
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012 1

Artificial Biochemical Networks: Evolving
Dynamical Systems to Control Dynamical Systems

Michael A. Lones, Senior Member, IEEE, Luis A. Fuente, Alexander P. Turner, Leo S. D. Caves,
Susan Stepney, Stephen L. Smith, Member, IEEE, and Andy M. Tyrrell, Senior Member, IEEE

Abstract—Biological organisms exist within environments in
which complex, non-linear dynamics are ubiquitous. They are
coupled to these environments via their own complex, dynamical
networks of enzyme-mediated reactions, known as biochemical
networks. These networks, in turn, control the growth and
behaviour of an organism within its environment. In this paper,
we consider computational models whose structure and function
are motivated by the organisation of biochemical networks.
We refer to these as artificial biochemical networks, and show
how they can be evolved to control trajectories within three
behaviourally diverse complex dynamical systems: the Lorenz
system, Chirikov’s standard map, and legged robot locomotion.
More generally, we consider the notion of evolving dynamical
systems to control dynamical systems, and discuss the advantages
and disadvantages of using higher order coupling and config-
urable dynamical modules (in the form of discrete maps) within
artificial biochemical networks. We find both approaches to be
advantageous in certain situations, though note that the relative
trade-offs between different models of artificial biochemical
network strongly depend on the type of dynamical systems being
controlled.

Index Terms—Genetic programming, dynamical systems, bio-
chemical networks, chaos control, evolutionary robotics.

I. INTRODUCTION

THE REAL WORLD is hard to control. It is complex and
non-linear, many aspects are not well understood, and it

can be difficult or impossible to predict the behaviour of those
which are. Furthermore, the high-level dynamics, through
which we observe real world systems, usually emerge through
a myriad of low-level interactions between components which
cannot be readily observed or measured.

Given the difficulty of real world control, it is no surprise
that many people have turned to evolutionary algorithms as a
means of generating novel control strategies. Situations where
this is particularly appropriate include large parameter search
spaces, no known conventional (e.g. mathematical) methods
of control, the presence of non-linearity and, more generally,
when the target system in poorly understood. A number of

The authors are members of the York Centre for Complex Systems Analysis
(YCSSA), University of York, UK. Michael Lones, Luis Fuente, Alex Turner,
Stephen Smith and Andy Tyrrell are also members of the Intelligent Systems
Research Group, Department of Electronics; Susan Stepney is in the Non-
Standard Computation Research Group, Department of Computer Science;
and Leo Caves is in the Department of Biology.

This research is funded by the EPSRC grant “Artificial Biochemical
Networks: Computational Models and Architectures,” ref. EP/F060041/1.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

different evolutionary algorithms have been used to design
controllers. Genetic algorithms (GAs) [1], for instance, are
particularly suitable for where there is a need to optimise
parameters for an existing controller architecture; for exam-
ple, tuning the parameters of a PID controller [2]. Another
approach is to use model induction algorithms such as genetic
programming [3], learning classifier systems [4] and neuro-
evolutionary algorithms [5] to induce the entire controller
architecture. This is particularly appropriate for non-linear
controllers, where manual design is hard, and for which there
is an increasing demand in many application areas.

Biological organisms are adept at controlling and respond-
ing to complex non-linear dynamics, making them a useful
source of information about complex control techniques. From
a computational perspective, a biological system that has
attracted much attention is the animal brain, leading to diverse
research on neurocomputing-based approaches to control [6],
[7]. However, control behaviours occur at multiple scales
within biological organisms, and arguably the most prevalent
of these is at the level of biochemical networks, the protein-
mediated networks of biochemical reactions that implement
and regulate the behaviour of biological cells. At some level,
biochemical networks are responsible for almost all behaviour
carried out by biological organisms. The essential role that
biochemical networks play within biological organisms, and
the complexity they engender, makes them computationally
interesting. This computational interest, in turn, has led to a
range of computational models [8]–[18], which we refer to
collectively as artificial biochemical networks (ABNs).

ABNs are an example of a larger group of computational
models, devices and architectures, which we refer to as
computational dynamical systems (CDSs) [19]–[21]. Other
examples of these are recurrent neural networks [22], [23],
cellular automata [24] and reaction-diffusion computers [25].
Like ABNs, many of these are models of processes that
occur in biological and other naturally-occurring systems.
Rather than carrying out computation in the precise state-based
manner of conventional computers, their behaviour can best be
described using concepts from dynamical systems theory: such
as trajectories, attractors, basins and bifurcations.

CDSs have been widely used for computation [20], [26]–
[33], and approaches such as reservoir computing [34] show
that any dynamical system with sufficiently rich dynamics,
and some mechanism for introducing inputs and extracting
outputs, can be used for computation (and in many cases can

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

be shown to be Turing complete, e.g. [35]–[37]). However, for
use with evolutionary algorithms, expressiveness is not suffi-
cient: we also need evolvability. From this perspective, ABNs
are particularly appealing, since their biological analogues
display many properties that contribute towards evolvability,
such as redundancy, modularity, weak linkage and scale-free
topologies [38]. It could also be argued that, as a product of
evolution, biochemical networks were selected for representing
and controlling complex behaviours within biological systems.

In this paper, we demonstrate how ABN-based controllers
can be evolved to control a variety of dynamical systems.
The paper is organised as follows: Section II introduces the
theory of dynamical systems, and discusses how they may
be used to carry out computation and how they may be
designed using evolutionary algorithms; Section III introduces
artificial biochemical networks, outlining prior work in this
area; Section IV introduces the ABN models used in this
research; Section V describes the control tasks to which we
have applied these models; Section VI presents results, which
are discussed in Section VII. Section VIII concludes.

II. DYNAMICAL SYSTEMS

A. Terminology

A dynamical system [21] is any system whose subsequent
state is determined by a function, or evolution rule1, of the
system’s current state. Starting at a particular point within the
system’s state space, known as its initial condition, the path
that the system follows through its state space, its trajectory,
is determined by iterating the evolution rule over a period of
time. Many dynamical systems have no analytical solution,
meaning that this iterative process is often the only way of
determining the system’s state at a particular time.

Following initial periods of wandering, termed transients,
trajectories may converge to limited parts of the state space
known as attractors. An attractor has a basin of attraction,
and any trajectory in this region will be drawn towards the
attractor. In a point attractor, all trajectories are drawn to a
single point in state space. In a cyclic attractor, they are drawn
to an endlessly repeating series of states. Dynamical systems
in which all trajectories eventually converge to one or more
attractors are termed dissipative. Those which do not converge
in this fashion are conservative.

Dynamical systems can have ordered and chaotic regions
of state space. In an ordered region, a trajectory becomes
predictable once it enters a point or cyclic attractor. In a
chaotic region, by comparison, a trajectory cannot be pre-
dicted, despite the deterministic evolution rule. This is due to
the phenomenon of exponential sensitivity to initial conditions
(popularly known as the butterfly effect), whereby neighbour-
ing trajectories move apart at an exponential rate, causing even
the smallest prediction error to be amplified exponentially.
Chaotic dynamical systems typically display complex, fractal
attractors known as strange attractors.

1Note that evolution here refers to change over time, not to a selection-
driven process as in biological evolution and evolutionary computation.

Fig. 1. Bifurcation diagram for the logistic map, showing period doubling
behaviour for r . 3.57, and close-up of the fractal structure thereafter [21].

Dynamical systems are said to be continuous, discrete
or hybrid, depending upon whether their evolution rule is
continuous-time, discrete-time or a mixture of both.

B. Computational Dynamical Systems

There are a number of reasons why dynamical systems
are computationally appealing. Perhaps most significantly,
they are capable of generating complex behaviours in an
efficient manner, using only a compact system definition. The
archetypal example of this is the logistic map, defined:

xn+1 = rxn(1− xn), x ∈ [0, 1]; r ∈ [0, 4] (1)

This simple iterative parameterised non-linear map exhibits
a wide range of behaviours depending upon the value of
parameter r. When r < 3, all trajectories converge to a single
value of x, irrespective of initial conditions. When r = 3, this
point attractor bifurcates, forming a cyclic attractor of period 2.
The attractor period then doubles repeatedly until, at r ≈ 3.57,
a chaotic attractor appears. Thereafter, bifurcation space takes
on a fractal form, with the system displaying various periodic
and aperiodic behaviours as r increases (see Fig. 1).

The dynamics of non-linear maps, such as the logistic
map, makes them computationally interesting in their own
right. Their complex, parameterisable, behaviour also makes
them interesting as elements in larger dynamical systems. An
example of this is the coupled map lattice (CML) [39], in
which an array of non-linear maps is coupled together to form
something akin to a continuous-valued cellular automaton.
These map lattices have been used to model the complex
dynamics that occur in a diverse range of natural systems,
including neural and genetic networks [40]. Furthermore,
through suitable encoding of inputs and outputs, they can
also be used for overtly computational tasks, such as density
classification [26].

Various kinds of dynamical system have been used for com-
putation. Table I gives examples of these, organised according
to whether they have discrete or continuous evolution rules
and state spaces. In addition to relatively well known in silico
algorithms, such as cellular automata (CAs) and recurrent
neural networks (RNNs), these include in vitro approaches
such as reaction-diffusion computers, and in vivo methods,
especially if biological organisms are considered as dynamical
systems [41]. An example of the latter is the use of the slime
mould physarum polycephalum for robotic control [31].

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 3

TABLE I
EXAMPLES OF COMPUTATIONAL DYNAMICAL SYSTEMS

Discrete space Continuous space

Discrete time Cellular automata Coupled map lattices
P Systems Recurrent neural networks
Boolean networks

Continuous time Gillespie algorithm Reaction-diffusion computers
Continuous-time RNNs
Physarum polycephalum

C. Evolving Computational Dynamical Systems

The use of compact representations has been posited as
a means of addressing the scalability issue in evolutionary
algorithms [42], in which solution size (and hence computa-
tional effort) tends to grow exponentially with problem size
[43]. Hence, the compact nature of dynamical systems makes
them particularly relevant from an evolutionary computation
perspective, and the use of computational dynamical systems
may offer the potential to evolve complex behaviours using
relatively modest computing resources.

There are numerous existing examples of computational
dynamical systems being evolved using evolutionary algo-
rithms. The most commonplace of these is the design and
optimisation of RNNs. Early work by Angeline et al. [44]
demonstrated how an evolutionary algorithm can be used to
induce both the weights and topology of an RNN, removing
the need to design application-specific architectures in advance
of conventional weight training. More recent work includes
the optimisation of neural modules using variants of GP [45],
and the development of specialised neuroevolution algorithms
such as NEAT [5], [46], [47]. Work has also been done on
evolving cellular automata [48], much of it in the context of
exploring the benefits of computation at the ‘edge of chaos’.
Other examples of evolved computational dynamical systems
include reaction-diffusion based controllers [29] and echo state
networks [49].

Given the difficulty of designing dynamical systems by
hand, the use of evolutionary algorithms provides a convenient
technique for programming such systems. However, not all
dynamical systems are equivalent from the perspective of
evolutionary computation. If we are to use evolved dynamical
systems to represent computation, it is sensible that we should
look for systems that are evolvable, i.e. those which possess
robustness in the face of genetic perturbation, whilst still en-
couraging useful forms of phenotypic exploration. Quite a lot
is known about the kinds of systems that possess evolvability
[50]–[54], much of which can be summarised by Michael
Conrad’s triplet: redundancy, compartmentalisation, and weak
linkage [50]. Redundancy provides both a buffer against
genetic change and a source of evolutionary capacitance to
drive future change. Compartmentalisation limits the scope of
genetic perturbations, whilst promoting modular reuse. Weak
linkage dampens perturbations, whilst easing the recruitment
of regulatory signals in novel contexts.

Biological systems are rich in mechanisms which confer
evolvability. Whilst these mechanisms operate at higher levels

of biological organisation (e.g. populations, ecologies), it is
particularly apparent at the organismal level, which is directly
exposed to the genetic variation associated with evolution. This
is the argument that drives our interest in artificial biochemical
networks: biochemical networks are the dynamical systems
responsible for encoding low-level biological behaviour—and,
in a sense, are the selected means of representing complex
behaviour in biological evolution.

III. ARTIFICIAL BIOCHEMICAL NETWORKS

A. Biochemical Networks

In biological systems, biochemical networks emerge from
protein-mediated molecular interactions taking place within
cells. These complex dynamical networks underlie both the
structure and function of biological organisms. We consider
three kinds of biochemical network: metabolic, genetic and
signalling.

A metabolic network results from self-organising interac-
tions between the enzyme-mediated reactions that take place
within a cell. It emerges when the products of certain re-
actions become the substrates of others, forming chains of
reactions known as metabolic pathways. Product-substrate
sharing between pathways results in the metabolic network.
A genetic network emerges from the regulatory interactions
between genes. It captures how they regulate one another’s
protein expression levels over time through the production
of transcription factors. A signalling network comprises the
protein-mediated reaction pathways through which chemical
messages are delivered to the cell’s internal environment.
The metabolic, genetic and signalling networks have been
described, respectively, as the self-organising, self-modifying,
and self-reshaping components of a cell’s biochemical network
[55].

These three networks do not work in isolation, but are
coupled. By regulating protein production, the genetic network
modifies the behaviour of both the metabolic and signalling
networks. By delivering chemical signals to different subcellu-
lar locations, the signalling network modulates the behaviour
of both genetic and metabolic networks. In single-celled
organisms, these interactions allow the cell’s metabolism to
be reconfigured for different nutrient environments; in multi-
cellular organisms, they are the basis of cellular differentiation
and morphogenesis. The interactions between the three kinds
of biochemical network are depicted in Fig. 2.

