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ABSTRACT

We propose a simple approach to visualising the time be-
haviour of Random Boolean Networks (RBNs), and demon-
strate the approach by examining the effect of canalising
functions for K > 2 networks.
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1. INTRODUCTION

Random Boolean networks (RBNs) are a well-studied form
of complex discrete dynamical systems [1, 2, 3, 4, 5]. Visu-
alisation of the dynamics can aid understanding, but (unlike
for 1D Cellular Automata, for example), there has been no
satisfactory visualisation of RBN time behaviour. Here we
propose a simple approach to visualising the time behaviour
of RBNs and demonstrate the approach by examining the
effect of canalising functions for K > 2 networks.

A Random Boolean Network (RBN) comprises N nodes.
Each node i at time ¢ has a binary valued state. Each node
has K inputs assigned randomly from K of the N nodes
(an input may be from the node itself); the wiring pattern
is fixed throughout the lifetime of the network. The state
of node i’s neighbourhood at time ¢ is a K-tuple of its in-
put node states. Each node has its own randomly chosen
local state transition rule. These nodes form a network of
state transition machines. At each timestep, the state of
each node is updated in parallel. The global dynamics is
determined by the local rules and the connectivity pattern
of the nodes. Kauffman [3, 4] investigates the properties
of RBNs as a function of connectivity K. Despite all their
randomness, “such networks can exhibit powerfully ordered
dynamics” [3], particularly when K = 2.
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Figure 1: Visualisation of the time evolution of ECA
rule 110, with N = 300, 100 timesteps, and two differ-
ent random (50% “on”, 50% “off”) initial conditions
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Figure 2: Visualisation of the time evolution of a
typical K =2 RBN, with N = 200, 100 timesteps, and
initial condition (a) nodes randomised (50% “on”,

50% “off”) (b) all nodes “on”, (c) all nodes “off”

—
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Figure 3: Visualisation of the time evolution of the
K = 2 RBN with the nodes sorted to expose the
frozen core. (a) top: the same RBNs as in fig.2. (b)
bottom: zooming in on the central region.

2. VISUALISATION

Good visualisations can aid the understanding of complex
systems, and can help generate new questions and hypothe-
ses about their behaviours.

For 1D cellular automata (CAs), the global behaviour
from a given initial state is conventionally visualised by
drawing the global state at time ¢ as a line of nodes (with
colours corresponding to the local state), then drawing the
state at ¢ + 1 directly below, and so on (figure 1).

CAs have a regular topology, which is used when laying
out the nodes for visualisation. RBNs have no such regular
topology. If this approach is taken with their nodes laid out
at random (as done, for example, in [5](fig.3) or [2](fig.2)),
the structure of the dynamics is hard to discern (figure 2).

Kauffman [4](p.203) observes that K = 2 RBNs “develop



Figure 4: Visualisation of the time evolution of 6 typical K = 3 RBNs, with N = 200, and initial condition all
nodes “off”’; for 150 timesteps; columns have the following number of canalised nodes: (a) 94 = 47.0% (b)
128 = 64.0% (c) 181 = 90.5% (d) 184 = 92.0% (e) 190 = 95.0% (f) 198 = 99.0%

Figure 5: Visualisation of the time evolution of 6 typical K =4 RBNs, with N = 200, and initial condition all

nodes “off”’; for 200 timesteps; all functions canalising

a connected mesh, or frozen core, of elements, each frozen in
either the 1 or 0 state.” We use this to determine an order for
placing the nodes in the visualisation. Nodes frozen in the 1
or 0 state are placed towards the edges of the figure; nodes
that are changing state are placed towards the centre: see
figure 3. The different transient behaviours and attractors
are now clearly visible; for example, it is clear that these
show three different attractors, with three different periods.

The algorithm is as follows. For a given RBN, to deter-
mine the order of drawing the nodes in the visualisation, do
the following: (1) Pick a representative number of timesteps,
t (for example, the number to be used in the subsequent vi-
sualisations). (2) Set the RBN into a given initial state (for
example, all zeroes). (3) Run it for ¢ timesteps, counting
how many times each node is on. Repeat steps 2 and 3
for other suitable initial conditions (for example, all ones),
accumulating the counts. (4) Sort the nodes by the total
number of times they were on in these runs.

Thus frozen core nodes are the edges, since they are in
a constant state (after transient behaviour has died out),
whilst the nodes with cycling states are in the centre. Ad-
ditionally, the frozen core nodes with shorter transient be-
haviour are closer to the edges than those with longer tran-
sient behaviours. Similarly, nodes with cycling states are
sorted according to the amount of time they spend in one
state or the other, with those half the time in each state
towards the centre. This highlights the attractor structure.

Note that the precise order depends on the various initial
states chosen. In the examples given here, for simplicity, the
network was run just from the all zeroes and from the all
ones state to determine the sort order. In figure 3, it can
be seen that in the all ones initial state (middle column)
the central node is always on, whilst in the all zeroes initial
state (right column) it is always off. (This implies it is a
node with a self-connection.) Hence, when these two cases
are combined, it is on for an average of half the time, and
so ends in the centre.

To illustrate the technique further, we visualise the ef-
fect of canalising functions on the time behaviour of K > 2
networks. Kauffman [4](p.203) defines a canalising function
as “any Boolean function having the property that it has

at least one input having at least one value (1 or 0) which
suffices to guarantee that the regulated element assumes a
specific value (1 or 0).” Kauffman argues that the canalis-
ing functions are important for establishing the frozen core
and ordered dynamics of K = 2 networks. The proportion
of canalising functions decreases rapidly with increasing K.
Kauffman [4](p.206) states that “networks with K > 2 re-
stricted to canalyzing functions ... [have] orderly dynamics
in the entire network”.

Visualisations of the effect of canalising functions on the
time behaviour are show in figures 4 and 5. Clearly for
K = 3 (figure 4), increasing the proportion of canalising
functions does make transients and attractors shorter, and
establish an “orderly dynamics”. However, for K = 4, even
with all functions canalising, change in the chaotic behaviour
is marked in only a minority of cases. The effect does not
appear to be as strong as Kauffman suggests.

In summary: we have introduced a very simple algorithm
to allow the time behaviour of RBNs to be visualised in a
manner that exposes the transient behaviour, and the struc-
ture of the frozen core and cycling nodes.
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