
Evolving Quantum Circuits and Programs
through Genetic Programming

Paul Massey, John A. Clark, and Susan Stepney

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK.

{psm111,jac,susan}@cs.york.ac.uk

Abstract. Spector et al. have shown [1],[2],[3] that genetic program-
ming can be used to evolve quantum circuits. In this paper, we present
new results in this field, introducing probabilistic and deterministic quan-
tum circuits that have not been previously published. We compare our
techniques with those of Spector et al, and point out some differences in
perspective between our two approaches. Finally, we show how, by using
sets of functions rather than precise quantum states as fitness cases, our
basic technique can be extended to evolve true quantum algorithms.

Keywords: quantum computing, genetic programming

1 Introduction

Quantum computing [4],[5] is a radical new paradigm that has the potential to
bring a new class of previously intractable problems within the reach of computer
science. Harnessing the phenomena of superposition and entanglement, a quan-
tum computer can perform certain operations exponentially faster than classical
(non-quantum) computers. However, devising algorithms to harness the power
of a quantum computer has proved extraordinarily difficult. Eighteen years after
the publication of the first quantum algorithm in 1985 [4], almost all known
quantum programs are based on two fundamental techniques: Shor’s Quantum
Fourier Transform [6],[7] and Grover’s quantum search algorithm [8].

Spector et al. [1],[2],[3] show how genetic programming (GP) might be used
to evolve quantum programs and circuits. The key features of their approach
are:

– A second order encoding : individuals in the GP population are LISP pro-
grams that generate quantum circuits. The LISP alleles available to the
GP software include functions to allow iteration and arithmetic, as well as
functions to generate quantum gates.

– An emphasis on finding probabilistic solutions: quantum programs give the
correct answer with a probability of at least 50% for every fitness case tested.

– A fitness function made up of three components: hits, correctness and effi-
ciency. This function is described later, in the context of our own work.

Spector et al evolved a quantum circuit that solves Deutsch’s Problem [4] on
three qubits, with an error probability of less than 0.3, and a quantum circuit
that solves the database search problem on five qubits, for the special case of
four marked states (effectively an implementation of a special case of Grover’s
algorithm [8]).

Our work also involes using GP to evolve quantum circuits, but with a dif-
ferent emphasis from Spector et al. We use the following terminology in this
paper:

Quantum circuit (or ‘quantum gate array’): a collection of quantum logic
gates that can be applied in sequence to a specified quantum system.

Quantum program: a set of instructions that, when executed, generates one or
more quantum circuits. The program may include constructs such as iteration
and branching functions as well as functions to generate particular quantum
gates. In the language of GP, a quantum program is the genotype that can be
decoded to produce a quantum circuit phenotype.

Quantum algorithm: a parameterisable quantum program that, as the value of
the parameter(s) are altered, generates quantum circuits to solve a large number
of different problem instances, perhaps across different sizes of quantum system.

Our terminology differs from normal non-quantum usage, where, for example,
a (compiled) ‘program’ is software and executed on real circuitry, and where an
‘algorithm’ is generally a machine independent recipe that would be implemented
by a program. (Both algorithm and program might be capable of handling var-
ious system instances). We use a general purpose circuit generating language,
abstracting over the implementation of the circuit in hardware, to express our
‘programs’. Since we have at present no general purpose quantum computer to
target, this seems appropriate. Also, the ability to express parametrisable pro-
grams in the same language, allowing abstraction over different system instances,
is motivated by our real goal: the use of GP-related methods to discover new
ways of solving problems by quantum means.

2 Evolving Quantum Circuits

2.1 The Software

Our research has been conducted using three successive iterations of a tool called
Q-PACE (Quantum P rograms And Circuits through Evolution). The original
Q-PACE suite is now obsolete. Q-PACE II and Q-PACE III are genetic program-
ming suites written in C++, incorporating a number of classes and functions
from Wall’s GALib library [11].

Q-PACE II uses a first order encoding : each individual is a quantum circuit,
not a quantum program (as per the definitions earlier). In practice, each indi-
vidual is a tree of quantum gates; the tree is traversed to generate the sequence
the quantum gates.

Q-PACE III uses a second order encoding similar to that of Spector et al :
each individual is a quantum program that generates one or more actual quantum

circuit(s). In practice, each individual is a tree of statements, with each statement
being either a function (including functions to allow iteration and functions to
generate quantum gates) or a terminal symbol (a number, representing the qubit
to be operated on, the number of iterations a loop should run for, etc.)