B. Artificial Metabolic Networks

We use the term artificial metabolic networks (AMNs) to
refer to computational architectures which are modelled on
the self-organising behaviour of cellular chemistries. In much
the same way that complex metabolic processing emerges
from interactions between biochemicals, these architectures
aim to achieve complex computational behaviour through the
interactions of simple computational elements.

P systems (also known as membrane systems) [8] are
perhaps the most widely studied of these approaches. In a
P system, chemicals are modelled as symbols, and chemical
reactions are modelled as symbolic rewriting rules. Symbols

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

Fig. 2. Interactions that take place between the three classes of biochemical
network present within a biological cell.

and rules are organised into compartments. During execution,
rules are iteratively applied to the symbolic state of each
compartment, and compartments may break open, causing the
composition of symbolic states. Whilst P systems are most
known for their use in biological modelling, they can also be
used computationally; in which case inputs are encoded in
the initial symbolic state, and outputs are read from the final
symbolic state. Such P systems are usually designed by hand.
See [56] for examples.

P systems can be considered a special case of a wider
group of algorithms known as artificial chemistries [9], [10]
and algorithmic chemistries [11], [12]. These comprise three
elements: a set of chemicals, a set of reactions, and an
algorithm that determines how chemicals move about and
when reactions can take place. Chemicals may be symbols
to which some computational meaning can be associated
[27], they may directly encode data structures, they may be
overtly computational in nature (e.g. lambda-expressions [11],
Prolog terms [12]), or they may even be other ABNs [57].
Likewise, reactions vary from simple symbolic transformations
to functional composition and complex structural modifica-
tions. By encoding inputs and outputs in the concentrations,
internal structures or positioning of chemicals, these artificial
chemistries can be used for computation. Artificial chemistries
have been evolved to carry out a number of computational
tasks, including robot navigation [27], classification [58], and
Boolean decision making [59].

C. Artificial Genetic Networks

An artificial genetic network (AGN) is a computational
architecture modelled on the regulatory interactions between
genes. The simplest, and best known, example of an AGN is
the Boolean network (often referred to as a random Boolean
network, or RBN). An RBN is a closed system comprising
a set of interconnected genes, each of which has a Boolean
state and a Boolean regulatory function—and whose state is
calculated by applying the regulatory function to the states
of those genes to which it is connected. In Kauffman’s [13]
original model, the states are updated synchronously.

RBNs can be seen as a generalisation of binary cellular au-
tomata in which update rules can reference non-neighbouring
cells and functions are heterogenous. In practice, computation
can be achieved in the same way as cellular automata: by

providing input via the initial activity state of the genes,
running a network for a certain number of time steps, and then
reading the output from the final activity states of the genes.
The computational properties of RBNs have been discussed at
length in [60], and also in [61] from a more implementation-
focussed perspective. In [30], the authors showed how RBNs
can be evolved to carry out multiplexing tasks.

The RBN model captures the process of gene regulation
as a deterministic, synchronous, discrete on/off event: all of
which are abstractions of the true behaviour which involves
elements of stochasticity, asynchronous timing and continuous
behaviour. Despite this, RBNs have been used to successfully
model the dynamics of real genetic networks [62], suggesting
that greater bio-realism is not a prerequisite for complex
behaviour. However, this does not imply that AGN models do
not differ in their ease of programmability, evolvability, and
(from an applied perspective) how readily they can be coupled
to an external system. From this perspective, the Boolean
nature of RBNs causes some problems. Most significantly, an
RBN comprising N genes has a state space of 2N possible
states. This means that small networks have a limited ability
to express complex attractor structures. Furthermore, inputs
and outputs must be binary encoded. Assuming that I/O is
encoded in initial and final expression states, this means there
must be at least as many genes as there are bits in the inputs
or outputs. Synchronicity and determinism also affect the ease
with which certain dynamics can be expressed, an issue which
is explored in [63].

Much of the work done on RBNs has been motivated
by the desire to model and understand biological systems.
However, other researchers have approached AGNs from the
perspective of evolutionary computation [14]–[16], [28], [32],
[33], [64], seeing them as a means for representing compu-
tational behaviour. There is considerable variation amongst
the resulting models. One prominent distinction is between
template matching [14], [15], [28] and connection-orientated
[16] approaches. The former captures the indirect means by
which biological genes regulate one another (i.e. transcription
factors binding probabilistically to upstream regulatory sites),
whereas the latter represents interactions explicitly. Other
distinctions can be made between use of continuous time [15],
[32] and discrete time [14], [16], [28], [33], [64] updates;
continuous [15], [16], [28], [32], [64] and discrete-valued [14],
[33] expression levels; and the use of spatial diffusion of gene
products [16], [28]. These AGNs have been applied to a variety
of tasks, including robotic control [28], pole balancing [32]
and image compression [33].

D. Artificial Signalling Networks

Signalling networks are yet to receive the same level of
computational interest as genetic and metabolic networks.
Nevertheless, they carry out a number of computationally
interesting behaviours [65], [66]. For instance, in [65], the
authors discuss the manner in which signalling pathways
integrate and pre-process diverse incoming signals, likening
their behaviour to that of a fuzzy classifier system. In [66],
the author draws parallels between the adaptive behaviours

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 5

of various signalling pathways and those of engineered con-
trollers. Early work in computational modelling of signalling
pathways led to a feed-forward architecture modelled upon
the behaviour of signalling proteins [17]. More recent work in
this area has focussed on signalling-based learning classifier
systems [18].

IV. ABN MODELS

The goal of this paper is to provide insight into the com-
putational potential of ABNs, particularly when used within
the context of evolutionary algorithms. It should be noted that
our aim is not to compare the many different ways in which
genetic and metabolic networks can be modelled computation-
ally. Rather, we aim to demonstrate how representative ABN
models can be practically applied to a range of computational
tasks. Also, since our focus is on practicality, our choice of
models reflects a desire for usability, simplicity and efficiency,
in addition to the more general goals of expressiveness and
evolvability. For this reason, all our models are continuous-
valued and discrete-time. In addition to allowing relatively
small networks to have complex dynamics, the former means
that the networks can be readily coupled to their environment.
The latter means that the networks are relatively efficient, since
there is no need to solve differential equations.

We are also interested in whether there are any benefits to
coupling together different types of ABN. As we mentioned in
Section III-A, biological networks do not work independently.
Rather, the metabolic network is repeatedly reconfigured by
the genetic network in order to meet the varying demands
placed upon a cell by its environment. We capture this idea by
coupling an artificial genetic network to an artificial metabolic
network, meaning that changes in the dynamics of the AGN
will lead to changes in the dynamics of the AMN.

In this section, we first introduce the stand-alone AGN and
AMN models used in this work, and then describe how these
are combined to form a coupled artificial biochemical network
(CABN).

A. Artificial genetic network (AGN)

Fig. 3. Artificial genetic network, where IG={g0, g1}; OG={g6, g7}.

The artificial genetic network consists of an indexed set
of genes, each of which has an expression level, regulatory
inputs, and a regulatory function which maps the expres-
sion levels of its regulatory inputs to its own expression
level. As with Boolean networks, interactions between genes
are defined explicitly through indices, rather than indirectly
through analogues of transcription factors. Formally: AGN =
〈G,LG, IG, OG, tG〉, where:

G is the set of genes {g0, ..., gnG
: gi = 〈λi, Ri, fi〉}, where:

λi : R is the expression level of a gene.
Ri ⊆ G is the set of regulatory inputs used by a gene.
fi : Ri → λi is a gene’s regulatory function.

LG is an indexed set of initial expression levels, where
|LG| = |G|.
IG ⊂ G is the set of genes used as external inputs.
OG ⊂ G is the set of genes used as external outputs.
tG is the number of time steps per execution.

The first time the AGN is executed, its expression levels
are initialised from LG. External inputs can be delivered
to the network either by explicitly setting the expression
levels of certain genes (specified in IG), or by introducing
new regulatory inputs with fixed values. After applying the
regulatory functions and propagating values between genes a
specified number of times, tG, outputs are captured from the
final expression levels of genes specified in OG.

This AGN model is a continuous-valued generalisation of
a Boolean network. However, it is also closely related to
other computational dynamical systems, including continuous-
valued cellular automata (when R is constrained to direct
neighbours), coupled map lattices (when f is a discrete map),
and recurrent neural networks (when f is a sigmoid). Because
of this, we can use a sigmoidal AGN as a proxy for an
RNN, giving an indication of how other ABN models compare
to this more established form of computational dynamical
system. Most RNN architectures are tailored towards particular
application areas, e.g. Elman networks [23], whose topology
promotes short-term memory acquisition during sequential
processing. In order to promote the generality of any compar-
isons we make (and following other evolutionary approaches
to RNN induction [44]), we do not restrict the topology of
evolved sigmoidal AGNs, allowing any appropriate pattern of
connectivity to be evolved.

B. Artificial metabolic network (AMN)

Fig. 4. Artificial metabolic network, where IC={c0, c1}; OC={c6, c7}.

The artificial metabolic network is a minimal implementa-
tion of an artificial chemistry, capturing the key idea that a
set of computational elements manipulate a set of chemicals
over a period of time, but abstracting away the elements found
in more complicated chemistries such as non-determinism, in-
ternal chemical structure, and spatial distribution. It comprises
an indexed set of enzyme-analogous elements which transform
the concentrations of an indexed set of real-valued chemicals.
Each enzyme has a set of substrates, a set of products, and a
mapping which calculates the concentrations of its products
based upon the concentrations of its substrates. Formally:
AMN = 〈C,E,LC , IC , OC , tM 〉, where:

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

C is the set of chemical concentrations {c0, ..., cnC
: R}.

E is the set of enzymes {e0, ..., enE
: ei = 〈Si, Pi,mi〉},

where:
Si ⊆ C is the set of chemicals used by the enzyme
(substrates).
Pi ⊆ C is the set of chemicals produced by the enzyme
(products).
mi : Rn → Rn is the enzyme’s substrate-product
mapping.

LC is an indexed set of initial chemical concentrations,
where |LC | = |C|.
IC ⊂ C is the set of chemicals used as external inputs.
OC ⊂ C is the set of chemicals used as external outputs.
tM is the number of time steps per execution.

The first time the AMN is executed, its chemical concentra-
tions are initialised from LC . External inputs are delivered to
the network by explicitly setting the concentrations of chemi-
cals whose indexes are specified in IC . At each time step, each
enzyme ei applies its reaction mi to the current concentrations
of its substrates Si in order to determine the new concentra-
tions of its products Pi. Where the same chemical is produced
by multiple enzymes, i.e. when ∃j, k : j 6= k∧ci ∈ Pj∩Pk, the
new concentration is the mean output value of all contributing
enzymes:

ci =
∑

ej∈Eci

ci,ej

|Eci |
(2)

where Eci
are enzymes for which ci ∈ Pi and ci,ej

is the
output value of ej for ci. After iterating the network tM times,
outputs are captured from the final concentrations of chemicals
specified in OC .

We also consider the effect of applying a mass conservation
law, such that the sum of chemical concentrations remains
constant over time. This more closely reflects biological
systems, where mass balance results in indirect regulatory
interactions between chemical reactions. It is implemented by
uniformly scaling concentrations so that:∑

ci∈C

ci = 0.5|C| (3)

However, chemicals which have reached saturation (c = 1) and
those which are not present in the chemistry (c = 0) remain
unchanged, preserving these special states.

C. Coupled Artificial Biochemical Network (CABN)

In the coupled artificial biochemical network (CABN)
model, we capture the idea of a genetic network controlling
the expression of a metabolic network.

Formally: CABN = 〈AGN,AMN, χ〉, where χ : GC → E
is an injective coupling function in which GC ⊆ G is the set
of enzyme coding genes. Each enzyme is coupled to a single
gene, and some genes may not be enzyme coding (yet are still
involved in regulating other genes). Coupling is carried out by
giving each enzyme an expression level, ξi, and setting this
to the expression level of the gene to which it is coupled, i.e.
∀(gi, ej) ∈ χ : ξj := λi. This expression level then determines

Fig. 5. CABN, where χ={{g0, e0}, {g2, e1}, {g3, e2}, {g5, e3}, {g7, e4}}.
Inputs may be delivered to either G ∈ AGN or C ∈ AMN.

the relative influence of each enzyme when calculating the new
concentration of a chemical. We consider three methods for
updating concentrations:

1) Proportional updates: The new concentration is the
mean of each enzyme’s output value weighted by its relative
expression level:

ci =
∑

ej∈Eci

ξici,ej∑
ej∈Eci

ξi
(4)

2) Scaled updates: The new concentration is the sum of
the outputs of each contributing enzyme, each scaled by their
enzyme’s expression level:

ci = min

1,
∑

ej∈Eci

ξici,ej

 (5)

3) Thresholded updates: An enzyme is only active if its
expression level is above a threshold value, τ . New concentra-
tions are calculated using the standard AMN update rule (Equ.
2), ignoring any inactive enzymes. This update rule models
gene expression as a Boolean process.

In biological cells, the dynamics of the genetic network
occur over a longer time-scale than those of the metabolic
network. To capture this relationship, the timing of the CABN
model is biased so that, on average, AMNs execute at a faster
rate than AGNs. This is done by reinterpreting the AGN’s tG
variable to be the interval between updates, in terms of the
AMN’s time frame. For example, if tM is 10 and tG is 5, the
AGN will be iterated twice in the time it takes the AMN to
be iterated 10 times.

