial application: a skyscraper. In §4 we conclude with a discussion of
how the Gro-CyPhy approach changes our ideas about artefact construction.

2 Gro-CyPhy Architecture

2.1 Overview

There are several visions of assembling or growing macroscopic artefacts from the
bottom up. These include nanoscale robots manipulating material at the molec-
ular level (Drexler, 1986), which are an artificial analogue of termite and other
social insect construction processes, and synthetic protocells dividing and differ-
entiating (Armstrong, 2014; Solé, Munteanu, Rodriguez-Caso & Maćıa, 2007),
which are an artificial analogue of plant and animal growth processes.

Past work on exploiting growth metaphors has tended to concentrate on
either purely virtual or purely physical structures. Concentrating on only the
virtual loses the advantages of embodied physical reality (Stepney, 2007, 2008),
and allows issues of reality constraints, such as the cost of replication and other
such operations, to be neglected. Concentrating on only the physical ignores the
computational issues of programming the desired growth, and the necessity of
integrating physical and virtual subsystems.

Here we take the software perspective, and outline a computational growth
process that, given the necessary physical assembly devices (nanobots or pro-
tocells), can program these to construct macroscopic cyber-physical structures.
Additionally, the resulting growth process technology will be able to grow purely
virtual computational structures in virtual environments, such as those running
on computer networks and clouds.

In the current absence of such physical assembly devices, initial work is nec-
essarily in simulation. However, the aim is for a process where a given program
could either be embodied in a physical constructor that would provide the growth
mechanisms, or placed in a virtual “growth engine” that would simulate the
growth process. This dual approach also allows close integration and co-growth
of purely virtual software components such as software control systems.

The focus of our approach is on the design and growth of a complex arte-
fact with several interrelated subsystems. These subsystems must co-develop to
produce an integrated whole. Additionally, we want our cyber-physical artefacts
to be responsive and adaptive to their environments. For a growth approach, it
makes sense to consider parallels with plants rather than with animals: plants



Fig. 1. Overview of the conceptual Gro-CyPhy architecture in application (here,
a skyscraper): application-specific subsystem seed specifications are developed (wall,
windows, plumbing, etc); the Seed Factory develops the relevant seeds (subsystem
genomes); Growth Engines grow these seeds in the Computational Garden where the
application specific gardening takes place, delivering the cyber-physical system end
product. See following text for a full explanation of the various components and their
relationships.

are more “plastic” in their morphological responses. There is evidence that this
sort of plasticity can be exploited in artificial developmental systems (Kowaliw
& Banzhaf, 2009; Kowaliw, Grogono & Kharma, 2007a; Tufte & Haddow, 2007).
This plasticity admits a new possibility: deliberately and selectively applying
environmental stimuli to direct growth in a desired direction—or gardening the
growing artefact. To this end, we have designed the conceptual Gro-CyPhy
architecture, which comprises three major components (figure 1):

– a Seed Factory, a process for evolving and designing specific computational
seeds to meet cyber-physical system requirements

– a Growth Engine, providing the computational processes that grow physical
seeds in simulation, and grow virtual seeds into software

– a Computational Garden, where multiple seeds can be planted and grown in
concert, where virtual seeds can be interfaced with embodied growth pro-
cesses, and where a high-level gardener can shape the whole into complex
cyber-physical systems.

The gardening metaphor guiding this approach is an attempt at drastically
changing the way we build cyber-physical systems. Traditionally, such systems



are produced by a tightly coupled team of engineers following a life cycle that
separates phases of design, production and use. In contrast, plants develop con-
tinuously. As a “product”, a plant already has an innate ability to seamlessly
adapt to its environmental conditions (within reasonable limits). Additionally,
the shape and metabolism of a plant—its “purpose”—can be artificially adjusted
and tailored at various stages:

1. before the growth phase, by choosing an adequate genome: this genome is
typically programmed or designed by directed evolution (in the Seed Fac-
tory) which does not require an understanding of the lower-level processes
(implemented in the Growth Engine)

2. at the beginning of the growth phase, by configuring the initial conditions
of the seed, including the internal “metabolism” (growth preferences and
parameter values), and possibly by introducing a pre-configured collection
of initial components (a “seedling”)

3. during the growth phase, by taking into account the various actions of the
gardener and the interactions with the environment.

