
EVOLUTIONARY SEARCH APPLIED TO RECONFIGURABLE ANALOGUE CONTROL

Kester Clegg, Susan Stepney ∗

Dept. of Computer Science

University of York, UK. YO10 5DD

email: {kester, susan}@cs.york.ac.uk

Tim Clarke

Dept. of Electronics

University of York, UK. YO10 5DD

email: tim@ohm.york.ac.uk

ABSTRACT

The new breed of reconfigurable integrated circuits (ICs) of-

fer switched-capacitor based analogue circuits whose func-

tionality can be altered during run-time. Rapidly changing

the functionality of an analogue circuit provides interesting

opportunities for control systems. It also opens a large de-

sign space in which decisions have to be made regarding the

frequency and form of reconfiguration. We present a bio-

inspired architecture to facilitate the automated search for

circuits on these platforms, based on well-established evo-

lutionary algorithms. Unlike previous attempts at evolving

single solutions, our genomes contain multiple solutions and

use feedback provided by the circuit output to trigger recon-

figuration of the IC.

1. INTRODUCTION

We present a bio-inspired architecture for analogue circuits

that adaptively reconfigure to environmental changes. This

reconfiguration process is inspired by the biological process

of gene regulation: each cell in a biological organism has

the same DNA, yet different genes are expressed in different

contexts, and so cells behave differently in different places

and at different times. In our architecture, analogue circuit

components correspond to the “proteins” expressed by digi-

tal genes. Different subsets of these components are config-

ured to make a full analogue circuit that behaves in a man-

ner appropriate for the current context. We use evolutionary

search to discover a suitable set of components and recon-

figuration conditions for the different elements of a task.

The field of evolutionary computation has tended to fo-

cus on solving search-based optimisation tasks, leading to

criticism that some of the most interesting properties of evo-

lutionary search have been neglected as a result [1, 2]. Thom-

pson’s work in the mid-1990s [3, 4] inspired many to fol-

low the route of evolving logic functions in hardware, al-

∗Special thanks to Dave Lovell at Anadigm for helping us with recon-

figuration of the FPAA and host application. The research is funded by the

EPSRC and Microsoft Research UK. The hardware used was purchased

from pump-prime funding for the York Centre for Complex Systems Anal-

ysis at the University of York.

though few stayed true to his aims of using evolution to ex-

ploit physical domains that are inaccessible to human design

(with the notable exception of Miller [5, 6]). Instead, logic

functions such adders were evolved to see if optimal usage

of gates could improve on human designs or to compare

the speed of evolutionary strategies. Indeed, the design of

a one or two-bit adder has become a benchmark for gauging

the performance of evolutionary algorithms (for example,

[7, 8]). However, some of the issues raised by Thompson’s

work were key to our choice of analogue platform.

Evolutionary computation has a track record in analogue

electronics, with patentable successes by John Koza and his

colleagues [9]. As the construction of many thousands of

distinct analogue circuits for fitness evaluation is impracti-

cal, Koza evaluated his evolving circuit populations using

software simulations. However, software simulation, using

programs such as SPICE, is generally several orders of mag-

nitude slower than testing the same circuit in hardware, mak-

ing the simulated evolution a slow process. Additionally,

simulation imposes modelling constraints, not allowing the

full richness of the physically embodied system to be ex-

ploited by the evolutionary process. Our platform avoids

some of these issues and gives us the advantages of being

able to rapidly test circuits in hardware.

Instead of evolving single solution analogue circuits, we

evolve an architecture inspired by the process of gene ex-

pression. Genes code for proteins. Whether a gene actually

expresses a protein or not is determined by its context: in

particular, by whether certain other proteins bind to expres-

sion or inhibition sites on the DNA controlling that gene.

For more on the biology of gene expression, see [10, 11, 12].

In section 2 we describe our architecture, and provide

details of the platform and implementation. In section 3 we

describe a prototype task for which we have evolved a re-

configuring solution.