Inputs can be delivered to either the AGN or the AMN
components of the CABN. In the control tasks, we make
a distinction between control inputs and other state inputs.
Control inputs are those which direct the desired behaviour
of the controller. These are delivered to the AGN, with the
expectation that changes in the control input will lead to
changes in gene expression, causing the AMN to switch
between different input-output mapping behaviours.

The idea of coupling an artificial genetic network to a
metabolic model has also recently been explored in [67] and

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 7

TABLE II
MATHEMATICAL FUNCTIONS USED WITHIN ABNS.

Sigmoid (logistic function):

f(x) =
1

1 + e−sx−b
, where s ∈ [0, 20], b ∈ [−1, 1]

Logistic map:
xn+1 = rxn(1− xn), where r ∈ [0, 4]

Baker’s map:

(xn+1, yn+1) =

(2xn, yn/2) 0 ≤ xn ≤ 1

2

(2− 2xn, 1− yn/2) 1
2
≤ xn < 1

Arnold’s cat map:
(xn+1, yn+1) = ([2xn + yn] mod 1, [xn + yn] mod 1)

Chirikov’s standard map:
xn+1 = (xn + yn+1) mod 1

yn+1 = (yn −
k

2π
sin (2πxn)) mod 1, k ∈ [0, 10]

[68]. In the former, the author investigates the attractor struc-
ture of a computational cell model in which two Boolean net-
works are coupled together, showing an advantage to coupling
networks with heterogenous topologies. The authors of [68]
also developed a cellular model, in which an ABN controls a
simple model of a cell’s energy metabolism, showing how it
can be used to control foraging behaviours in an artificial life
system.

D. Regulatory functions and enzyme mappings

There is a complex relationship between the overall dynam-
ics of a network and the dynamics of the processes taking place
at individual nodes within the network. For example, results
from work on coupled map lattices suggest that there is no
simple relationship between the dynamics of individual maps
and the overall dynamics of the coupled map, a phenomenon
known as non-trivial collective behaviour [69]. With this
in mind, we have used a variety of different mathematical
functions to implement the regulatory functions and enzyme
mappings which take place within the nodes of ABNs. These
are listed in Table II.

Sigmoids model the switching behaviour of non-linear bio-
logical systems, making them a good choice for approximating
the behaviours of genetic and metabolic pathways. In addition
to being a realistic model of processes that take place within
the nodes of biochemical neworks, sigmoidal functions have
also been used as effective low-level elements in other compu-
tational dynamical systems such as recurrent neural networks.
The sigmoid function can be implemented in various ways.
In our case, we use the logistic function, where (see Table
II) s determines the slope and b the slope offset (or bias).
For multiple inputs, x =

∑n
j=0 ijwj , where i0...in are inputs

and w0...wn ∈ [−1, 1] are corresponding input weights, with
negative values indicating repression.

Whilst biological regulatory functions and enzyme reactions
can often be approximated by sigmoidal and Boolean func-
tions, this is not always the case. These biological functions
are the result of complex physical and chemical interactions,
often involving multiple diverse biomolecules [70], [71]. Con-
sequently, they tend to be highly non-linear in nature. We have
not attempted to model these functions explicitly—although
this could be an interesting direction for future work. We have,
however, attempted to capture the idea of complex, non-linear
functions by using discrete non-linear maps to implement
regulatory functions and enzyme mappings. As discussed in
Section II-B, discrete maps display a range of complex dynam-
ics and have generated considerable computational interest in
their own right.

In this work, we use four discrete maps that capture the
natural dynamics present in a range of biological and physical
systems. The logistic map, which we have already discussed,
is a model of biological population growth. Depending on
the value of parameter r, the system is attracted to either a
fixed-point, cyclic or chaotic orbit [72]. The baker’s map [73]
is an archetypal model of deterministic chaos, capturing the
irregular, unpredictable fractal structured behaviour that results
from a process of repeated stretching and contraction—as seen
when kneading bread, hence the map’s name. Arnold’s cat map
[74] is another model of deterministic chaos which results
from a geometric transformation of the unit square, and leads
to interesting periodic behaviour. Chirikov’s standard map [75]
captures the behaviour of dynamical systems with co-existing
ordered and chaotic regimes. Its properties are discussed in
detail in Section V-A2. The parameterised maps (the logistic
map and Chirikov’s map) can be used either with an evolved
fixed parameter value or with an extra input, whose current
value is used to set the parameter. The latter is referred to
as a tunable map, since its dynamics can be modified by the
ABN during execution.

V. CONTROLLING DYNAMICAL SYSTEMS

We have applied ABN-based controllers to three different
tasks, chosen to be representative of the kinds of complex
dynamics that occur in natural systems. The first two involve
state space targeting in numerical dynamical systems that
display both ordered and chaotic dynamics, namely the Lorenz
system and Chirikov’s standard map. The final task involves
controlling the locomotion of a simulated legged robot. For
each of the tasks, the aim is to evolve a closed-loop controller
which uses an ABN to map current system state into appropri-
ate control signals—which, in turn, determine future system
state.

A. State Space Targetting in Mixed Chaotic/Ordered Systems

Chaotic dynamics occur across a wide spectrum of man-
made and naturally occurring systems. Control of chaotic
dynamics is therefore important in many domains: including
spacecraft steering [76], control of chemical plants, prevention
of heart arrhythmia [77], and even control of the weather
[78]. For this reason, a number of chaos control methods
have been developed [79]. Of these, two approaches are

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

prominent: those which analyse the system’s return map, and
those which use time-delayed feedback. The former derive
from the seminal method of Ott, Grebogi and Yorke (OGY)
[80], which waits for the system to approach an unstable fixed
point or orbit and then generates small perturbations to push
the trajectory in the stable direction of the fixed point or
orbit. The magnitude of the perturbation is determined through
analysis of the local Eigenstructure around the control point,
and more recent variants of this method consider multiple
control points to reduce the time required to reach stabilisation
[81]. The delayed feedback approach is typified by Pyragas’
method [82], which involves applying a control signal whose
magnitude is proportional to the difference between the sys-
tem’s current state and its state at a previous time step. Other
than determination of an appropriate time delay, this method
requires no explicit knowledge of the local dynamics. More
recent adaptations make use of multiple time delays to handle
higher degrees of instability [82].

These chaos control techniques are concerned with main-
taining a system at a fixed operating point. A more general
approach, sometimes termed chaos targeting, or even more
generally state space targeting, involves guiding a trajectory
between points or regions within a dynamical system’s state
space. This can be done by mapping the system’s state
space and using analytical techniques to determine patterns of
perturbations that will minimise transport times from one point
to another. Such techniques have been successfully applied in
the domain of spacecraft steering [76]. However, they require
a detailed understanding of the underlying state space.

In this work, we are interested in whether evolved ABNs
can be used to carry out state space targeting without requiring
explicit knowledge of the underlying system’s state space.
Many real world systems display both chaotic and ordered
behaviour. In reflection of this, we consider two numerical
dynamical systems that exhibit both chaotic and ordered
dynamics: the Lorenz system and Chirikov’s standard map.
The Lorenz system is a continuous dissipative dynamical
system, and is representative of the complex flows that occur
in many biological and physical systems, such as blood flow,
heart rhythms, and the atmosphere. Its behaviour is either
ordered or chaotic depending upon the settings of its governing
parameters. Chirikov’s standard map is a discrete conservative
system, representative of many physical systems that display
complex and varied behaviour, such as n-body gravitational
systems and other Hamiltonian systems. Its state space con-
tains co-existing ordered and chaotic regions, with the balance
between the two determined by a governing parameter. In both
the Lorenz system and the standard map, control is carried
out by modulating a governing parameter rather than by
directly manipulating trajectories, allowing evolved controllers
to explore different dynamical regimes.

There have been previous applications of evolutionary algo-
rithms [83]–[85] and neural networks [86], [87] within chaos
control. In general, these were concerned with maintaining a
system at a fixed operating point, aiming to improve upon
the accuracy of local control techniques such as OGY, and
often with explicit knowledge of dynamical information such
as local Lyapunov exponents. Our approach is quite different:

-20
-15

-10
-5

 0
 5

 10
 15

 20-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

z

!- !+

x

y

z

Fig. 6. A trajectory within the Lorenz attractor (σ = 10, ρ = 28, β = 8
3

),
showing the location of the unstable equilibrium points ε− and ε+. The heavy
line shows one of the unstable periodic orbits followed by the trajectory.

the controller must guide a trajectory across a state space, and
it is given no information about the structure or dynamical
characteristics of the state space, other than the current lo-
cation of the trajectory being guided and the distance to the
target region.

1) Lorenz System: The Lorenz system [88] is a continuous-
time dynamical system which models oscillatory behaviours
caused by atmospheric convection. It is defined by the follow-
ing set of ordinary differential equations:

ẋ = σ (y − x) ẏ = x(ρ− z)− y ż = xy − βz (6)

For ρ & 24.74, the Lorenz system displays chaotic be-
haviour, with all initial points attracted to a single two-
lobed strange attractor (see Fig. 6) which orbits two unstable
equilibrium points, which we term ε+and ε−, located at:

ε+ = (
p
β(ρ− 1),

p
β(ρ− 1), ρ− 1) (7)

ε− = (−
p
β(ρ− 1),−

p
β(ρ− 1), ρ− 1) (8)

The attractor consists of an infinite number of unstable
periodic orbits. These are periodic in the sense that they orbit
one or both of the fixed points a certain number of times
before returning to roughly the same location. The orbits are
unstable in the sense that trajectories will follow them for only
a limited period of time before moving to another orbit. The
dynamics of the system lead to trajectories which appear to
flip unpredictably between the two lobes of the attractor.

The goal is to find an ABN-based controller which can (i)
guide a trajectory between the two equilibrium points and, (ii)
once it has reached a target equilibrium point, stabilise it at
the fixed point for a defined period of time. This is tested by
requiring it to move from ε− to ε+ and remain there until
t = 50, then return to ε−, remaining there until t = 100. In
order to do this, the ABN is allowed to modulate the Rayleigh
parameter2, ρ, within the range [0, 100].

For inputs, the ABN is given the current location, (x, y, z)
(values scaled from [−50, 50] to [0, 1]), and the distance to the
target, d, with the latter defined as the control signal when a

2Whilst ρ is not normally a physically accessible parameter of the Lorenz
system, here we use it to explore the more general concept of control through
modulation of a system’s governing parameters.

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 9

(a) k = 0.25 (b) k = 0.5 (c) k = 0.75 (d) k = 1.0

(e) k = 1.05 (f) k = 1.1 (g) k = 1.25 (h) k = 1.75

Fig. 7. Sampled orbits of the standard map for various values of k, showing the transition from ordered to chaotic behaviour as k increases. Each plot shows
200 trajectories of length 500, with the same set of initial conditions used for each plot.

CABN is used. To make the problem more challenging, this
distance is provided only when the Euclidean distance to the
target E < 2.0. Above this, it is set to the maximum input
value, i.e. d = min{1, E

2 }.
The ABN generates a single output, the new value of ρ. The

Lorenz equations are numerically integrated using the fourth-
order Runge-Kutta method with a step size of ∆t = 0.01. The
ABN is executed every 10 steps (i.e. ∆t = 0.1) to calculate a
new value of ρ. The objective function fL is defined:

fL =
∑

s 1− d
s

(9)

where s is the number of time steps, i.e. a measure of the
mean distance from the current target for every time step. A
population size of 500 and a generation limit of 50 are used.

2) Chirikov’s Standard Map: Chirikov’s standard map [75]
describes a conservative discrete-time dynamical system which
iteratively maps points within the unit square. It models the
dynamical behaviour of a kicked rotator: a rotating bar which
is periodically kicked with a frequency corresponding to k.
The word ‘standard’ in the map’s name follows from the
observation that it locally captures the behaviours of many
systems which have co-existing chaotic and ordered dynamics.
Consequently, it provides a reductionist model of dynamics
that occur in a range of physical systems, such as particle
accelerators, cometary systems, and diodes.

The aim is to guide a trajectory from a region at the bottom
of the map to a region at the top of the map. Using the normal
definition of the map (see Table II), trajectories are able to
move directly from y=0 to y=1, making this a trivial task. To
prevent this behaviour, we do not take the modulus of the y co-

ordinate, forcing trajectories to navigate across the unit square
in order to reach the target region (and, as a consequence, the
unit square as drawn recurs periodically along the y-axis):

xn+1 = (xn + yn+1) mod 1

yn+1 = yn −
k

2π
sin (2πxn) (10)

For low values of k, the dynamics of the system are ordered,
with initial points converging to cyclic orbits which remain
bounded on the y axis (see Fig. 7a–b). As k increases, islands
of chaotic dynamics begin to appear (see Fig. 7c–h). The map
has a critical point at kc ≈ 0.972. For k > kc, the chaotic
islands are fully connected along the y axis; meaning that, in
principle, it is possible to follow a chaotic orbit from y = 0
to y = 1. However, the permeability of the central region
increases only slowly as k moves past kc [89] (see Fig. 7d–f).
As an example of this, when k = 1.1, using 1000 randomly
chosen initial points and an upper limit of 106 iterations, we
measured a median transit time of 64000 iterations of Equ. 10
to move from the bottom to the top of the map, with 27% of
trajectories not reaching the target within the upper limit.