Both Q-PACE II and Q-PACE III use tournament selection and a “subtree
swap” crossover operator. They both incorporate various mutation operators,
including subtree insertion, subtree deletion, and subtree replacement. In Q-
PACE III, constraints are imposed on the mutation operators to ensure that
only syntactically valid quantum programs are produced as GP individuals.

2.2 Fitness Functions

By default, both Q-PACE II and Q-PACE III evaluate the fitness of candidate
quantum programs and circuits using the following method:

– Initialisation:
• Create a set VI of input state vectors that span the space of all possible

inputs. Each member of VI acts as a fitness case for the problem under
test.

• Create a set VT of target vectors, the desired results for each fitness case.
– Evaluation:

• Apply the candidate individual to each fitness case, to produce a set of
result vectors VR.

• Compare each member of VR with the corresponding member of VT . The
chosen means of comparison defines the specific fitness function for the
particular problem under test.

When evolving deterministic quantum programs or circuits (those that give
the correct answer with probability 1, 100% of the time), we use the sum of the
magnitudes of the differences of the probability amplitudes:

f =
∑

i

||VTi
− VRi

|| (1)

When trying to evolve probabilistic quantum programs or circuits, we use:

f = hits + correctness + efficiency (2)

This follows the lead of Spector et al. [1],[2],[3]. The hits component is the
total number of fitness cases used minus the number of fitness cases where the
program produces the correct answer with a probability of more than 0.52 (fol-
lowing Spector, chosen to be far enough away from 0.5 to be sure it is not due
to rounding errors). The correctness component is defined as:

correctness =

n∑
i=1

max(0, errori − 0.48)

max(hits, 1)
(3)

Because it is desirable for the fitness function to focus on attaining proba-
bilistically correct answers to all fitness cases, rather than simply improving the
probability of success in those fitness cases where it is already good enough (e.g.
from a 55% success rate to a 60% success rate), errors smaller than 0.48 are ig-
nored. Also, it is desirable that reasonably fit programs are compared primarily
with respect to the number of fitness cases they produce a (probabilistically)
correct answer for, and only secondarily with respect to the magnitudes of the
errors of the incorrect cases, the ‘pure’ correctness term is divided by hits (unless
hits < 1) before being used in the fitness function.

The efficiency is the number of quantum gates in the final solution, divided
by a large constant. Therefore, efficiency has a very small effect on the overall
fitness of the solution, until programs are evolved that solve all fitness cases,
at which point the other two terms become zero and the efficiency dominates.
The overall effect is that the search initially concentrates on finding probabilistic
solutions to the problem, and then tries to make those solutions more efficient,
in terms of the number of quantum gates used. No effort is wasted on trying to
make the solutions more accurate (i.e. increase the probability of them correctly
giving the answer).

2.3 The Evolution of Deterministic Quantum Circuits

Q-PACE II evolved a deterministic full adder circuit using simple and controlled
versions of the Nand H gates (see Appendix A), and the non-unitary zeroing
gate Z. Q-PACE II found 2 distinct solutions to the problem; the more effi-
cient of which is identical to that of Gossett [15]. We also applied Q-PACE II
to a number of more challenging problems, including multiplication modulo n
and exponentiation modulo n. We also attempted to evolve simple circuits for
quantum arithmetic using only very basic quantum transformations as alleles.
However, despite many variations of problem specification and fitness function,
large population sizes, and runs of thousands of generations, we were unable to
evolve exact solutions to these problems.

GP is intrinsically suited to finding good approximate solutions, as opposed
to exact deterministic solutions. We modified Q-PACE II to use a two stage
search strategy: GP to evolve candidate solutions with a very good, but not
perfect, fitness score, then hill-climbing on these good solutions to look for a
nearby exact answer. However, deterministic solutions to these harder problems
continued to be elusive. We believe that this is due to the discontinuity of the
search space: exact solutions lie some distance from good approximate solutions,
so changing a single quantum gate in a good solution is of no use in converging
to an exact solution. Therefore, we changed the form of the problem to be solved
to one we believe more suited to GP.