2. ARCHITECTURE AND PLATFORM

In our architecture, the configuration of analogue compo-

nents in a circuit is specified by the corresponding genes

in a digital genome (Fig. 1). The context in which a par-

Gene expression

Binding
process

DNA

CAM expression

Binding
process

Digital
genome

Transcription
factors

Analogue
signal

 Protein
translation in
phenotype

Circuit
generation in

FPAA

Environment
signals

a)

b)

Environment
signals

Fig. 1. Diagram (a) shows natural gene expression where ex-

pression is affected by the presence of transcription factors

in the cell. (b) shows our implementation of the analogous

process.

ticular component is deployed (expressed) is determined by

the gene’s binding site on the genome matching the bind-

ing protein’s signature. The components expressed in any

one context are configured to form an analogue circuit. The

behaviour of that circuit depends on the context of its de-

ployment (that is, on its input signal). The “binding protein”

signature is constructed from the circuit’s output signal. As

that signal changes, new “protein” signatures are created,

allowing new components to be expressed and so recon-

figuring the circuit. The evolutionary process alters both

the genes (details of component characteristics) and bind-

ing sites (context in which the components are deployed).

The full details of our mapping from the biological process

of context-specific gene expression to our architecture can

be found in [13].

Switched-capacitor based ICs allow reconfigurable hard-

ware analogue circuits. These ICs are similar in operation

to FPGAs. Configurable Analogue ICs, sometimes called

Field Programmable Analogue Arrays (FPAA)1, implement

an analogue circuit by downloading a configuration bitstream

onto an IC. Downloading a new bitstream results in a new

circuit being configured. An adaptable FPAA application

can thus be implemented as a set of analogue circuits, with

some host application controlling when the IC should re-

configure to a new circuit. In our architecture, the digital

genome resides on the host, and as the binding signatures

change component expression, a new configuration is calcu-

lated and downloaded onto the FPAA.

1Alternative names for these ICs include Field Programmable Transistor

Arrays (FPTA) or Dynamically Programmable Analogue Signal Processors

(dpASP).

The Anadigm AN221E04 FPAA is split into 4 CABs

(Configurable Analogue Blocks). Each CAB supports one

or more Configurable Analogue Modules (CAMs). CAMs

can contain circuits functioning as various band pass filters,

multipliers, integrators, differentiators and so on. CAMs are

configured by setting options, floating point parameters and

clock speeds using the AnadigmDesigner software or via its

API. As this API can be controlled by a host application, the

host application is able to both create circuits and control the

reconfiguration process.

The genomes and circuit specifications they encode are

an adapted form of Cartesian Genetic Programming (CGP)

[14]. The genotype in CGP is represented as a list of integers

that encode the function and connection of each node in a

feed-foward, directed graph.

In our genome, each gene encodes the CAM’s ID and

parameters, its connections to other CAMs, and the bind-

ing signature. There are around 200 CAM “primitives”:2

within most primitives, a range of parameterised behaviour

is possible. We encode 4 parameter values; those unused in

a particular CAM are ignored. Each parameter is encoded

as a percentage of the parameter range. The connections to

other CAMs can refer to CAMs earlier or later in the graph

(unlike the strictly feed-forward structure of conventional

CGP). The binding site is a string representing some com-

bination of the 4 bases (ACGT) in DNA. Reconfiguration

is triggered by the output signal changing and generating a

new “binding protein” signature, which may match the bind-

ing sites of different genes, allowing them to be expressed.

(Construction of the binding protein’s signature is explained

later.) The genotypes in an evolving population have a fixed

number of genes, but the number of CAMs in a circuit de-

pends on what is expressed in a given context.

Fig. 2 shows the stages of decoding a genome into a cir-

cuit description, depending on the binding signature. Stage

1 decodes the linear genome description into the correspond-

ing directed graph representation. Stage 2 replaces each

node with the corresponding CAM description. A CAM

may have fewer input and output ports than are specified in

the graph: connections to non-existent inputs are removed;

unused outputs are left “open”. This produces a descrip-

tion of a ‘fully expressed’ phenotype. Stage 3 matches the

binding signature against each gene’s binding site, which

defines the subset of the CAMs that are actually expressed

in the current context. Stage 4 turns this subset into a cir-

cuit configuration using the wiring connections of the fully

expressed genome, rewiring to compensate for any missing

CAMs. The circuit input is defined as that of the first ex-

pressed CAM; the wiring algorithm traces through the cir-

cuit to the first “open” output on a CAM, which is defined as

2When different configuration options are taken into account. The num-

ber is actually larger; however, for reasons involving the design of the API

it easier to build up the CAM library omitting some of the option configu-

rations.