Following the examples of [89] and [90], the goal is to
find a controller which can navigate from the bottom to the
top of the standard map in the shortest number of steps. In
order to do this, the ABN is allowed to modulate parameter
k in Equ. 10 within the range [1.0, 1.1]. We use the same ini-
tial ([0.45,0]→[0.55,0.05]) and target ([0.45,0.95]→[0.55,1])
regions as used in [90]. Inputs to the ABN are the current
position (x, y) and the Euclidean distance from the top-centre
of the map, and the single output is the new value of k.
Distance is defined to be the control signal when a CABN

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

is used. The evolved ABNs are evaluated on 20 random
points within the initial region. Fitness is the mean number of
steps required for these trajectories to reach the target region.
Trajectories which do not reach the target region within 1000
steps are assigned an arbitrary figure of 2000 steps, biasing
search towards controllers effective over all initial conditions.
A population size of 200 and a generation limit of 50 are used.

B. Controlling Hybrid Dynamics in a Legged Robot

Many real world systems do not have purely continuous or
discrete dynamics, but rather a hybrid of the two [91]. These
often occur on different time scales, such that continuous state
flow is occasionally interrupted by jump discontinuities caused
by the occurrence of discrete events. Two common examples
of this are physical systems with impact, such as a bouncing
ball, and switched systems, where a signal change causes a
discrete change in behaviour. The robotic locomotion task
described below features elements of both of these.

Generating legged locomotion gaits is a challenging prob-
lem which involves simultaneously solving the two tightly cou-
pled problems of support and progression [20]. For practical
purposes, the problem can be made more tractable through the
use of high-level primitives (e.g. sinusoidal functions [92]),
morphological features such as rotary legs [93], and servo-
motors [94]. However, in this work we are interested in
how legged locomotion gaits can be generated through direct
control of the actuators. In this respect, the task is similar to
that addressed in [20], though a notable difference is that we
evolve a single controller to control all actuators at once, with
no explicit knowledge given regarding their morphological
relationships. Furthermore, in order to transform the problem
into a switched system, the controller is required to be able
to reverse the robot’s direction of movement in response to an
external signal.

1) Legged robot: The robot (see Fig. 8) is purposely very
simple in design, comprising a square top section with four
legs connected by actuators at the corners. The actuators are
limited to movement in the x-axis plane, with a maximum
elevation of 60◦ from vertical, a maximum angular velocity
of 3m/s, and a maximum torque of 150Nm. The robot is
simulated using the Open Dynamics Engine (ODE) physics
engine, with a step size of ∆t = 0.05s, friction of 200N, CFM
(an ODE parameter) of 10−5, and standard gravity. Motor
characteristics are chosen so that all actuators have to work in
co-ordination to move the robot, forcing the controller to use a
quadrupedal gait rather than, for instance, a dragging motion.

ABNs have five inputs, corresponding to the actuator angles
and the direction signal, and four outputs, which are used to set
the torques of the actuators during the next simulation period.
The requirement to map angles to torques adds an extra degree
of difficulty to the task. For CABNs, the direction signal is
used as the AGN’s control input. The population size is 500,
with a generation limit of 100. We use a total evaluation period
of 2000 time steps and a between-update simulation period of
10 steps.

2) Objective function: The ABN controllers are required
to generate a quadrupedal gait that moves the robot as fast

as possible in a given direction. Upon receiving a signal, the
robot is required to change direction by 180◦, and then move
as fast as possible along this new heading. Controller fitness
is measured over a sequence of epochs < e0, ..., eN−1 >,
each with a random duration between 300 and 600 time steps,
with the required direction of movement reversing during
subsequent epochs. The objective function fR is defined:

fR =
tmax − tmin

N
min

∑

n∈Neven
n<N

p(n),
∑

n∈Nodd
n<N

p(n)

 (11)

where tmax and tmin are the maximum and minimum bounds
on epoch duration and p(n) is the progress made during epoch
n, defined:

p(n) =
dn

tn

(
2
ηb(en, en+1)

π
− 1
)(

1− ηw(en)
π

)
σn (12)

where dn is the distance travelled during epoch n, tn is the
duration of epoch n, ηb is the difference in mean heading
between two epochs, ηw is the difference in heading within
an epoch (as measured during the first and last 50 time-steps
of the epoch), and σn is a penalty for non-movement: equal to
1 if the robot has not moved for 100 subsequent ABN updates
in epoch n, and 0 otherwise.

In effect, progress is the mean velocity in the required
direction, with penalties for turning during an epoch and for
non-movement. Assuming movement in a straight-line and
no stopping, fitness is equivalent to the expected distance
covered during an epoch in the forward or backward direction,
whichever is shortest.

C. Evolutionary Algorithm

ABNs are evolved using a fairly standard generational
evolutionary algorithm. Special-purpose techniques, such as
those developed for neuro-evolution [5], graph induction [95]
and multi-objective problems [96], may be able to find better
solutions to these tasks. However, we intentionally chose to
keep the evolutionary algorithms simple in order to avoid
complicating the comparison between different ABN models.

The ABNs are linearly encoded as shown in Fig. 9. This
represents the ABN as an array of genetic units, followed by
initial gene expression and chemical concentrations (where

Fig. 8. Quadruped robot simulated in Open Dynamics Environment. Arrows
indicate the direction of movement along the x-axis plane.

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 11

Fig. 9. Linear encoding of a CABN used by the evolutionary algorithm, also
showing (inset) how individual genes and enzymes are represented.

applicable) and timing information (tG and/or tM). Each
genetic unit has an optional regulatory region and an optional
coding region. In a coupled network, the regulatory region
encodes the gene (gi) and the coding region encodes the
enzyme (ei) which it expresses. Where a gene does not express
an enzyme (such as in an AGN), the coding region is empty.
For an AMN, where there are no genes, the regulatory region
is empty. Inputs and outputs (Ri, Si and Pi) are represented
by absolute references to indices. Function parameters (e.g.
slopes, input weights) and initial values are represented as
floating-point values.

The number of genes and enzymes is fixed, except in the
case of CABNs, where individual genes may or may not
express an enzyme. Again, this is to avoid complicating the
interpretation of the results, since variable-length evolutionary
algorithms can display unexpected solution size pathologies
(as we recently observed when evolving ABNs for time series
classification [97]). Based on the results of initial experiments,
for all tasks the solution lengths are chosen to be more than
sufficient to express a valid solution.

The timing variables, tG and tM , are bounded within the in-
terval [1, 100]. Again, this upper limit is more than sufficient to
express valid solutions, and is intentionally permissive. There
is no evolutionary pressure towards time-efficient solutions.

The evolutionary algorithm uses tournament selection (tour-
nament size 4) and elitism (size 1). Child solutions are gen-
erated using either uniform crossover or mutation in the ratio
1:4. Crossover points (p=0.15) always fall between genetic
units. Real-valued elements are mutated (p=0.015/element)
using a Gaussian distribution centred around the current value.
Gene regulatory inputs and enzyme substrates may be added or
removed (p=0.015/element), with new indices chosen either
randomly (p=0.5) or by duplicating an existing index (p=0.5).
Operator probabilities were chosen based on experience, and
have not been optimised for individual problems.

VI. RESULTS

A. Controlling the Lorenz System

Figs. 10 and 11 show fitness distributions of controllers
evolved to carry out state space targeting in the Lorenz
system. Fig. 10 summarises the performance of uncoupled

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
G
N
(A
ll)

A
G
N
(S
ig
)

A
G
N
(M
a
p
s
)

A
G
N
(i
,A
ll)

A
G
N
(i
,S
ig
)

A
G
N
(i
,M
a
p
s
)

A
M
N
(A
ll)

A
M
N
(S
ig
)

A
M
N
(M
a
p
s
)

A
M
N
(C
,A
ll)

A
M
N
(C
,S
ig
)

A
M
N
(C
,M
a
p
s
)

F
it
n
e
s
s

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

++

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+
++

+

+

(a) Solution length 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
G
N
(A
ll)

A
G
N
(S
ig
)

A
G
N
(M
a
p
s
)

A
G
N
(i
,A
ll)

A
G
N
(i
,S
ig
)

A
G
N
(i
,M
a
p
s
)

A
M
N
(A
ll)

A
M
N
(S
ig
)

A
M
N
(M
a
p
s
)

A
M
N
(C
,A
ll)

A
M
N
(C
,S
ig
)

A
M
N
(C
,M
a
p
s
)

F
it
n
e
s
s

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+ +

+

++
+

+

+

+

+

+

+
+

+

++

(b) Solution length 20

Fig. 10. Fitness distributions for uncoupled ABNs carrying out state space
targeting in the Lorenz system. High numbers are better. Notched box plots
show summary statistics over 50 runs. Overlapping notches indicate when
median values (thick horizontal bars) are not significantly different at the 95%
confidence level. Kernel density estimates of underlying distributions are also
shown (in grey). Abbreviations: Sig=sigmoid, All=all functions (maps and
sigmoids), C=conservation of mass, i=distance signal delivered to inputs.

AGN and AMN-based controllers, illustrating the effect that
solution size, function choice, mass conservation (for AMNs),
and signal destination (for AGNs) have upon fitness. Fig. 11
summarises the performance of coupled ABNs. In addition to
function choice, mass conservation and signal destination, this
also shows the effect that the coupling function (Section IV-C)
has upon fitness.

Overall, coupling has a positive effect upon controller
fitness. Comparing CABNs (each composed of an AGN and
AMN of length 10) with standalone AGNs and AMNs (of
length 10 and 20 for a fair comparison), it is clear that
the fitness distributions are significantly shifted towards the
optimum for most CABN parameterisations. For the CABNs,
the coupling function (Figs. 11a–c) also has a considerable
impact upon fitness distributions, with proportional concen-
tration updates leading to the best controllers on average and
thresholded updates leading to lower maximum fitness.

Mass conservation appears to be important when evolving
both standalone AMNs and CABNs. For the AMNs, fit con-
trollers were very hard to find when the conservation rule
was not applied. For CABNs, conservation both improves
mean fitness and makes evolution less sensitive to sub-optimal
update rules and function choices. However, it should be noted
that conservation does not lead to overall fitter solutions—
in fact, for CABNs with proportional updates (Fig. 11a), the
fittest solutions were found when conservation was not used.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
ll!
>
C
,A
ll

S
ig
!
>
C
,S
ig

M
a
p
s
!
>
C
,M
a
p
s

S
ig
!
>
C
,B
a
k
e
rs

S
ig
!
>
C
,C
a
t

S
ig
!
>
C
,L
o
g

S
ig
!
>
C
,S
td

A
ll!
>
A
ll

S
ig
!
>
S
ig

M
a
p
s
!
>
M
a
p
s

S
ig
!
>
B
a
k
e
rs

S
ig
!
>
C
a
t

S
ig
!
>
L
o
g

S
ig
!
>
S
td

F
it
n
e
s
s

+

+
+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

(a) Proportional updates

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
ll!
>
C
,A
ll

S
ig
!
>
C
,S
ig

M
a
p
s
!
>
C
,M
a
p
s

S
ig
!
>
C
,B
a
k
e
rs

S
ig
!
>
C
,C
a
t

S
ig
!
>
C
,L
o
g

S
ig
!
>
C
,S
td

A
ll!
>
A
ll

S
ig
!
>
S
ig

M
a
p
s
!
>
M
a
p
s

S
ig
!
>
B
a
k
e
rs

S
ig
!
>
C
a
t

S
ig
!
>
L
o
g

S
ig
!
>
S
td

F
it
n
e
s
s +

+

+
+

+

+

+
++
++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+
+

++ +
+
++++

+

+
+
+

+

++

++
+

+

+

+

+

+
+

+

+

+

+

+

+
+

(b) Scaled updates

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
ll!
>
C
,A
ll

S
ig
!
>
C
,S
ig

M
a
p
s
!
>
C
,M
a
p
s

S
ig
!
>
C
,B
a
k
e
rs

S
ig
!
>
C
,C
a
t

S
ig
!
>
C
,L
o
g

S
ig
!
>
C
,S
td

A
ll!
>
A
ll

S
ig
!
>
S
ig

M
a
p
s
!
>
M
a
p
s

S
ig
!
>
B
a
k
e
rs

S
ig
!
>
C
a
t

S
ig
!
>
L
o
g

S
ig
!
>
S
td

F
it
n
e
s
s

+

+

+

+
++

+

+ ++
+
+

+

+

++

+

+

+

+

+

+

+

++

+

++

+

+

+

+

+
++
+

+
+

+

+

+
++
+

+

+

+

+

+

+

(c) Thresholded updates (τ = 0.5)

Fig. 11. Fitness distributions for coupled ABNs carrying out state space
targeting in the Lorenz system. CABNs are defined according to the notation
AGN→AMN. Abbreviations: Log=logistic map, Std=standard map.

Delivery of signals to regulatory inputs has a similar effect
upon AGNs. For uncoupled AGNs, much fitter solutions were
found, on average, when the distance signal was delivered as a
regulatory input to each gene, rather than via initial expression
state. A similar pattern was found for CABNs, with few fit
solutions found when the distance input was delivered via gene
expression (results not shown).

Choice of regulatory and enzyme functions also has a
large impact upon fitness distributions. For the standalone
ABNs, sigmoids performed fairly well on average. With the
notable exception of the logistic map, good discrete map-based
AGNs and AMNs were hard to find. Near-optimal solutions
could only be found when using logistic maps. For CABNs,
on average the best controllers were found when using a
sigmoidal AGN coupled to a discrete map-based AMN. In
Fig. 11 we show the effect that choice of discrete map, in this

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140 160 180 200

F
it
n
e
s
s

Generations

AGN(i,Sig)
AMN(C,Sig)

CABN(Sig->Log)

Fig. 12. Fitness evolution of solutions to the Lorenz task, averaged over 50
runs, for the best AGN, AMN and CABN parameterisations.

case, has upon the fitness distributions. As with standalone
ABNs, it is clear that CABNs with logistic map-based AMNs
are the easiest to find. However, good solutions can still be
found when using each kind of map individually.