2.4 Probabilistic Quantum Circuits

Using the probabilistic fitness function(3), Q-PACE II can find probabilistic
solutions to problems for which it was unable to find a deterministic solution. It

Fig. 1. A probabilistic half-adder

found a probabilistic half-adder on 3 qubits using only the H gate and the non-
unitary zeroing gate Z (together with their controlled equivalents). The problem
is defined as |x, y, z〉 → |x, xXOR y, xAND y〉, where |xXOR y〉 is the sum bit
and |xAND y〉 the carry bit.

Q-PACE II evolved the circuit shown in figure 1. It has the following proba-
bilistic solution to the problem:

initial correct prob of ending in state
state answer |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
|000〉 → |000〉 0.53 0.22 0 0 0 0.09 0.14 0
|001〉 → |000〉 0.53 0.22 0 0 0 0.09 0.14 0
|010〉 → |010〉 0 0.05 0.61 0 0 0.09 0.24 0
|011〉 → |010〉 0 0.05 0.61 0 0 0.09 0.24 0
|100〉 → |110〉 0.09 0.04 0.03 0 0 0.02 0.82 0
|101〉 → |110〉 0.09 0.04 0.03 0 0 0.02 0.82 0
|110〉 → |101〉 0 0.30 0.10 0 0.02 0.53 0.04 0
|111〉 → |101〉 0 0.30 0.10 0 0.02 0.53 0.04 0

The most appropriate use of probabilistic circuits remains to be determined.
It is possible to exploit probabilistic biases by repeated application of a program
to a particular problem instance. We can also imagine their use in more ’soft’
systems, where a good deal of noise in results is expected as the computation
evolves. This is an open research issue.

3 Evolving Q-MAX Algorithms using ‘Functional Fitness
Cases’

To evolve more advanced quantum programs (and ultimately quantum algo-
rithms), it has proved necessary to replace the basic technique of calculating the
fitness, as described above, with a different approach.

To illustrate this approach, consider that we are given a set of functions on
x, where x is an integer variable constrained to a certain domain and range (e.g.
[0..3] → [0..3]), such as the following:

f1(x) = 7x mod 3
f2(x) = the permutation {0, 1, 2, 3} → {2, 1, 3, 0}
f3(x) = 3− x
f4(x) = 0 for all x (i.e. 0 → 0, 1 → 0, 2 → 0, 3 → 0)

For any of these functions, it would be a reasonable challenge to seek a
quantum program that finds the maximum value for that function (in other
words, “which input value x gives the largest output value y”?). For the function
f3(x), for example, the maximum value is 3, which occurs when x = 0. A more
difficult but much more useful challenge would be to evolve a quantum algorithm
for finding the maximum value of any [0..3] → [0..3] function. Such an algorithm
could be given any of the functions listed above and would return the correct
maximum value for that function.

3.1 The Specific Case

Before progressing to the general case, first consider how we might solve the
following basic problem:

Given a permutation function f(x) which operates over the integer range
[0..3], use a suitable encoding to evolve a quantum program U that returns the
value of x that gives the maximum value of f(x).

Before we can attempt to evolve a candidate U , we first need to create a
quantum state to encode f(x). As both x and f(x) range from [0..3], we can
encode f(x) in a 4 qubit quantum state, with the first 2 qubits encoding x and
the remaining 2 qubits encoding f(x). For example, the state vector Y (fig 6)
encodes the function f2(x) defined above.

x f(x) x f(x)

Y =

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

0
0
a
0
0
b
0
0
0
0
0
c
d
0
0
0

R =

00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p

The non-zero probability amplitudes a, b, c and d represent the desired transi-

tions f(0) =2, f(1) = 1, f(2) = 3 and f(3) = 0 respectively. All other transitions

are disallowed in f2(x), and so are given an associated probability amplitude of
zero in the state vector. To be a valid quantum state, |a|2 + |b|2 + |c|2 + |d|2 = 1.
For simplicity, we take these amplitudes as equal: a = b = c = d = 1√

4
= 1

2

Having created this state vector Y to act as our initial quantum state, we
then apply our candidate quantum program U to it, thus creating a state vector
R = UY. At the end of this computation, we simulate measuring the first two
qubits of the quantum system to read out the ‘answer’, the value of x that
corresponds to the maximum value of f(x). In the general case, we end up with
a state vector R shown in fig 6.