CAM 47
2:1

Bilinear Filter

CAM ID

Node 1 Node 2 Node 3 Node 4

Binding Site Node inputs

Full wiring
specification

Gene
expression

Final
phenotype
expression

CAM 81
2:2

Hold Voltage

CAM 3
1:1

Differentiator

CCTG CCCA CCTA

CAM 116 fails to
match binding

condition

Directed
graph

Circuit binding signature = CC(TC)(AG)

AATT

CAM 81
2:2

Hold Voltage

Circuit
output

CAM 47
2:1

Bilinear Filter

CGP Nodes (gene specifications)

(47, 4:1, 2:1,… CCTG), (81, 3:1, 3:2,…, CCCA)… Genome

Circuit
input

CAM 47
2:1

Bilinear

CAM 81
2:2

Hold Voltage

CAM 116
2:1

Divider

CAM 3
1:1

Differentiator

Fig. 2. An example of the genome decoding process. 1) 4

genes decoded into a directed graph of 4 nodes. 2) Nodes

replaced by CAMs, giving fully expressed phenotype. 3) In

this context, the binding signature matches the binding sites

of 3 genes. 4) Corresponding subset of CAMs wired using

fully expressed phenotype’s wiring; one CAM ends up dis-

connected, leaving the final circuit containing two CAMs,

only one of which is effective.

the circuit output. Note that this decoding process provides

a highly indirect mapping from genome to phenotype.

The binding process provides feedback from the func-

tional domain to the genome. The process converts the cir-

cuit’s analogue output into a digital form by taking a wavelet

transform of the output, normalising the coefficients and

thresholding the values, to get a binary valued matrix with

4 rows and an application dependent number of columns.

The 4 rows represent the 4 bases (ACGT). One value in a

column represents the corresponding base. More than one

value in a column represents a ‘wildcard’ that can match

several bases. If a column has no values above the thresh-

old, then it is ignored. The grid is read column by column to

produce a string of bases and wildcards (the binding protein

signature), which is matched against the gene binding sites.

individual

(see Fig. 3)

task

generator

fitness

evaluation

population

fitnesses

population

of genomes

decode for

evaluation

record

fitness

next

generation

breed
replace

Fig. 4. The evolutionary harness.

As many positions are read as required to match a signature

length. If the binding protein signature matches a binding

site on the genome, that gene is expressed, resulting in a

circuit reconfiguration.

3. PROTOTYPE APPLICATION

We have implemented a prototype of the architecture de-

scribed and shown in Fig. 3. This is placed within an evo-

lutionary harness to evolve a genome suitable to perform a

particular task (Fig. 4). During evolution, an input signal

is “ramped” up through a series of frequencies, starting at

around 500Hz and rising to 20kHz. The task is to maximise

power output for low and high frequency inputs, but to min-

imise power output for mid-range frequency inputs (spec-

ified by a fitness function on the Fourier transform of the

output signal measuring the power at three test frequencies).

This results in reconfiguration as the input signal increases

in frequency. A 4+1 evolution strategy is used, with variable

rates of mutation being applied to parts of the genome. The

binding signature is calculated from the output signal every

0.5 seconds. When the signal changes and matches a new

configuration, the genome is decoded and the new config-

uration is downloaded onto the FPAA. The process evolves

genomes that successfully reconfigure to perform the task.

Some interesting behaviour was noted in the prototype.

Certain configurations result in low output signals. The cor-

responding binding signature is largely random due to the

amount of noise, as the wavelet coefficients are scaled up to

give valid signatures. The effect of this is that the binding

process starts “hunting” with random binding signatures, re-

sulting in random expression. However, as soon as a good

configuration is downloaded the “hunting” stops, an output

signal is restored, and the binding process settles down. It

is too early to tell whether evolution will make use of this

aspect of the system.

analogue output signal

Time variant

analogue

input signal

wavelet

transform

(Matlab)

binding

signature

CC(TC)(AG)

(47, 4:1, 2:1,… CCTG), (81, 3:1, 3:2,…, CCCA)

match and decode

(see Fig. 2)

new phenotype description

download

and reconfigure

2007_05_25.jpg

Fig. 3. The prototype implementation, showing how output signals bind to new gene expressions through the feedback binding

process.