Fig. 12 compares the fitness evolution of the best AGN,
AMN and CABN parameterisations over a longer period
of time, showing that, on average, Sig→Log CABN runs
converge much faster than the standalone ABN runs, and also
appear to approach a higher fitness level. For this task, there is
no significant difference in evaluation times for the different
ABN models—all runs take ∼ 2 minutes to complete on a 25
core cluster, with simulation of the Lorenz equations being the
dominant factor. Given the lack of parsimony pressure, there is
considerable variance in the evolved timing variables, tG and
tM . For the CABN runs, for instance, the AMN is iterated 55
times (s.d. 26) for each control step, with the AMN iterated
once every 30 iterations of the AMN (s.d. 22). Although the
standard deviations are large, this does suggest that the genetic
components of evolved CABNs are operating over consider-
ably slower time-scales than the metabolic components.

Fig. 13 shows examples of how trajectories are controlled
by evolved ABNs. The fittest controllers follow behaviours
similar to those shown in Figs. 13a and b. The former
uses a continuously-varying control signal that modulates the
dynamics through both ordered and chaotic regimes, guiding
the trajectory towards the control point. The latter uses a
fixed control signal to push the trajectory into a chaotic
orbit, which then naturally approaches the control point. In
both cases, as the trajectory approaches the control point, the
control signal becomes continuously-varying, with a gradually
decreasing magnitude that finally disappears when ρ = 28.
In this respect, the strategy carried out near the fixed points
resembles Pyragas’ method [82]. In Figs. 13c–d we show two
other control strategies used by evolved ABNs. These involve
significantly longer transient periods, but both are valid, and
illustrate the diversity of the evolved strategies.

We expected that coupled networks would improve the per-
formance of controllers by allowing rapid switching between
different behaviours. Analysis of the behaviour of evolved
controllers suggests that rapid switching does take place within
the coupled networks. An example is shown in Fig. 14b where
the turning on of the distance signal prompts a discrete change

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 13

-20
-15

-10
-5

 0
 5

 10
 15

 20-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

 20

 25

 30

 35

 40

 45

 50

 55

z

x
y

z

(a) Fitness = 0.86

-20
-15

-10
-5

 0
 5

 10
 15

 20-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

z

x
y

z

(b) Fitness = 0.82

-20
-15

-10
-5

 0
 5

 10
 15

 20-30
-20

-10
 0

 10
 20

 30

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

z

x
y

z

(c) Fitness = 0.36

-8
-6

-4
-2

 0
 2

 4
 6

 8-10
-8

-6
-4

-2
 0

 2
 4

 6
 8

 10

 0

 5

 10

 15

 20

 25

 30

z

x
y

z

(d) Fitness = 0.18

Fig. 13. Examples of evolved controllers moving between unstable points in the Lorenz system via control of the Rayleigh parameter (ρ), showing (left)
the controlled trajectory, and (right) how the Rayleigh parameter is modulated. (a) and (b) show typical control strategies used by high-fitness discrete map
and sigmoidal ABNs, respectively; (c) and (d) show examples of more exotic control strategies used by evolved controllers.

-20
-15

-10
-5

 0
 5

 10
 15

 20-40

-30

-20

-10

 0

 10

 20

 30

 20

 25

 30

 35

 40

 45

 50

 55

 60

z

!-
!+

x

y

z

(a) Controlled trajectory (b) Time series

Fig. 14. Example of a coupled ABN guiding a trajectory, showing (a) the
trajectory being guided from ε−to ε+(broken line) then back to ε−(unbroken
line); (b) as the trajectory approaches ε+, (at t ' 15), the distance signal (I0)
starts to turn on, causing a change in gene expression (G0−G9), which leads
to a change in the metabolic state (C0− C9) and the control output (C9).

Fig. 15. Fitness of evolved controllers on original and generalised tasks (left,
fittest uncoupled; right, fittest coupled).

in gene expression state, leading to a change in the network’s
metabolic behaviour. This change in expression takes place
when the trajectory approaches an equilibrium point, causing
the controller to flip from a steering behaviour into a stabilising
behaviour where it attempts to keep the trajectory at the
equilibrium point.

We also looked at the generality of evolved controllers,
by requiring them to repeat the original task twice in suc-

0.15 0.20 0.25 0.30 0.350
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0.15

0.20

0.25

0.30

0.35

!!n
!!
n
""
1

!!
n
""
2

(a) Fitness = 0.87

0.10 0.15 0.20 0.25 0.30 0.35 0.400
.1
0

0
.1
5

0
.2
0

0
.2
5

0
.3
0

0
.3
5

0
.4
0

0.10

0.15

0.20

0.25

0.30

0.35

0.40

!!n

!!
n
""
1

!!
n
""
2

(b) Fitness = 0.88

0.200.220.240.260.280.300.320.340.360.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36

ρρn

ρρ n
−−1ρρ n
−−2

(c) Fitness = 0.86

0.10 0.15 0.20 0.25 0.30 0.35 0.400.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.10
0.15

0.20
0.25

0.30
0.35

0.40

ρρn
ρρ n

−−1ρρ n
−−2

(d) Fitness = 0.65

Fig. 16. Attractor structure of four different evolved ABNs controlling
trajectories in the Lorenz system. These phase portraits were reconstructed
using delay embeddings of each network’s output (ρ) time series. According to
Taken’s embedding theorem [98], the resulting phase portrait is topologically
equivalent to the system’s true dynamical behaviour.

cession (i.e. ε−→ ε+→ ε−→ ε+→ ε−). Fig. 15 compares the
performance of AMNC,Log and Sig→Log controllers, the fittest
uncoupled and coupled ABNs, upon this task. It is evident that
the coupled solutions are far more likely to solve the general
problem of moving repeatedly between the equilibrium points.

Complex dynamical systems are inherently difficult to anal-
yse, and computational dynamical systems are no exception.
However, techniques from the field of non-linear time series

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

7
0
0

6
0
0

5
0
0

4
0
0

3
0
0

2
0
0

1
0
0

A
G
N
(A
ll)

A
G
N
(S
ig
)

A
G
N
(M
a
p
s
)

A
G
N
(i
,A
ll)

A
G
N
(i
,S
ig
)

A
G
N
(i
,M
a
p
s
)

A
M
N
(A
ll)

A
M
N
(S
ig
)

A
M
N
(M
a
p
s
)

A
M
N
(C
,A
ll)

A
M
N
(C
,S
ig
)

A
M
N
(C
,M
a
p
s
)

F
it
n
e
s
s

+
++

+

+

+

+
+

+

+

+
+

+

+
+
+

+

(a) Uncoupled ABNs

7
0
0

6
0
0

5
0
0

4
0
0

3
0
0

2
0
0

1
0
0

A
ll!
>
C
,A
ll

S
ig
!
>
C
,S
ig

M
a
p
s
!
>
C
,M
a
p
s

S
ig
!
>
C
,B
a
k
e
rs

S
ig
!
>
C
,C
a
t

S
ig
!
>
C
,L
o
g

A
ll!
>
A
ll

S
ig
!
>
S
ig

M
a
p
s
!
>
M
a
p
s

S
ig
!
>
B
a
k
e
rs

S
ig
!
>
C
a
t

S
ig
!
>
L
o
g

F
it
n
e
s
s

+

+
+
+

+

+

+

+

++

(b) Coupled ABNs

Fig. 17. Fitness distributions for uncoupled and coupled ABNs carrying out state space targeting in Chirikov’s standard map. All networks are of length 10.
Distributions towards the top of the figures are better. See Figs. 10 and 11 for abbreviations.

 200

 400

 600

 800

 1000

 1200

 1400

 1600
 0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

AGN(Sig)
AMN(C,Sig)

CABN(Sig->Bakers)

Fig. 18. Fitness evolution of solutions to the standard map task, averaged
over 50 runs, for the best AGN, AMN and CABN parameterisations.

analysis [98] can be used to provide some understanding of
the dynamical behaviour of these kinds of systems. Phase
space reconstruction is one such technique, providing a means
of visualising the system’s attractor structure. Fig. 16 shows
representative examples of the reconstructed phase spaces3

of evolved controllers. In general, we found that the better
solutions have very similar attractor structure. High fitness
controllers also appear to be largely symmetrical, carrying
out similar behaviours whether moving from ε− to ε+ or
vice versa. Solutions with lower fitness displayed less well-
defined attractors, but with a similar topology to the fitter
controllers (e.g. Fig. 16d). This may explain the differences
in generality seen in Fig. 15, with coupling leading to higher
fitness solutions whose well-defined attractors are more likely
to generalise.

B. Controlling Chirikov’s Standard Map

Fig. 17 shows the fitness distributions of both coupled and
uncoupled ABNs evolved to carry out state space targeting in
Chirikov’s standard map, summarising the effect that coupling,
function choice, mass conservation (for AMNs and CABNs),
and signal destination (for AGNs) have upon fitness. We do
not show the effect of the coupling function, since this had

3See [99] for a discussion of methods for phase space reconstruction,
including the use of delay embeddings, and the projection of principal
components used later in this article.

minimal impact upon performance. The best controllers had a
median path length of ∼110 steps (an example path is shown
in Fig. 19). This is broadly similar to the trajectory mapping
method described in [90], where the authors calculated orbits
which traverse the standard map in ∼125 steps when k = 1.25.

Unlike for the Lorenz system, there appears to be no
significant advantage to using coupling when solving this task.
Function choice also has a much smaller impact: both sigmoid
and map-based ABNs could solve the task well. Interestingly,
logistic map-based ABNs perform very poorly when used to
solve this problem, in stark contrast to the Lorenz task. The
exception to this is when mass conservation is used—again,
we find that mass conservation tends to reduce the impact of
poor function choice. Signal delivery in AGNs also appears to
have the opposite effect to the one seen in Lorenz controllers,
with regulatory input delivery leading to considerably lower
fitness on average. However, it is perhaps no surprise that
state space targeting in Chirikov’s map requires very different
controllers to state space targeting in the Lorenz system, since
the two arguably lie at opposite ends of the dynamical systems
spectrum.

Fig. 18 compares the fitness evolution of the best AGN,
AMN and CABN parameterisations. As in the Lorenz task,
CABN runs converge significantly more rapidly than stan-
dalone ABN runs. However, CABN runs take approximately
twice as long (∼ 4 minutes) to complete as standalone ABN
runs (∼ 2 minutes), since the CABNs have more functional
elements and the simulation time for the standard map is triv-
ial. Again, we find that the metabolic components (tM = 51
s.d. 25) of the evolved CABNs operate at a considerably faster
rate than the genetic (tG = 30 s.d. 20).

The uniformity of fitnesses on the standard map task
indicates that the dynamics required to solve this task are
readily expressed using a range of network types and low-
level functions. Reconstructed phase portraits (see Fig. 20)
tend to support this assertion, showing that the topological
structure of the evolved control strategies is relatively simple,
and that (unlike the Lorenz task) it does not require well-
defined attractors to solve the task.

In general, we have noticed that evolved controllers transi-
tion between different dynamical behaviours as they traverse
the standard map. Fig. 21 illustrates this phenomenon, showing

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 15

Fig. 19. Example behaviour of an evolved controller guiding a trajectory
from a region at the bottom of the standard map to a region at the top in 83
steps. Chirikov’s standard map is plotted for k = 1.1.

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

kn

k
n
!!
1

k
n
!!
2

(a) Fitness = 149

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

kn

k
n
!
1

k
n
!
2

(b) Fitness = 162

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

kn

k
n
!!
1

k
n
!!
2

(c) Fitness = 166

0.0 0.2 0.4 0.6 0.8 1.00
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

kn

k
n
!!
1

k
n
!!
2

(d) Fitness = 166

Fig. 20. Phase portraits produced from delay embeddings of output k,
showing four different evolved ABNs controlling trajectories in Chirikov’s
standard map.

the sequence of movements within the controller’s phase space
as it moves from the lower chaotic region, through the mixed
dynamics of the central region, and finally through the upper
chaotic region. In this case, it can be seen that movement
through the different regions of the map corresponds to
movement through particular components of the controller’s
trajectory. This example illustrates that, using an uncoupled
ABN, changes in dynamical behaviour can be achieved with-
out requiring changes in the network structure, and hence that
coupling is not necessary in all situations where there is a
requirement to move between different sub-tasks.

(a) Steps 0–20

(b) Steps 20–40

(c) Steps 40–114

(d) Steps 114–140

(e) Steps 140–165

Fig. 21. Correspondence between the trajectories followed in Chirikov’s
standard map and the controller’s reconstructed phase space, showing three
dynamical regimes which roughly correspond to the top and bottom chaotic
regions (a and e), the central region (c) and the interface regions (b and d).