Observing the full state causes it to collapse to one of the 16 eigenstates. We
see that the first two qubits are observed with particular values with probability
equal to the sum of probabilities of the eigenstates consistent with the values.
Thus, a state with x = 00 is observed with probability q2 = |a|2+|b|2+|c|2+|d|2;
a state with x = 01, with probability r2 = |e|2 + |f |2 + |g|2 + |h|2; a state with
x = 10, with probability s2 = |i|2 + |j|2 + |k|2 + |l|2; and a state with x = 11,
with probability t2 = |m|2 + |n|2 + |o|2 + |p|2.

We then compute the probabilities |q|2, |r|2, |s|2 and |t|2, which represent
the probability of measuring x to be 0, 1, 2 and 3 respectively. Suppose, for one
particular candidate U , these probabilities are found to be 0.2, 0.3, 0.5 and 0.
By looking at these probabilities, we can see that this candidate U gives the
correct answer (x = 2) 50% of the time. Our goal is to find a candidate program
U which somehow amplifies the probability of measuring the correct value of x,
and decreases the probability of measuring an incorrect value of x.

Given a state vector R, how should we actually assess the fitness of a can-
didate U? The most obvious fitness measure is simply the probability of the
correct answer, in this case, |s|2 (in practice, using 1−|s|2 would be more useful,
as a fitness of 0 would then correspond to an exact solution). A slightly more
advanced fitness measure would allow U to be a probabilistic program (i.e. a
U that gave |s|2 > 0.5 would be regarded as a solution to the problem under
test). Alternative fitness functions could be used that gave some credit for having
“near miss” answers (if we are trying to evolve a MAX algorithm, a candidate
solution which could consistently return a value of x that gives a large but not
maximal value of f(x) might actually be sufficient).

3.2 The General Case

So far we have shown only how we can evolve a quantum program U to solve
one specific problem instance. How might we generalise this to evolve a true
quantum MAX algorithm, capable of returning the value of x that gives the
maximum value of f(x) for any function f(x) that is supplied as input?

To achieve this goal, we create a large number of functions to act as fitness
cases. Each candidate U operates on all fitness cases, and its overall fitness is
the sum of the fitness scores it is awarded for each f .

3.3 Evolution of a Probabilistic MAX Algorithm for Permutation
Functions

Using this strategy, we have been able to evolve (using Q-PACE III) a number of
probabilistic quantum programs which, when given a number of suitably encoded
[0..3] → [0..3] permutation functions, returned for every one of these permutation
functions (with a probability > 0.5) the value of x that gave the maximum value
of f(x) for that function. We refer to this problem as the “PF MAX” problem
for short. Ultimately, we evolved a program that solved the problem for all 24
possible [0..3] → [0..3] permutation functions, as is shown below.

We consider only [0..3] → [0..3] permutation functions because they have the
nice properties of being discrete, one-to-one, easy to generate, and capable of
being encoded by a 4 qubit system.

There are 4! = 24 different [0..3] → [0..3] permutation functions. Our default
approach was to give Q-PACE III a subset of these 24 functions to act as fitness
cases. If Q-PACE III evolved a MAX program that worked for all the fitness
cases, we would then test it on the other functions in the set to determine the
generality of the evolved solution.

3.4 The “PF MAX 1” Program

The first useful program generated by Q-PACE III (which we call PF MAX
1) was evolved using the following 8 fitness cases (expressed as permutations):
{(3,1,0,2), (0,2,3,1), (3,0,1,2), (1,2,3,0), (3,2,0,1), (2,3,0,1), (2,0,1,3), (2,1,3,0)}.
PF MAX 1 does the following:

fitness correct prob of ending in state
case answer |00〉 |01〉 |10〉 |11〉

(3, 1, 0, 2) |00〉 0.53 0.22 0.03 0.22
(0, 2, 3, 1) |10〉 0.03 0.22 0.53 0.22
(3, 0, 1, 2) |00〉 0.53 0.22 0.03 0.22
(1, 2, 3, 0) |10〉 0.03 0.22 0.53 0.22
(3, 2, 0, 1) |00〉 0.53 0.22 0.03 0.22
(2, 3, 0, 1) |01〉 0.22 0.53 0.22 0.03
(2, 0, 1, 3) |11〉 0.22 0.03 0.22 0.53
(2, 1, 3, 0) |10〉 0.03 0.22 0.56 0.19

PF MAX 1 is a probabilistic solution to all 8 of the fitness cases used; what
effect does PF MAX 1 have on the 16 other permutation functions in the set?
For 20 out of the 24 possible permutation functions, PF MAX 1 gives the correct
answer with a probability of more than 0.5; for the other 4 fitness cases, PF MAX
1 gives the correct answer with a higher probability than any given incorrect
answer. Thus PF MAX 1 is a true MAX algorithm for [0..3] → [0..3] permutation
functions, that “works” on all 24 of these functions. Although evolved from only
8 fitness cases, the resulting PF MAX 1 is much more general.