4. CONCLUSION

This architecture incorporating feedback is a first attempt

to physically reconstruct the exploratory mechanism of ge-

netic regulatory networks. Our aim is to use this platform

as a basis from which to evolve self-configuring analogue

control systems. The prototype has demonstrated a proof of

concept of many of the components of the architecture. We

believe that without the mechanisms of interaction and feed-

back, digital genomes cannot guide themselves across func-

tional search spaces in a way that fully exploits a domain’s

resources, and this is particularly true where that domain in-

cludes the complexity provided by real-world physics.

5. REFERENCES

[1] W. Banzhaf, G. Beslon, S. Christensen, J. Foster, F. Kepes,

V. Lefort, J. Miller, M. Radman, and J. Ramsden, “Guide-

lines: From artificial evolution to computational evolution: a

research agenda.” Nature Reviews Genetics, vol. 7, no. 9, p.

729, September 2006.

[2] S. Kumar and P. Bentley, Eds., On Growth, Form and Com-

puters. Elsevier Academic Press, 2003.

[3] A. Thompson, “Silicon evolution,” in Genetic Programming

1996: Proceedings of the First Annual Conference. MIT

Press, 1996, pp. 444–452.

[4] ——, “An Evolved Circuit, Intrinsic in Silicon, Entwined

with Physics,” in Proc. 1st Int. Conf. on Evolvable Systems

(ICES’96). Springer, 1997, pp. 390–405.

[5] S. Harding and J. F. Miller, “Evolution in materio : A

real-time robot controller in liquid crystal,” in Proc. 2005

NASA/DoD Conference on Evolvable Hardware. IEEE

Press, 2005, pp. 229–238.

[6] J. F. Miller and K. Downing, “Evolution in materio: Look-

ing beyond the silicon box,” in Proc. 2002 NASA/DoD Con-

ference on Evolvable Hardware. IEEE Computer Society,

2002, pp. 167–176.

[7] S. Kazadi, Y. Qi, I. Park, N. Huang, P. Hwu, B. Kwan,

W. Lue, and H. Li, “Insufficiency of piecewise evolution,”

in Proc. 2001 NASA/DoD Workshop on Evolvable Hardware,

2001, pp. 223–231.

[8] T. Fogarty, J. Miller, and P. Thomson, “Evolving Digital

Logic Circuits on Xilinx 6000 Family FPGAs,” Soft Comput-

ing in Engineering Design and Manufacturing, pp. 299–305,

1998.

[9] J. R. Koza, L. Jones, M. Keane, and M. Streeter, “Towards

industrial strength automated design of analog electrical cir-

cuits by means of genetic programming,” in Genetic Pro-

gramming Theory and Practice II, U.-M. O’Reilly, T. Yu,

R. L. Riolo, and B. Worzel, Eds. Kluwer, 2004, ch. 8.

[10] S. Carroll, Endless Forms Most Beautiful: The New Science

of Evo Devo and the Making of the Animal Kingdom. Wei-

denfeld & Nicolson, 2006.

[11] L. Wolpert, “Relationships between development and evolu-

tion,” in On Growth, Form and Computers, P. Bentley and

S. Kumar, Eds. Elsevier, 2003.

[12] S. B. Carroll, J. K. Grenier, and S. D. Weatherbee, From DNA

to Diversity. Blackwell, 2001.

[13] K. Clegg, S. Stepney, and T. Clarke, “Using Feedback to Reg-

ulate Gene Expression in a Developmental Control Architec-

ture,” in Proc. GECCO 2007, (to appear).

[14] J. F. Miller and P. Thomson, “Cartesian Genetic Pro-

gramming,” in Genetic Programming, Proceedings of Eu-

roGP’2000, ser. LNCS, R. Poli, W. Banzhaf, W. B. Langdon,

J. F. Miller, P. Nordin, and T. C. Fogarty, Eds., vol. 1802.

Springer, 2000, pp. 121–132.

