Artificial Immune Systems and the Grand Challenge for Non-Classical Computation

Susan Stepney, John A. Clark UYork Colin G. Johnson UKent Derek Partridge UExeter Robert E. Smith UWE

ICARIS 2003

The UK Grand Challenges in Computing

- UK Computing Research Committee (UKCRC) initiative
 - to discuss opportunities for advancement of computing science
 - original call resulted in 109 submissions
 - merged and refined into seven "Grand Challenges"
- 1. IVIS: The Worm, the Weed, and the Bug Breathing life into the biological data mountain
- 2. Science of Global Ubiquitous Computing
- 3. Memories for Life
- 4. Scalable Ubiquitous Computing Systems
- 5. Architecture of Brain and Mind
- 6. Dependable Systems Evolution
- 7. Journeys in Non-Classical Computation Robust, adaptable, powerful computation, as inspired by Nature

But why "Journeys"?

- choosing the right metaphor
- "goal"
 - halting at the end-point
 - know where you are going
- "journey"
 - importance of entire process
 - exploration, open-ended, non-halting, ...
- Contributors to the Challenge statement, so far:
 - Susan Stepney, John A. Clark, Andy Tyrrell UYork
 - Colin G. Johnson, Jonathan Timmis UKent
 - Derek Partridge UExeter
 - Andrew Adamatzky, Robert E. Smith UWE

Classical computation assumptions

- Turing paradigm
 - finite discrete classical state machine, Halting, Universal
 - closed system, predefined state space
- Von Neumann paradigm
 - sequential fetch-execute-store
- algorithmic paradigm
 - initial input ... deterministic function ... final output
 - black-box isolated from the world
- refinement paradigm
 - a known specification is refined to provably correct code
- pure logic paradigm
 - substrate (hardware/physics) is irrelevant

Non-classical views

- Real World as inspiration
 - natural computation : physics inspired, bio-inspired
 - massive parallelism
 - emergence, "more is different"
- Real World as a computer
 - analogue computation
 - the great missed opportunity of the 20th Century?
 - all computation and all data is embodied
 - physical effects particularly quantum
- Open systems
 - no Halting, rather ongoing developing interactive processes
 - computation itself as a journey, not a goal

The Grand Challenge

to produce a fully mature science of all forms of computation, that embraces the classical and the non-classical paradigms

• like all science, the Challenge is an ongoing journey

Journeys described so far

- Quantum Software Engineering
 - computing with weird physics
- Reaction-diffusion and excitable processors
 - computing with spatio-temporal chemistry
- Approximate Computation
 - Non-boolean: statistics and probabilities
- Open Dynamical Networks
 - far-from-eqb, heterogeneous, unstructured, metadynamic
- Evolvable hardware
 - hardware that can adapt, evolve, grow, repair, replicate, learn, ...
- Artificial Immune Systems

AIS : selection models

- non-classical bio-inspired algorithms
 - how to exploit essential non-deterministic / stochastic nature
 - how to design, build and use a continually learning system
 - the real immune system has no final output, does not Halt
- non-classical refinement
 - how do global classifiers and recognisers *emerge* from low level non-specific agents
 - how to design rigorously (if non-incrementally) desired emergence
 - how to reason rigorously, about use in critical applications

Challenge: a unified theory of learning systems with evolutionary, neural, immune as special cases

AIS : network models

- many biological and other network models
 - autocatalytic networks
 - cytokine immune network
 - genomic control networks
 - dynamic neural networks
 - ecological webs
 - social and technological networks
- computation as a dynamic process
 - phase space attractors, computational trajectories
- computation at the "edge of chaos"
 - computational capabilities, self organisation

Challenge: a unified theory of open dynamical systems

AIS : wet computation

- the real immune system is vastly more complicated than our current computational metaphors
 - remember Robin Callard's talk at ICARIS 2002
 - can we extract more realistic, but still useful, computational concepts and metaphors from the real immune system?
- how can we compute using components from the real immune system?
 - DNA computing uses real physical wet DNA

Challenge: computation with agents from real biological, chemical, physical systems

AIS : embodiment

- what is the effect of the physical substrate on the workings of the real immune system?
 - can all immune responses be implemented on *any* substrate?
 - if not, what do "alternative immune systems" look like on alternative substrates?
 - how can we theoretically unify these alternative systems?
- do diseases exploit the immune substrate?
 - do diseases exploit the system's computational limitations?

Challenge: a theory of the effect of the given substrate on any biological system

Biological necessities

- we see many features in biology
 - but have only one exemplar
- what are necessary for any complex adaptive system?
 - necessary for adaptability, robustness, ...
- what are necessary on the given substrate that implements the system?
 - carbon *versus* silicon necessities
- what parts are merely contingent evolutionary aspects?
 - different if "the tape were played again"

Challenge: unified theory of biological computation "better than reality", "different from reality" systems

If you want to contribute...

- join the Grand Challenge discussion group
 - critique the Challenge statements
 - suggest new "Journeys"
 - use the questions to help guide research
 - maybe even answer the questions!
 - suggest further questions
 - even tell us we've missed the point ...
- come to the Breakout session tomorrow!