Even if the organism reaches a steady state, the growth phase never stops: there
is no distinction between the “building phase” of the artefact, the “functional
phase”, or the “repair and maintenance” phase.

2.2 Seed Factory

The Seed Factory develops the seeds (genomes, programs) that are to be im-
planted either in physical devices (nanobots, protocells) or in virtual Growth
Engines, to grow into the desired artefacts.

Seeds are tightly packed data structures that contain the necessary instruc-
tions (genome G, comprising the local rules of growth and self-assembly followed
by the components at the microscopic level) and initial conditions (internal state
S) needed to grow a given target structure (the organism phenotype P , being
the global structure and function of the emergent system at the macroscopic
level). By “tightly packed” we mean that the actual phenotypic shape adopted
after growth is not explicitly represented in the seed, but will unfold and reveal
itself as the seed develops (Stanley & Miikkulainen, 2003).

Several underlying technologies for defining and implementing seeds could
be supported simultaneously in a Gro-CyPhy system, and should be chosen as
appropriate for growing different kinds of structures. Those for physical technolo-
gies such as nanobots or protocells need to be tailored for the physical capabilities
of the embodying systems. Example of virtual technologies include

– morphogenetic engineering (ME) (Debbabi, Diaconescu & Lalanda, 2012; Di-
aconescu, Tomforde & Müller-Schloer, 2018; Doursat, 2008; Doursat, Sayama
& Michel, 2012; Sayama, 2009);

– developmental cellular automata (DCA) (Miller, 2004; Miller & Thomson,
2004) ;



Fig. 2. Conceptual overview of the search process in the Seed Factory: high-level phe-
notype (grown) specifications are input; the search process develops the relevant seeds
(subsystem genomes); it uses the Growth Engine to grow candidate seeds into pheno-
types, which it evaluates against the specification, and feeds the information back into
its search process.

– generative systems (GS) (Hornby & Pollack, 2001; Jacob, 1994, 1996; Mock,
1998; Monks, Oh & Dorsey, 2000; Shea & Smith, 2006);

– self-modifying Cartesian Genetic Programming (SMCGP) (Harding, Miller
& Banzhaf, 2010; Miller, 2011);

– spatial computing (SC) (DeHon, Giavitto & Gruau, 2007; Maignan & Spicher,
2015; Spicher & Giavitto, 2017; Spicher & Michel, 2005; Spicher, Michel &
Giavitto, 2010).

Several seed design methodologies are applicable to various types of computa-
tional cyber-physical structures. For example, simple to moderately sophisticated
structures could grow out of simple seeds produced by a composition of elemen-
tary “rules of thumb” for seed design (Beal, 2011; Werfel, 2010). More elaborate
organisms could be difficult to engineer “by hand” in this way, and would require
automatic search and optimisation methods to sweep a potentially vast space of
possible seeds, in search of good ones able to grow into the desired structures
(figure 2).

When “planted” in the computational garden and grown by the relevant
Growth Engine, seeds should reliably provide the intended functionality, in a
sufficiently flexible and fault-tolerant way such that a gardener can steer their
growth towards customised organisms. The resulting organisms should have the
features of genuinely adaptable components, which can be used at a higher level
in large-scale systems, such as a building’s physical architecture, technical net-
works, or distributed software.

Designing seeds deals with the mapping from a genome to a phenotype, G→
P . Although the growth of a given genotype into a fixed phenotype is already a



challenge in itself, a greater goal is to design genomes that can support adaptable
growth on multiple different levels, corresponding to the forms of interaction
present in the growing models.