16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

0
1

2
3

4
5

6

A
G
N
(A
ll)

A
G
N
(S
ig
)

A
G
N
(M
a
p
s
)

A
G
N
(i
,A
ll)

A
G
N
(i
,S
ig
)

A
G
N
(i
,M
a
p
s
)

A
M
N
(A
ll)

A
M
N
(S
ig
)

A
M
N
(M
a
p
s
)

A
M
N
(C
,A
ll)

A
M
N
(C
,S
ig
)

A
M
N
(C
,M
a
p
s
)

F
it
n
e
s
s

++

++

+

+

+
+

+
+

+

+

+

+

+

+
+

+++

+

+

+

+

+

+

+

+

+
+
++

(a) Uncoupled ABNs

0
1

2
3

4
5

6

A
ll!
>
C
,A
ll

S
ig
!
>
C
,S
ig

M
a
p
s
!
>
C
,M
a
p
s

A
ll!
>
A
ll

S
ig
!
>
S
ig

M
a
p
s
!
>
M
a
p
s

S
ig
!
>
M
a
p
s

S
ig
!
>
B
a
k
e
rs

S
ig
!
>
C
a
t

S
ig
!
>
L
o
g

S
ig
!
P
!
>
S
td

S
ig
!
S
!
>
S
td

S
ig
!
T
!
>
S
td

F
it
n
e
s
s

+
+
+

+

+

+
+

+

+
+

+
+

+++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

(b) Coupled ABNs

Fig. 22. Fitness distributions for uncoupled and coupled ABNs controlling the gait and direction of movement of legged robots. High numbers are better.
The effect of the different coupling functions are illustrated for Sig→Std CABNs, where P=proportional, S=scaled, and T=thresholded. See Figs. 10 and 11
for other abbreviations.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

F
itn

es
s

Generations

AGN(All)
AMN(C,Sig)

CABN(Sig->Std)

Fig. 23. Fitness evolution of solutions to the robotic locomotion task,
averaged over 50 runs, for the best AGN, AMN and CABN parameterisations.

C. Controlling Legged Robots

Fig. 22 shows the fitness distributions for controllers
evolved to solve the robotic control task. Whilst there is
little significant difference between the average fitnesses for
different models and functions, the fitness distributions vary
markedly. Uncoupled sigmoidal ABNs lead to the largest
number of high-velocity gaits, but also produce a relatively
large proportion of failed runs. These failed runs have fitnesses
of zero, corresponding to motion in only a single direction. For
the coupled networks, we found that sigmoidal AGNs coupled
to discrete map AMNs lead to the best performance. These
generate relatively few failed runs, but also produce fewer
high-velocity solutions than the sigmoidal AGNs.

Fig. 23 shows the fitness evolution of the best AGN, AMN
and CABN parameterisations over a longer period of time.
Although CABNs have a higher average fitness initially, the
AGN runs converge faster, with both AGNs and CABNs
approaching the same average fitness after 250 generations.
Standalone AMN runs plateau at a much lower average fitness.
Run times are dominated by the simulation time of the physics
engine, taking an average of 9 minutes per run for all ABN
models. Timing distributions for the CABNs are similar to the
other two tasks (tM = 56 s.d. 26, tG = 27 s.d. 20).

In general, we would argue that discrete map solutions are
more likely to solve the problem, but sigmoidal networks

are more likely to find a good solution to the problem.
This, in turn, suggests a trade-off between expressiveness and
evolvability. Randomly-generated discrete map ABNs often
exhibit complex behaviours, but tend to be less evolvable
than sigmoidal ABNs. Conversely, randomly-generated sig-
moidal ABNs are far more likely to display simple ordered
behaviours, but tend to be more evolvable than discrete
map ABNs. Consequently, it is perhaps unsurprising that
the highest average fitness is found when evolving AGNs
with mixed sigmoids and discrete maps: the discrete maps
presumably increase the expressiveness of initial solutions,
whereas sigmoids allow the behaviours of the network to be
more effectively tuned by evolution.

As mentioned above, for the coupled networks a combina-
tion of sigmoidal AGNs and discrete map AMNs were found
to be most effective. Furthermore, the best solutions were
found when using a single type of discrete map in the AMN,
rather than a mixture of all the maps. Mirroring the results
from the standard map control task, the logistic map was found
to be the least effective, leading to very few correct solutions.
The baker’s map, Arnold’s cat map, and Chirikov’s standard
map all performed comparably, with the latter generating the
highest number of high-velocity solutions. It is particularly
interesting to note that the purely chaotic maps are able to
generate effective gaits for what appears to be, at least on
the surface, an ordered task. One explanation for this is that
chaotic dynamics are inherently more responsive to control
signals. Another explanation is that, by exploring a large num-
ber of unstable periodic orbits, chaotic controllers are more
able to escape from environmental or internal conformations
in which an ordered controller would become stuck. Similar
arguments have been posited by the authors of [100].

Fig. 24 shows two examples of Sig→Maps CABNs control-
ling gait and responding to the direction signal. In both cases,
the AMN appears to be responsible for generating appropriate
patterns of actuator movements and the AGN appears respon-
sible for switching between different patterns by regulating
the influence of different enzymes. Hence the genetic network
responds to slow changes in the governing dynamics (i.e.
the switching direction signal), and the metabolic network
responds to fast changes (i.e. leg position).

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 17

(a) Time series of a CABN’s internal state. The Signal input specifies the
required direction of movement, GO–G9 are the gene expression levels, and
C0–C9 are the chemical concentrations. In this example, the AMN generates
a single cyclic pattern (C5) which is then scaled and propagated to the outputs
(C6–C9). The scaling for each output (and hence the direction of the resulting
gait) is determined by the current gene expression pattern.

(b) In this second example, a different AMN generates two different cyclic
patterns (bunny hopping and a four-legged wading movement), which the
AGN switches between in response to changes in the direction signal.

−3 −2 −1 0 1 2 3−
0.

4
−

0.
3

−
0.

2
−

0.
1

 0
.0

 0
.1

 0
.2

 0
.3

 0
.4

−1.0
−0.5

 0.0
 0.5

 1.0

PC1

P
C

2

P
C

3

−2 −1 0 1 2

−
2

−
1

 0
 1

 2

−2

−1

 0

 1

 2

PC1

P
C

2

P
C

3

(c) Projections of the first three principal components of the time series data,
showing phase space portraits corresponding to (a) and (b). Each show two
attractors, corresponding to the two directions of movement, with transient
paths showing where direction changes have taken place.

Fig. 24. Examples of the internal states, and corresponding phase portraits,
of evolved CABNs controlling the direction and gait of a legged robot.

Fig. 24c shows that the evolved networks both display two
attractors, with trajectories switching between the attractors
following changes in the direction signal. The phase space
of the second controller is somewhat atypical, displaying a
relatively long cyclic attractor for one direction of movement
and a shorter, but two-lobed, attractor for the other. It can
be seen that there are a number of paths between the two
attractors, corresponding to changes in direction occurring
whilst the robot is in a number of different conformations.
In part this underscores the difficulty of the problem, since
the network must correctly handle transitions between the
attractors regardless of the current conformation of the robot in
order to maximise fitness. As a consequence of this, evolution
tends to favour solutions with short-period attractors, such as
the leftmost example in 24c.

In Fig. 25, we show the architecture of an evolved Sig→Std
CABN. By analysing the internal state of the network during

(a) In the AGN (top), arrows indicate up-regulation, blocks indicate down-
regulation, and edge thickness shows interaction strength. In the AMN
(bottom), STD indicates a standard map (with k in parentheses), TSTD
indicates a tunable standard map (with tuning input in parentheses).

(b) Forwards

(c) Backwards

Fig. 25. Example of a Sig→Std CABN evolved to solve the bidirectional
robot control task, showing (a) the overall architecture, and (b–c) the enzymes
which are actively involved in controlling the dynamics during the forwards
and backwards phases. For each execution, the AGN is iterated once and the
AMN is iterated 66 times.

execution, we were able to identify which subsets of the
enzymes are used to control movement in each direction (25b–
25c). We focus our analysis on the backwards direction, which
is, architecturally, the simpler of the two. It uses two enzymes:
a k ≈ 1.25 standard map which maps {C0,C6} to {C8,C0},
and a tunable standard map, where k is the current value of
C3, and which maps {C7,C2} to {C7,C1}. Both maps are
recursive, with a single output feeding back to the input on
the next iteration. The first map receives the angle of the first
leg as input, and controls the torque of the third leg. Its second
output is fed back to its first input, and the map operates
in a majority-chaotic phase (see Fig. 7g). The second map
receives inputs from the angles of the third and fourth legs,
with the latter controlling the map’s dynamics and placing it in
a majority-ordered phase. It controls the torque of the second
leg, and this value is fed back to the map’s inputs. Hence, it
can be seen that control is achieved using a combination of
ordered and chaotic dynamics.

18 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

VII. DISCUSSION

The results show that ABNs are capable of controlling a
diverse range of complex dynamical systems. However, they
also show that different types of ABN model are appropriate
for different types of problem—and, more specifically, that
no particular model parameterisation is always better than all
other model parameterisations. This is perhaps unsurprising,
since we might expect different ABN architectures to more
readily produce different kinds of dynamics which, in turn, are
more appropriate for different kinds of problem. Nevertheless,
it highlights a more general guidance that, when faced with
a particular problem, we should not assume that a particular
computational dynamical system will be able to solve it well.

Perhaps the most significant observation produced by our
experiments is that non-linear discrete maps are generally
beneficial to performance. ABNs with discrete maps were the
most effective on both the Lorenz and robot control tasks, and
no worse than sigmoidal ABNs on the easier to solve standard
map task. We can speculate that they provide benefits in two
ways: (i) by producing complex, tunable behaviours without
requiring evolution of sub-networks; and (ii) by providing a
ready source of chaotic dynamics, which may increase the
responsiveness and behavioural diversity of controllers. It is
less clear which maps are the most beneficial. The logistic
map is certainly beneficial for controlling the Lorenz system,
but logistic map ABNs performed relatively poorly on the
other tasks. The standard map is perhaps the most beneficial in
general, since standard map ABNs performed well on both the
Lorenz and robotic task. The standard map also seems a par-
ticularly relevant choice from a theoretical perspective, since
it possesses a form of behavioural universality. The benefits
of discrete maps in these experiments support the (admittedly
few) previous observations regarding the use of coupled map
lattices for computation. It also hints at the potential benefits
of using discrete maps within other computational dynamical
systems.

In terms of model architecture, it is difficult to draw
any firm conclusions. AGNs, in general, perform better than
uncoupled AMNs4. However, AMNs often perform a lot better
when a mass conservation rule is applied, in which case
their fitness distributions are more similar to AGNs. We can
hypothesise that by forcing covariance between the chemical
concentrations, mass conservation causes a reduction in the
number of effective variables in the system, reducing the
search effort required to find viable solutions. It also serves
to spread input signals throughout the network, which may be
beneficial when the dynamics need to be sensitive to external
perturbations. The importance of signal delivery is also evident
in the performance of AGNs, where the delivery of inputs via
gene expression or regulatory inputs has a significant effect
upon the evolutionary algorithm’s ability to find solutions
(see [103]). In response to this, we are currently looking at
whether artificial signalling networks might provide a means

4An interesting exception, explored in [101] is when AMNs are used with
the more biologically-plausible Michaelis Menten function, in which case they
outperform AGNs when controlling dynamics in the Lorenz system. We have
also found that AMNs, with mass conservation, outperform AGNs when used
for time series classification [102].

of automatically delivering signals to appropriate locations
within AGNs and AMNs, mirroring their role in biological
systems [104].

Coupling led to significantly better control in the Lorenz
task, faster convergence in the standard map task, but had no
overall benefit for the robotic task. Consequently, the results
suggest that a higher-order architecture, such as this, can
be advantageous in certain situations. We have speculated
that such a coupled architecture could have benefits when a
controller needs to switch rapidly between different tasks, and
an analysis of coupled controllers solving the Lorenz and robot
tasks tends to support this. In other work, we are looking at
an alternative approach to handling this kind of task switching
which uses an analogue of epigenetic chromatin remodelling
[105].

As we noted in Section IV-A, sigmoidal AGNs generalise a
number of RNN architectures, including the commonly used
Elman and Jordan networks. It is therefore notable that, al-
though uncoupled sigmoidal AGNs were generally competitive
across the tasks we looked at, they were beaten by other
ABN models on both the Lorenz and robot control tasks (the
harder problems in terms of computational effort required
to solve them). This indicates that there is an advantage to
using connectionist architectures motivated by the structure
and organisation of biochemical networks, as opposed to those
motivated by neural networks. However, we should be careful
not to read too much into this, since (as noted above) different
architectures are suitable for different problems. In robotic
control, for instance, work on RNNs has shown that fixed
topologies can be beneficial for certain constrained tasks, such
as oscillator networks in the case of regular motion [7] or
topologies motivated by certain brain regions in the case of
maze solving [6]. The same is likely true for ABNs, and
we could speculate that fixed topologies, motivated by actual
biochemical pathways, would be beneficial in certain cir-
cumstances. A more progressive interpretation of our results,
therefore, is that research on ABNs could complement neural
computation, by inferring sources of connectionist knowledge
not found in brains, but rather in the biochemical networks of
cells and tissues. For example, our findings on the beneficial
roles of discrete maps and higher-order coupling could readily
be applied to RNN models.

As the title suggests, a more general focus of this paper is on
the use of evolved computational dynamical systems to control
dynamical systems. Previous work in this area has suggested
that a wide variety of computational dynamical systems can
be used to perform control [5], [7], [27], [28], [31], [32]. Our
results build upon this by demonstrating that a certain class of
computational dynamical systems can be evolved to control
dynamical systems that exhibit a wide range of properties,
notably discrete, continuous and hybrid-time dynamics; dis-
sipative and conservative dynamics; and ordered and chaotic
dynamics. As such, they suggest that this kind of approach is
applicable across a large spectrum of system types. Moreover,
they show that controllers can be induced without any explicit
knowledge of the underlying system which is being controlled
(a theme which has also previously been explored, e.g. [106]).
A common criticism of this kind of approach is that the

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 19

induced controllers behave as black boxes whose behaviour
can not be readily understood. However, we have shown how
relatively simple analytical techniques, such as phase space
reconstruction, can give insight into the behaviour of evolved
ABNs; in future work, we aim to strengthen this approach
with other analytical tools, such as network analysis techniques
[107], and methods of finding equivalent (or approximately
equivalent) computational automata [108], [109].