The circuit generated by PF MAX 1 (after removing by hand 5 gates that
have no effect) is shown in figure 2.

Fig. 2. PF MAX 1 circuit

Fig. 3. PF MAX 3 circuit

3.5 Changing the Acceptance Criterion: “PF MAX 3”

The existence of PF MAX 1 suggests a quantum program might exist that
would give the correct solution with a probability of > 0.5 for all 24 fitness
cases. However, repeated experiments failed to evolve a program that met these
parameters. Yet circuits that give the correct answer to certain fitness cases with
a probability of exactly 0.5 were commonly produced.

So we attempted to solve the PF MAX problem for all 24 possible fitness cases
with a relaxed acceptance criterion of > 0.4. When Q-PACE III was run with
this relaxed acceptance criterion, it evolved a quantum program which generated
a single quantum circuit that, for each of the 24 fitness cases, has a probability
of 0.5 of returning the correct answer (the probabilities of returning incorrect
answers are 0.25 or zero). So the quantum circuit implements a probabilistic
MAX function that has twice the probability of “guessing”.

The circuit generated by PF MAX 3 (after removing by hand several gates
that have no effect) is shown in figure 3.

This seems remarkably simple. What is happening here? After consideration
we can see that the system is actually exploiting the initial set-up very efficiently.
Suppose for example, that the maximum occurs at x = 00. Then |0011〉 has
amplitude 1

2 (corresponding to probability 1
4), and |0000〉, |0001〉 and |0010〉 all

have amplitude of 0. Now consider x = 10. We must have f(10) = 00, f(10) = 01,
or f(10) = 10 since the maximum is already reached uniquely by f(00) = 11.
Suppose f(10) = 00. Then the state |1000〉 has amplitude 1

2 , while |1001〉, |1010〉
and |1011〉 all have amplitudes of 0. The application of the CCNOT operation
transforms |1000〉 to |0000〉 with amplitude 1

2 whilst |0011〉 remains unaltered
with amplitude 1

2 . We now have two eigenstates with x = 00 and amplitude 1
2 :

|0000〉 and |0011〉. So the probability of now observing one of these eigenstates is
1
4 + 1

4 = 1
2 . This is a better than classical algorithm. More generally, if f(x) = 11

then we can consider the states |x 11〉 and |x′ f(x′)〉 (where x′ is obtained from
x by flipping the first bit) to obtain a similar result. Furthermore, there would
appear to be an obvious generalisation to n qubits: let the second negation on
qubit 1 be controlled by all the qubits of f(x).

4 Conclusions

The programs and circuits presented in this paper have become increasingly ca-
pable, with PF MAX 3 in particular solving quite a general problem, with its
better-than-classical result generalising to n qubits. Using GP to produce prob-
abilistic circuits, that give the right answer with high probability for all fitness
cases, seems a more practical approach than requiring fully correct deterministic
circuits.

In future work, we will build on our results to evolve parameterisable quan-
tum programs, which, when given different parameters, will be able to solve
problems such as the PF MAX problem for different classes of function and
across different system sizes. If such things can be evolved, they will prove that
genetic programming can have a part to play in discovering new, useful quan-
tum algorithms, and help break the bottleneck that currently exists in quantum
algorithm discovery.

References

Citations “quant-ph/yymmxxx” are available on the Internet from the Los Alamos
National Laboratory pre-print server at http://www.arXiv.org

[1] L. Spector, H. Barnum, H. Bernstein, “Genetic Programming for Quantum
Computers”, in Genetic Programming 1998, Morgan Kaufmann, 1998.
[2] L. Spector, H. Barnum, H. Bernstein, N. Swamy, “Quantum Computing Ap-
plications of Genetic Programming”, in Advances in Genetic Programming 3,
MIT Press, 1999
[3] L. Spector, H. Barnum, H. Bernstein, N. Swamy, “Finding a Better-than-
Classical Quantum AND/OR Algorithm using Genetic Programming”, in Congress
on Evolutionary Computation, 1999.
[4] D. Deutsch, “Quantum Theory, the Church-Turing Thesis, and the Universal
Quantum Computer”, Proc. Royal Society of London, series A, vol. 400, p97,
1985.