One form of adaptability involves modification of the phenotype via envi-
ronmental influence; for an environment Ei we have (G,Ei) → Pi. That is, on
the ontogenetic timescale, and under a given genotype-phenotype mapping, the
development process should be sensitive to, and modifiable by, environmental
conditions in the garden (Měch & Prusinkiewicz, 1996; Prusinkiewicz, James &
Měch, 1994). External conditions or stimuli encountered by one individual during
its growth, whether of a mechanical or signalling type, should be able to influence
the outcome. This is the level of P , or rather the genotype-phenotype mapping,
for which natural analogies can be found more readily in the plant kingdom than
the animal kingdom. Plants and trees can be pruned, bent, arranged, sculpted,
etc., whether intentionally by a human gardener (bonsais, espaliers, topiaries) or
spontaneously when faced with adverse or favourable conditions (wind strength,
rocky obstacles, soil composition, light intensity). This is precisely what com-
putational gardeners expect to be doing. Therefore, the seeds that they “order”
from the Seed Factory’s species engineers should provide appropriately workable
material.

A second form of adaptability involves symbiosis, or the growing of differ-
ent phenotypes or individuals together. This includes both individuals from the
same “species”, but also individuals from different species as well (ecosystemic
interactions). We may denote this (Gi + Gj , E)→ (Pi, Pj).

To qualify as true “components”, grown organisms must also be literally
“symbiotic” with each other. Whether they belong to the same breed or species,
or to different species, their shape and physiology should offer certain anchor
points to be able to attach and function together into a larger architecture.
Think of interfaces and method-calling in software objects; prefabricated walls
and rooms in trailer homes; clusters and routing in networks. A complex cyber-
physical system such as a skyscraper or spaceship (Armstrong, 2017) needs sev-
eral different species of seeds to grow together: walls, plumbing, power, control
systems, etc.

2.3 Growth Engine

A Growth Engine provides the computational mechanisms to grow a seed. This
might be required to grow in simulation a seed intended for a physical device,
or to grow the seed of a virtual component such as a software control system.
There are several types of growth engine, corresponding to the several types of
seeds, based on different underlying physical technologies such as nanobots or
protocells, or on the virtual technologies such as ME, DCA, GS, SMCGP, SC
mentioned earlier. For example, a seed defined as a set of rewrite grammar rules
would require a growth engine that could implement the grammar rewriting
system (among other things, discussed below).

The Gro-CyPhy approach contains a conceptual switch from the notion of
“machine” to the notion of “organism”. An organism is an organised ensemble



of components. This ensemble is derived from one generic component, the seed
(or fertilised egg in animals), by duplication and differentiation, or alternatively
by the self-assembly of components produced elsewhere. Each component has
some autonomy, but it is also coupled and interacts with the other components
and with the environment. Contrary to the relations between parts of a machine,
the coupling between components of an organism is not the result of deliberate
design: two components interact because they are neighbours (e.g. in physical
space), not because these components have been pre-made to interact. This new
type of relationship, natural and spatially explicit, requires the components to
be generic: they are not designed for one specific and dedicated purpose but must
be able to react to a wide variety of interactions. Furthermore, a complete arte-
fact, classically several “machines”, is now seen as several “organisms”, grown
together as a cooperative ecosystem in a garden, from several seeds.

The Growth Engine executes a programmable and reproducible indirect map-
ping from seed genomes G to organism phenotypes P , in the context of an en-
vironment E. Calculating the transformation from a given G to a resulting P
corresponds to developing an organism. (Solving the inverse problem, of finding
an appropriate G (or family of Gs) given a desired P , is the challenge of search-
ing and designing useful species, which process occurs in the Seed Factory.)
The growing organism interacts with co-growing subsystems and environmental
influences, in the Computational Garden.