The dynamical systems addressed in this paper are repre-
sentative of the kind of dynamics that occur in the real world.
However, true real world systems are typically composed of
multiple, diverse, dynamical components. For practical rea-
sons, it is generally not feasible to directly evolve controllers
for these kind of systems. Nevertheless, a potentially fruitful
direction for future work would be to evolve controllers for
executable models of real world systems. Executable models
(such as agent-based systems) have recently become the focus
of modelling communities in diverse fields, including biology
[110], medicine [111], economics [112] and sociology [113].
It would be feasible to evolve controllers for these kind of
models, and it seems plausible that the resulting controllers
would give significant insight into the behaviour and control
of their real world analogues.

VIII. CONCLUSIONS

In this paper, we have shown that artificial biochemical net-
works (ABNs), a class of computational dynamical systems,
can be evolved to carry out control tasks in various kinds
of complex dynamical systems. We have considered three
ABN architectures: an artificial genetic network (AGN), an
artificial metabolic network (AMN) and a coupled network
(CABN) in which an AGN controls the expression of an
AMN. We have also looked at the role that factors such as
function choice, mass conservation, external signal delivery,
and coupling functions play in the evolution of ABNs.

In general, we have found that different types of ABN are
appropriate for the control of different types of dynamical
system. AGNs often, but not always, perform better than
AMNs on the control tasks we have looked at. In both cases,
good performance depends upon suitable means of delivering
external signals. For AMNs, mass conservation plays an
important role, reducing the impact of sub-optimal parameter
choices. CABNs outperform uncoupled ABNs on certain tasks,
but offer no added benefit on others. We have speculated that
coupling enables rapid switching of behaviours in response to
control signals, and analysis of evolved controllers appears to
support this notion.

Our most significant observation is the important role that
non-linear discrete maps play when used as functional ele-
ments within ABNs. Discrete map-based ABNs led to the
best controllers in the two hardest control tasks. Discrete
maps are complex dynamical systems in their own right, and
we have hypothesised that they provide a ready source of
diverse, configurable dynamics. We also observed that chaotic
dynamics play a significant role, particularly in the legged
robot control tasks, and have suggested that this is due to the
inherent controllability of chaotic dynamics.

More generally, we have shown that computational dynam-
ical systems can be evolved to control systems which are
representative of the kind of dynamics found in real world
systems. In future work, we hope to extend this approach to
controlling executable models of real world systems, and show
how evolutionary computational dynamical systems may be
used as a general approach to exploring and understanding
the dynamics of complex systems.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
White Rose Grid in providing computational resources.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. MIT
Press, 1975.

[2] R. Krohling and J. Rey, “Design of optimal disturbance rejection PID
controllers using genetic algorithms,” Evolutionary Computation, IEEE
Transactions on, vol. 5, no. 1, pp. 78–82, February 2001.

[3] J. M. Dolsma, “Nonlinear controller design based on genetic program-
ming,” Master’s thesis, Technische Universiteit Eindhoven, 2007.

[4] J. Hurst, L. Bull, and C. Melhuish, “TCS learning classifier system con-
troller on a real robot,” in Parallel Problem Solving from Nature PPSN
VII, ser. Lecture Notes in Computer Science, J. Guervós, P. Adamidis,
H.-G. Beyer, H.-P. Schwefel, and J.-L. Fernández-Villacaņas, Eds.
Springer Berlin / Heidelberg, 2002, vol. 2439, pp. 588–597.

[5] J. E. Auerbach and J. C. Bongard, “Evolving complete robots with
CPPN-NEAT: the utility of recurrent connections,” in Proceedings of
the 13th annual conference on Genetic and evolutionary computation,
ser. GECCO ’11. New York, NY, USA: ACM, 2011, pp. 1475–1482.

[6] M. Mokhtar, D. Halliday, and A. Tyrrell, “Hippocampus neurons and
place cells/place field representation to provide path navigation,” in
Neural Networks, 2007. IJCNN 2007. International Joint Conference
on, aug. 2007, pp. 795 –800.

[7] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, no. 4, pp.
642 – 653, 2008.

[8] Gh. Pǎun, “Computing with membranes,” Journal of Computer and
System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[9] P. Dittrich, J. Ziegler, and W. Banzhaf, “Artificial chemistries—a
review,” Artificial Life, vol. 7, pp. 225–275, 2001.

[10] W. Banzhaf, “Artificial chemistries—towards constructive dynamical
systems,” Solid State Phenomena, vol. 97/98, pp. 43–50, 2004.

[11] W. Fontana, “Algorithmic chemistry,” in Artificial Life II, C. G.
Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, Eds. Addison-
Wesley, 1992, pp. 159–210.

[12] T. Szuba and R. Stras, “Parallel evolutionary computing with the
random PROLOG processor,” Journal on Parallel and Distributed
Computing, vol. 47, pp. 78–85, 1997.

[13] S. A. Kauffman, “Metabolic stability and epigenesis in randomly
constructed genetic nets.” J Theor Biol, vol. 22, no. 3, pp. 437–467,
Mar 1969.

[14] T. Reil, “Dynamics of gene expression in an artificial genome—
implications for biological and artificial ontogeny,” in Proceedings of
the 5th European Conference on Artificial Life (ECAL’99), ser. Lecture
Notes in Artificial Intelligence, no. 1674. Springer-Verlag, 1999, pp.
457–466.

[15] W. Banzhaf, “Artificial regulatory networks and genetic programming,”
in Genetic Programming Theory and Practice, R. L. Riolo and
B. Worzel, Eds. Kluwer, 2003, ch. 4, pp. 43–62.

[16] S. Kumar, “The evolution of genetic regulatory networks for single and
multicellular development,” in GECCO 2004 Late Breaking Papers,
M. Keijzer, Ed., 2004.

[17] D. Bray, “Protein molecules as computational elements in living cells,”
Nature, vol. 376, pp. 307–312, 1995.

[18] J. Decraene, G. G. Mitchell, and B. McMullin, “Evolving artificial
cell signaling networks: Perspectives and methods,” in Advances in
Biologically Inspired Information Systems, F. Dressler and I. Carreras,
Eds. Springer, 2007, pp. 167–186.

[19] F. C. Richards, T. P. Meyer, and N. H. Packard, “Extracting cellular au-
tomaton rules directly from experimental data,” Physica D: Nonlinear
Phenomena, vol. 45, no. 1 - 3, pp. 189 – 202, 1990.

20 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, PREPRINT, ACCEPTED FOR PUBLICATION DECEMBER 2012

[20] R. Beer and J. Gallagher, “Evolving dynamical neural networks for
adaptive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.

[21] S. Stepney, “Nonclassical computation: a dynamical systems perspec-
tive,” in Handbook of Natural Computing, G. Rozenberg, T. Bäck, and
J. N. Kok, Eds. Springer, 2009, vol. 2, ch. 52.

[22] M. I. Jordan, “Artificial neural networks,” J. Diederich, Ed. Piscataway,
NJ, USA: IEEE Press, 1990, ch. Attractor dynamics and parallelism in
a connectionist sequential machine, pp. 112–127.

[23] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179 – 211, 1990.

[24] S. Ulam, “Random processes and transformations,” in Proc. Int.
Congress of Mathematicians. American Mathematical Society, 1952,
vol. 2, pp. 264 – 275.

[25] A. Adamatzky, B. D. L. Costello, and T. Asai, Reaction-Diffusion
Computers. Elsevier, 2005.

[26] C. Andersson and M. Nordahl, “Evolving coupled map lattices for
computation,” in Genetic Programming, Proc. 1st European Workshop
on Genetic Programming, ser. Lecture Notes in Computer Science,
W. Banzhaf et al., Eds. Springer, 1998, vol. 1391, pp. 151–162.

[27] J. Ziegler and W. Banzhaf, “Evolving control metabolisms for a robot,”
Artificial Life, vol. 7, pp. 171–190, 2001.

[28] T. Taylor, “A genetic regulatory network-inspired real-time controller
for a group of underwater robots,” in Intelligent Autonomous Systems
8 (Proceedings of IAS8), F. Groen et al., Eds. Amsterdam: IOS Press,
2004, pp. 403–412.

[29] K. Dale, “Evolving reaction-diffusion controllers for minimally cog-
nitive animats,” in From Animals to Animats 9, ser. Lecture Notes in
Computer Science, S. Nolfi et al., Eds. Springer, 2006, vol. 4095, pp.
498–509.

[30] L. Bull and R. Preen, “On dynamical genetic programming: Random
Boolean networks in learning classifier systems,” in Genetic Program-
ming, ser. Lecture Notes in Computer Science, L. Vanneschi et al.,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5481, pp. 37–48.

[31] S. Tsuda, S. Artmann, and K.-P. Zauner, “The phi-bot: A robot
controlled by a slime mould,” in Artificial Life Models in Hardware.
Springer London, 2009, pp. 213–232.

[32] M. Nicolau, M. Schoenauer, and W. Banzhaf, “Evolving genes to
balance a pole,” in Genetic Programming, ser. Lecture Notes in
Computer Science, Esparcia-Alczar et al., Eds. Springer Berlin /
Heidelberg, 2010, vol. 6021, pp. 196–207.

[33] M. A. Trefzer, T. Kuyucu, J. F. Miller, and A. M. Tyrrell, “Image com-
pression of natural images using artificial gene regulatory networks,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), Portland, Oregon, July 2010.

[34] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[35] M. O. Magnasco, “Chemical kinetics is Turing universal,” Phys. Rev.
Lett., vol. 78, pp. 1190–1193, February 1997.

[36] P. Rendell, “Turing universality in the game of life,” in Collision-Based
Computing, A. Adamatzky, Ed. Springer, 2002, pp. 513–539.

[37] M. Ionescu, G. Pǎun, and T. Yokomori, “Spiking neural P systems,”
Fundamenta Informaticae, vol. 71, no. 2, pp. 279–308, 2006.

[38] H. Kitano, “Biological robustness,” Nat Rev Genet, vol. 5, no. 11, pp.
826–837, 2004.

[39] K. Kaneko, “Overview of coupled map lattices,” Chaos, vol. 2, no. 3,
pp. 279–282, 1992.

[40] F. H. Willeboordse, “Hints for universality in coupled map lattices,”
Phys. Rev. E, vol. 65, no. 2, Jan 2002.

[41] P. T. Saunders, “The organism as a dynamical system,” in SFI Studies
in the Sciences of Complexity, Lecture Notes, F. Varela and W. Stein,
Eds. Reading: Addison Wesley, 1993, vol. 3, pp. 41 – 63.

[42] G. Tufte, “Phenotypic, developmental and computational resources:
scaling in artificial development,” in Proceedings of the 10th annual
conference on Genetic and evolutionary computation, ser. GECCO ’08.
New York, NY, USA: ACM, 2008, pp. 859–866.

[43] M. Lozano, D. Molina, and F. Herrera, “Editorial: Scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,” Soft Computing, vol. 15, pp. 2085–2087, 2011.

[44] P. Angeline, G. Saunders, and J. Pollack, “An evolutionary algorithm
that constructs recurrent neural networks,” Neural Networks, IEEE
Transactions on, vol. 5, no. 1, pp. 54 –65, jan 1994.

[45] B. Talko, L. Stern, and L. Kitchen, “Evolving neural networks for
decomposable problems using genetic programming,” in PRICAI 2000
Topics in Artificial Intelligence, ser. Lecture Notes in Computer Sci-

ence, R. Mizoguchi and J. Slaney, Eds. Springer Berlin / Heidelberg,
2000, vol. 1886, pp. 446–456.

[46] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[47] J. Drchal, J. Koutnik, and M. Snorek, “HyperNEAT controlled robots
learn how to drive on roads in simulated environment,” in Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on, may 2009, pp. 1087
–1092.

[48] M. Mitchell, J. P. Crutcheld, and R. Das, “Evolving cellular automata
with genetic algorithms: A review of recent work,” in Proc. 1st Int.
Conf. on Evolutionary Computation and Its Applications (EvCA’96).
Russian Academy of Sciences, 1996.

[49] A. Devert, N. Bredeche, and M. Schoenauer, “Unsupervised learning of
echo state networks: A case study in artificial embryogeny,” in Artificial
Evolution, ser. Lecture Notes in Computer Science, N. Monmarché
et al., Eds. Springer, 2008, vol. 4926, pp. 278–290.

[50] M. Conrad, “The geometry of evolution,” BioSystems, vol. 24, pp. 61–
81, 1990.

[51] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the Na-
tional Academy of Science (USA), vol. 95, pp. 8420–8427, July 1998.

[52] A. M. Poole, M. J. Philips, and D. Penny, “Prokaryote and eukaryote
evolvability,” BioSystems, vol. 69, pp. 163–186, 2003.

[53] M. A. Lones, “Enzyme genetic programming: Modelling biological
evolvability in genetic programming,” Ph.D. dissertation, Department
of Electronics, University of York, 2003.

[54] T. Hu and W. Banzhaf, “Evolvability and speed of evolutionary
algorithms in light of recent developments in biology,” Journal of
Articial Evolution and Applications, no. 568375, 2010.

[55] P. C. Marijuán, “Enzymes, artificial cells and the nature of biological
information,” BioSystems, vol. 35, pp. 167–170, 1995.

[56] G. Ciobanu, M. J. Pérez-Jiménez, and Gh. Pǎun, Applications of
Membrane Computing. Springer, 2006.