[5] E. Rieffel and W. Polak, “An Introduction to Quantum Computing for non-
Physicists”, 1998. quant-ph/9809016.
[6] P. W. Shor, “Algorithms for Quantum Computation : Discrete Logarithms
and Factoring”, Proc. 35 th IEEE Symposium on the Foundations of Computer
Science, p124, 1994.
[7] P. W. Shor, “Polynomial Time Algorithms for Prime-Factorisation and Dis-
crete Logarithms on a Quantum Computer”, SIAM Journal of Computing, 26,
p1484, 1997
[8] L. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”,
Proceedings of the 28 th ACM STOC, p212, 1996.
[9] J. R. Koza, Genetic Programming, MIT Press, 1992.
[10] J. R. Koza, Genetic Programming II, MIT Press, 1994.
[11] M. Wall, “GALib, a C++ Library for Genetic Algorithms”, available from
http://lancet.mit.edu/ga/
[12] A. Ekert, P. Hayden & H. Inamori, “Basic Concepts in Quantum Compu-
tation”, 2000. quant-ph/0011013.
[13] T. Toffoli, “Reversible Computing”, in Automata, Languages and Program-
ming, LNCS 84, Springer, 1980.
[14] E. Fredkin & T. Toffoli, “Conservative Logic”, Intl. J. Theoretical Phys, 21,
p219, 1982.
[15] P. Gossett, “Quantum Carry-Save Arithmetic”, 1998. quant-ph/9808061.

A Quantum Gates used

In this paper, we use only three basic types of quantum gate:

symbol name specification
N(x) NOT gate |0〉 → |1〉, |1〉 → |0〉
H(x) Hadamard gate |0〉 → 1√

2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

Z(x) Non-unitary |0〉 →
√

(||0〉|2 + ||1〉|2)
Zeroing gate |1〉 → 0

These are all single-qubit gates, and take a single parameter x representing
the target qubit (e.g. N(2) would represent a NOT gate being applied to the sec-
ond qubit in a system). However, all three gates can have controlled equivalents.
Thus, the controlled not applies N to a target qubit only if the control qubit is
set. Thus, with the first qubit being the control and the second qubit being the
target |00〉 and |01〉 remain unchanged but |10〉 and |11〉 are transformed to |11〉
and |10〉 respectively. This is typically written CNOT (or CN). CH and CZ gates
are similar: for example, the gate CH(2, 4) would be a controlled Hadamard gate
with the second qubit in a quantum system acting as the control qubit and the
fourth qubit acting as the target qubit.

Sometimes, it is useful to use gates that have more than one control bit. These
gates only perform their action if all control bits are in state |1〉, otherwise they

Fig. 4. A circuit equivalent to that of figure 2, with the zeroing gate replaced by an
ancilla qubit and with x—x representing a “swap” gate

have no effect. For example, the “controlled controlled NOT” gate CCN(1, 2, 3)
negates its target qubit (qubit 3) if both control qubits (1 and 2) are in state
|1〉. Controlled controlled NOT gates are usually called Toffoli gates, after their
inventor [13],[14].

B Comments on the use of the Zeroing Gate

Here we comment on the use of the non-unitary zeroing gate Z in the various
circuits in this paper. The GP suite was given the Z gate to allow qubits to be
initialised to the state |0〉, as occurs in many papers in the literature. However,
the GP suite generalised beyond this and made use of the Z gate in unexpected
places, such as in mid-circuit (figure 2).

What does it mean to force a qubit to zero in the middle (or at the end)
of a circuit? The Z gate acts rather like a standard measurement gate; the key
difference is that a measurement gate collapses the quantum state vector into
one of its component quantum states at random, whereas the Z gate forces the
qubit into the state |0〉. However, both types of gates have the same side-effect:
reducing the number of possible positions in the state vector with a non-zero
probability amplitude.

How to implement Z? One way would be to perform the measurement, and
proceed only if it were zero. This would reduce the probabilities of correct an-
swers unacceptably. An alternative way is to regard it as a swap operation with
an ancilla zeroed qubit. So the circuit illustrated in figure 2 is equivalent to the
circuit shown in figure 4.