The generic component that grows, reacts, and interacts has two parts:

1. an internal state S that develops over time
2. a program (genome) G that specifies the internal dynamics and the results

of the potential interactions with the other components and with the envi-
ronment.

Program G is inherited from the (components in the) seed through its succes-
sive division steps, or during self-assembly. State S includes the physical charac-
teristics of the component (size, shape, position, etc.) as well as a set of internal
variables corresponding to some gene-regulatory and metabolic activity.

The development of the whole organism is implemented by the Growth En-
gine. This engine:

– takes care of the interactions between components and with the environment
– updates the state of each component of an organism in accordance with their

Genome
– manages the organism as a whole.

Several organisms co-develop in interaction in a garden, achieving an ecosys-
tem of developmental artefacts. Each organism is under the control of its own
Growth Engine instance, and these individual Growth Engines interact with each
other and with the wider environment.

2.4 Computational Garden

The computational garden (Miller, 2018) is where the various seeds are planted
and grow together, responding to their environment, into the resultant artefact.



The idea of several “plastic” organisms growing together and adapting to their
environment is one path to our gardening metaphor. Another path that also
leads us to the garden, springs from a disappointment with progress in software
development. Programming still essentially occurs at the individual statement
level: there is the necessity of managing an overwhelming amount of low-level
detail. Moreover, the resulting software is very brittle: the smallest change or
error can have a devastating effect. The garden provides us with a higher-level
metaphor: high-level guiding of a robust complex growing system, rather than
low-level engineering of the precise placement of every cell or particle.

The majority of the computational components in a garden will be growing
seeds; the remainder will be supplied by external software such as physics en-
gines (simulating the relevant internal and environmental physical conditions),
and (interfaces to) growing embodied physical systems. The gardener needs to
manipulate these components. Keeping with the gardening metaphor, we require
operations such as:

– Planting seeds (starting the growth of a seed at a particular location)
– Moving growing organisms (transplanting)
– Feeding: applying nutrients, energy, and their virtual analogues, to affect

growth rates (enhance growth in a particular direction)
– Pruning growing organisms (stop growth in a particular direction)
– Training along a given direction (change the direction of growth)
– Grafting physical and/or virtual organisms together
– Manipulating environmental variables and other parameter values
– Recording and rerunning gardening “scripts”.

In order to raise the level of the programming task, these operations need to be
controlled via some high-level, intuitive visual metaphor, including facilities for:

– Various graphical views of the garden
• 3D graphical visualisation (for physical systems)
• Other standard graphical visualisations (e.g. graphs), for virtual systems

(and for physical systems if desired)
• Visual widgets indicating the state or desirability of the computational

output of the garden (since computation underlies the Garden, the graph-
ical elements need not be too sophisticated, as it is the computation they
perform that is most important)

• Ability to create customised views, using “drag and drop” from the visual
widget library

– User navigation through the garden, to explore, view and manipulate the
various components growing there.

It should also be possible to embed user-defined entities into the garden, that
is, to place non-“living” but functional objects into the garden. This allows
a combination of traditionally engineered and growing parts within the final
artefact. For example, in some circumstances one might want to provide a “pre-
cast” shell for a building (analogous to a trellis in a real garden), and grow only
the utilities and control systems within it.



3 Illustrative Application: a skyscraper

There is a sub-discipline of “morphogenetic architecture” (Hensel, Menges & We-
instock, 2004, 2006; Roudavski, 2009), where researchers attempt to “grow” the
form of a building. However, these researchers tend to focus on the aesthetic ar-
chitecture of the physical shell, and tend not to consider the simultaneous growth
of the other physical subsystems such as plumbing, or the virtual components
such as the control systems.