[57] A. Faulconbridge, S. Stepney, J. F. Miller, and L. S. D. Caves,
“RBN-World: A sub-symbolic artificial chemistry,” in Advances in
Artificial Life. Darwin Meets von Neumann, Part 1, ser. Lecture Notes
in Computer Science, G. Kampis, I. Karsai, and E. Szathmry, Eds.
Springer, 2012, vol. 5777, pp. 377–384.

[58] W. Banzhaf and C. Lasarczyk, “Genetic programming of an algorithmic
chemistry,” in Genetic Programming Theory and Practice II, ser.
Genetic Programming, J. Koza, U.-M. O’Reilly, T. Yu, R. Riolo, and
B. Worzel, Eds. Springer US, 2005, vol. 8, pp. 175–190.

[59] C. W. Lasarczyk and W. Banzhaf, “An algorithmic chemistry for
genetic programming,” in Genetic Programming, ser. Lecture Notes
in Computer Science, M. Keijzer et al., Eds. Springer, 2005, vol.
3447, pp. 141–141.

[60] E. V. Koonin, Y. I. Wolf, G. P. Karev, P. Fernández, and R. V. Solé, “The
role of computation in complex regulatory networks,” in Power Laws,
Scale-Free Networks and Genome Biology, ser. Molecular Biology
Intelligence Unit. Springer US, 2006, pp. 206–225.

[61] E. Dubrova, M. Teslenko, and H. Tenhunen, “A computational scheme
based on random Boolean networks,” in Transactions on Computa-
tional Systems Biology X, ser. Lecture Notes in Computer Science,
C. Priami et al., Eds. Springer Berlin / Heidelberg, 2008, vol. 5410,
pp. 41–58.

[62] R. Albert and H. G. Othmer, “The topology of the regulatory inter-
actions predicts the expression pattern of the segment polarity genes
in drosophila melanogaster,” Journal of Theoretical Biology, vol. 223,
no. 1, pp. 1–18, 2003.

[63] C. Gershenson, “Classification of random Boolean networks,” in
Proceedings of the eighth international conference on Artificial life.
Cambridge, MA, USA: MIT Press, 2003, pp. 1–8. [Online]. Available:
http://portal.acm.org/citation.cfm?id=860295.860297

[64] S. Zhan, J. F. Miller, and A. M. Tyrrell, “An evolutionary system using
development and artificial genetic regulatory networks,” in Proc. 2008
IEEE Congress on Evolutionary Computation (CEC), J. Wang, Ed.
IEEE Press, 2008.

[65] M. J. Fisher, R. C. Paton, and K. Matsuno, “Intracellular signalling
proteins as ‘smart’ agents in parallel distributed processes,” BioSystems,
vol. 50, pp. 159–171, 1999.

[66] D. A. Lauffenburger, “Cell signaling pathways as control modules:
Complexity for simplicity?” PNAS, vol. 97, no. 10, pp. 5031–5033,
2000.

[67] L. Bull, “A simple computational cell: coupling Boolean gene and
protein networks,” Artificial Life, vol. 18, no. 2, pp. 223 – 236, 2012.

LONES et al.: ARTIFICIAL BIOCHEMICAL NETWORKS: EVOLVING DYNAMICAL SYSTEMS TO CONTROL DYNAMICAL SYSTEMS 21

[68] B. Wróbel, M. Joachimczak, A. Montebelli, and R. Lowe, “The search
for beauty: Evolution of minimal cognition in an animat controlled by
a gene regulatory network and powered by a metabolic system,” in
From Animals to Animats 12, ser. Lecture Notes in Computer Science,
T. Ziemke, C. Balkenius, and J. Hallam, Eds. Springer Berlin /
Heidelberg, 2012, vol. 7426, pp. 198–208.

[69] H. Chaté and J. Losson, “Non-trivial collective behavior in coupled
map lattices: A transfer operator perspective,” Physica D: Nonlinear
Phenomena, vol. 103, no. 1-4, pp. 51 – 72, 1997.

[70] R. D. Kornberg, “The molecular basis of eukaryotic transcription,”
Proceedings of the National Academy of Sciences, vol. 104, no. 32,
pp. 12 955–12 961, 2007.

[71] R. J. Conrado, J. D. Varner, and M. P. DeLisa, “Engineering the spa-
tial organization of metabolic enzymes: mimicking nature’s synergy,”
Current Opinion in Biotechnology, vol. 19, no. 5, pp. 492 – 499, 2008.

[72] R. M. May, “Simple mathematical models with very complicated
dynamics,” Nature, vol. 261, pp. 459–467, 1976.

[73] T. Tél and M. Gruiz, Chaotic Dynamics: An Introduction Based on
Classical Mechanics. Cambridge Press, 2006.

[74] V. Arnold and A. Avez, Ergodic problems in classical mechanics. New
York: Benjamin, 1968.

[75] B. V. Chirikov, “Research concerning the theory of nonlinear resonance
and stochasticity,” Institute of Nuclear Physics, Novosibirsk, Tech.
Rep., 1969.

[76] E. E. Macau and C. Grebogi, “Control of chaos and its relevancy to
spacecraft steering,” Philosophical Transactions of the Royal Society A:
Mathematical,Physical and Engineering Sciences, vol. 364, no. 1846,
pp. 2463–2481, 2006.

[77] A. Garfinkel, J. N. Weiss, W. L. Ditto, and M. L. Spano, “Chaos control
of cardiac arrhythmias.” Trends Cardiovasc Med, vol. 5, no. 2, pp. 76–
80, 1995.

[78] D. G. MacMynowski, “Controlling chaos in El Niño,” in American
Control Conference (ACC), July 2010.

[79] A. L. Fradkov, R. J. Evans, and B. R. Andrievsky, “Control of chaos:
methods and applications in mechanics,” Philosophical Transactions of
the Royal Society A: Mathematical,Physical and Engineering Sciences,
vol. 364, no. 1846, pp. 2279–2307, 2006.

[80] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev.
Lett., vol. 64, no. 11, pp. 1196–1199, Mar 1990.

[81] A. S. de Paula and M. A. Savi, “Comparative analysis of chaos control
methods: A mechanical system case study,” International Journal of
Non-Linear Mechanics, vol. 46, no. 8, pp. 1076 – 1089, 2011.

[82] K. Pyragas, “Delayed feedback control of chaos,” Philosophical Trans-
actions of the Royal Society A: Mathematical,Physical and Engineering
Sciences, vol. 364, no. 1846, pp. 2309–2334, 2006.

[83] H. Richter, “An evolutionary algorithm for controlling chaos: The
use of multi-objective fitness functions,” in Proceedings of the 7th
International Conference on Parallel Problem Solving from Nature, ser.
PPSN VII. London, UK, UK: Springer-Verlag, 2002, pp. 308–320.

[84] C. Y. Soong, W. T. Huang, F. P. Lin, and P. Y. Tzeng, “Controlling
chaos with weak periodic signals optimized by a genetic algorithm,”
Phys. Rev. E, vol. 70, p. 016211, 2004.

[85] I. Zelinka, “Real-time deterministic chaos control by means of selected
evolutionary techniques,” Engineering Applications of Artificial Intel-
ligence, vol. 22, pp. 283 – 297, 2009.

[86] E. N. Sanchez and L. J. Ricalde, “Chaos control and synchronization,
with input saturation, via recurrent neural networks,” Neural Networks,
vol. 16, pp. 711 – 717, 2003.

[87] X. Xu, Y. Liang, H. Lee, W. Lin, S. Lim, and X. Shi, “A stable adaptive
neural-network-based scheme for dynamical system control,” Journal
of Sound and Vibration, vol. 285, no. 3, pp. 653 – 667, 2005.

[88] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmo-
spheric Sciences, vol. 20, no. 2, pp. 130–141, March 1963.

[89] E. M. Bollt and J. D. Meiss, “Controlling chaotic transport through
recurrence,” Physica D: Nonlinear Phenomena, vol. 81, no. 3, pp. 280–
294, 1995.

[90] C. G. Schroer and E. Ott, “Targeting in Hamiltonian systems that
have mixed regular/chaotic phase spaces,” Chaos, vol. 7, pp. 512–519,
December 1997.

[91] M. S. Branicky, “Introduction to hybrid systems,” in Handbook of
Networked and Embedded Control Systems, D. Hristu-Varsakelis and
W. Levine, Eds. Birkhauser, 2005.

[92] K. Seo and S. Hyun, “Genetic programming based automatic gait gen-
eration for quadruped robots,” in Proc. 2008 Genetic and Evolutionary
Computation Conference (GECCO’08), M. Keijzer et al., Eds. Atlanta,
GA, USA: ACM, 12-16 Jul. 2008, pp. 293–294.

[93] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, “Evolving co-
ordinated quadruped gaits with the HyperNEAT generative encoding,”
in Proc. 2009 Congress on Evolutionary Computation (CEC 2009),
A. Tyrrell et al., Eds. IEEE, 2009.

[94] I. Macinnes and E. D. Paolo, “Crawling out of the simulation: evolving
real robot morphologies using cheap, reusable modules,” in Proceed-
ings of the International Conference on Artificial Life (ALIFE9). MIT
Press, 2004, pp. 94–99.

[95] C. Mattiussi and D. Floreano, “Analog genetic encoding for the
evolution of circuits and networks,” Evolutionary Computation, IEEE
Transactions on, vol. 11, no. 5, pp. 596 –607, oct. 2007.

[96] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computa-
tion, IEEE Transactions on, vol. 6, no. 2, pp. 182 –197, apr 2002.

[97] M. A. Lones, S. L. Smith, A. M. Tyrrell, J. E. Alty, and
D. R. S. Jamieson, “Characterising neurological time series data using
biologically-motivated networks of coupled discrete maps,” BioSys-
tems, to appear.

[98] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.
Cambridge University Press, 2004.

[99] L. S. D. Caves and C. S. Verma, “Congruent qualitative behavior of
complete and reconstructed phase space trajectories from biomolecular
dynamics simulation.” Proteins, vol. 47, no. 1, pp. 25–30, Apr 2002.

[100] S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong, “Self-
organized adaptation of a simple neural circuit enables complex robot
behaviour,” Nature Physics, vol. 6, pp. 224–230, 2010.

[101] M. A. Lones, A. M. Tyrrell, S. Stepney, and L. S. Caves, “Controlling
complex dynamics with artificial biochemical networks,” in Proc. 2010
European Conference on Genetic Programming (EuroGP 2010), ser.
Lecture Notes in Computer Science, A. I. Esparcia-Alczar et al., Eds.,
vol. 6021. Springer Berlin / Heidelberg, 2010, pp. 159–170.

[102] M. A. Lones, S. L. Smith, A. M. Tyrrell, J. E. Alty, and D. R. S.
Jamieson, “Evolving computational dynamical systems to recognise
abnormal human motor function,” in Information Processing in Cells
and Tissues, Proc. 9th Int. Conf., ser. Lecture Notes in Computer
Science, M. A. Lones et al., Eds., vol. 7223. Springer, March 2012,
pp. 177–182.

[103] M. A. Lones, A. M. Tyrrell, S. Stepney, and L. S. D. Caves, “Con-
trolling legged robots with coupled artificial biochemical networks,” in
Advances in Artificial Life, ECAL 2011: Proc. 11th European Confer-
ence on the Synthesis and Simulation of Living Systems, T. Lenaerts
et al., Eds. MIT Press, August 2011, pp. 465–472.

[104] L. A. Fuente, M. A. Lones, A. P. Turner, A. M. Tyrrell, S. Stepney,
and L. S. D. Caves, “Evolved artificial signalling networks for the
control of a conservative complex dynamical system,” in Information
Processing in Cells and Tissues, Proc. 9th Int. Conf., ser. Lecture Notes
in Copmuter Science, M. A. Lones et al., Eds., vol. 7223. Springer,
March 2012, pp. 38–49.

[105] A. P. Turner, M. A. Lones, L. A. Fuente, A. M. Tyrrell, S. Stepney,
and L. S. D. Caves, “Using artificial epigenetic regulatory networks
to control complex tasks within chaotic systems,” in Information
Processing in Cells and Tissues, Proc. 9th Int. Conf., ser. Lecture Notes
in Computer Science, M. A. Lones et al., Eds., vol. 7223. springer,
March 2012, pp. 1–11.

[106] J.-S. Wang and Y.-P. Chen, “A fully automated recurrent neural network
for unknown dynamic system identification and control,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 53, no. 6, pp.
1363 –1372, june 2006.

[107] M. Newman, Networks: An Introduction. Oxford University Press,
2010.

[108] J. P. Crutchfield, “The calculi of emergence: computation, dynamics
and induction,” Physica D: Nonlinear Phenomena, vol. 75, no. 1-3,
pp. 11 – 54, 1994.

[109] H. Jacobsson, “Rule extraction from recurrent neural networks: A
taxonomy and review,” Neural Computation, vol. 17, pp. 1223–1263,
2005.

[110] J. Fisher and T. A. Henzinger, “Executable cell biology,” Nature
Biotechnology, vol. 25, pp. 1087–0156, 2007.

[111] M. Read, “Statistical and modelling techniques to build confidence
in the investigation of immunology through agent-based simulation,”
Ph.D. dissertation, University of York, 2011.

[112] L. Tesfatsion and K. L. Judd, Eds., Handbook of Computational
Economics: Agent-Based Computational Economics. North Holland,
2006.

[113] M. W. Macy and R. Willer, “From factors to actors: Computational
sociology and agent-based modeling,” Annual Review of Sociology, pp.
143–166, 2002.