The generation of useful architectural and related sub-system design is of-
ten realized via parametrised geometries; these realisations are sometimes used
in real-world construction (Shepherd, 2010; von Buelow, Falk & Turrin, 2010).
There have been several successful approaches to the generation of structural de-
signs via developmental techniques, usually cellular growth procedures (Kicinger,
Arciszewski & Jong, 2005; Kowaliw, Grogono & Kharma, 2007b; Steiner, Jin &
Sendhoff, 2008; Yogev, Shapiro & Antonsson, 2010). Jin & Sendhoff (2009) argue
in favour of such life-like representations as a means of incorporating features
such as scalability, robustness, evolvability, and self-adaptation. One such exam-
ple of robustness has been demonstrated in structural design: Kowaliw, Grogono
& Kharma (2007a) show the use of a developmental procedure in the creation
of truss designs which led to self-adaptation to differing scales and geometric
environments, implying a sort of artificial polymorphism.

A skyscraper provides a good exemplar application, being a non-trivial cyber-
physical system with multiple physical (structural) and virtual (control) com-
ponents, existing in a complex environment (including social use, weather, and
other external influences). There are several issues to address in such an appli-
cation. These include:

1. How various subsystems can be grown in concert such that they integrate ef-
fectively, and influence each other’s growth, for example: plumbing adapting
to the shell; plumbing and wiring adapting so as not to interfere

2. How various subsystems can be grown in the context of a physical environ-
ment, allowing some of a system to be built conventionally and the remainder
to be grown through it, and an analysis of the tradeoffs

3. How much of the morphological requirements can be placed in the seed, and
how much in the subsequent gardening environment and regime (genericity
v specificity tradeoffs)

4. How to stop the systems growing where necessary (Miller, 2004), potentially
based on the mechanisms plants use to stop growing, which process can be
triggered either by environmental conditions, such as winter, or by internally
regulated developmental programmes (Leyser & Day, 2003):

– A plant (or parts of it) can go into dormancy, for example, over winter,
or as a seed, or axillary buds.

– A plant (or parts of it) can senesce and die: leaves in winter, whole plant
for annual plants that only last a year. This involves active “suicide”
of tissues in a very regulated process, for example, remobilising all the
nutrients to the roots before shedding leaves.



– Plants grow mostly from meristems (root and shoot tips). These are usu-
ally indeterminate: they can go on for ever maintaining themselves while
producing new cells to build the plant, but they can also become deter-
minate and use themselves up making other components. For example,
the shoot apical meristem becomes a terminal flower, so the shoot stops
growing.

Such an exemplar skyscraper application could be used to drive the implementa-
tion of a prototype Gro-CyPhy system conforming to the architectural design
described above.

4 Discussion and conclusions

Currently most of the research effort in growing software has been concentrated
either on growing structures or shapes with no obvious computational purpose,
or on growing programs from (grammar) rules. Gro-CyPhy is a process to
grow both aspects together in an integrated fashion: the shapes will be needed
to perform the functions, and programs will be embedded in the structure to
make it adaptable and responsive.

Visual programming has been around for a long time. For example, most
graphical user interfaces (GUIs) have some development toolkit that allows pro-
grammers to create GUI layouts in a visual and intuitive way. Furthermore,
complex programs can be specified with the help of UML (Unified Modelling
Language) diagrams. However, such visual programming has mainly been used
to build software in a static way, following a traditional software development
lifecycle: software is rarely manipulated in this way while executing (model-
driven software adaptation (Bencomo, Blair & France, 2008) is one exception);
growing software in this way is not yet a reality. Gro-CyPhy is a radically new
way of conceiving of software: as something that grows, and therefore modifies
itself during execution. Such software will naturally be able to withstand ex-
ternal operations on itself during execution, such as pruning and grafting by a
“gardener”. The gardener will be a high-level programmer, and ultimately can
even be the user directly.

Gro-CyPhy is a vision of “programmed organisms”, software intensive em-
bodied systems or cyber-physical systems that are grown in a garden, where
they are autonomous and yet responsive and programmable at a high level. Such
programmed organisms help blur the artificial distinction between the abstract
software programs and the substrate where the software actuates (execution
hardware plus supporting physical structures).
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