
Reservoir Computing in materio: A Computational

Framework for in materio Computing

Matthew Dale∗ & Susan Stepney

Department of Computer Science

University of York, UK

Email: md596@york.ac.uk & susan.stepney@york.ac.uk

Julian F. Miller & Martin Trefzer

Department of Electronics

University of York, UK

Email: julian.miller@york.ac.uk & martin.trefzer@york.ac.uk

Abstract—The Reservoir Computing (RC) framework is said
to have the potential to transfer onto any input-driven dynamical
system, provided two properties are present: (i) a fading memory,
and (ii) input separability. A typical reservoir consists of a
fixed network of recurrently connected processing units; however
recent hardware implementations have shown reservoirs are not
ultimately bound by this architecture. Previously, we have demon-
strated how the RC framework can be applied to randomly-
formed carbon nanotube composites to solve computational tasks.
Here, we apply the RC framework to an evolvable substrate
and compare performance to an already established in materio

training technique, referred to as evolution in materio. The
results show that by adding the programmable reservoir layer,
reservoir computing in materio can significantly outperform the
original evolution in materio implementation. This suggests the
RC framework offers improved performance, even across non-
temporal tasks, when combined with the evolution in materio

technique.

I. INTRODUCTION

Research in unconventional computing has shown that many

diverse dynamical systems can be exploited to perform compu-

tational tasks [1]. Exploiting computation at the substrate-level

offers potential advantages over classical computing architec-

tures, such as exploiting physical and material constraints that

could offer solutions “for free”, or at least computationally

cheaper [25]. However, extracting computation from these

systems and physically programming them is a challenging

task. This is sometimes exacerbated by a desire for minimal

abstraction, i.e. exploiting physical phenomena directly, and

wanting a level of programmability that enables the system to

perform a variety of tasks. Hybrid digital-analogue computers

have the potential to fulfil these needs, where the digital system

is trained to extract computation performed implicitly from an

analogue substrate. Kirchhoff-Lukasiewicz Machines (KLM)

[19] which are based on Rubel’s computational model of

analogue computation (the extended analogue computer [23])

are a prime example.

For analogue computers both the program and architec-

ture may be indistinguishable or inseparable, i.e. to program

the machine requires a change in the machine architecture.

However, by placing additional layers within the machine’s

architecture the amount of change required is reducible, for

example, by adding a standardised reconfigurable “middle”

layer. Mills implemented a middle layer for KLMs using

Lukasiewicz logic arrays that perform piecewise linear func-

tions on measured values from the material. To control the

logic arrays a vector of bits referred to as the “overlay” [19]

was used. The semantic “program”, the overlay, is used to

describe the reconfigurable layer that exploits the implicit

material function. The computational functions being utilised

are therefore a result of the material’s configuration, typically

achieved through the selection of inputs, outputs and control

functions/signals. Mills describes this as a paradigm of anal-

ogy [20] where the computing device is not explicitly told

to perform an operation and provide a readable output, but

rather trained to exploit an implicit function that results from

the material’s configuration.

A similar computing paradigm – without the middle “read-

out” layer – has been applied to computational composites

consisting of randomly dispersed carbon nanotubes. These

semi-conducting substrates have been shown to exhibit in-

teresting computational properties across a variety of tasks

using evolved configurations [3]. Applying evolved control

signals, the unknown electrical properties of these compos-

ites are perturbed and trained to produce physical solutions

to computational tasks. Training these composites is done

through the evolutionary selection of input-output mappings

and evolvable control stimuli, using a technique referred to

as evolution in materio [18]. The training method attempts to

discover those material configurations that display interesting

computational features related to a given task, amongst a vast

space of configurations that is constrained only by physical

laws.

Evolution in materio (EiM) is a growing field with new

hardware developments, experimental materials and directions

appearing from different research groups, e.g. [2], [17]. How-

ever, what is classed here as the “vanilla” technique has its

limitations. Modelling and understanding what computational

properties evolution is exploiting, both in the full-embodied

system, and within the material itself is again challenging. The

vanilla technique is argued here to be restricted to a repertoire

of tasks that are small-scale and non-temporal – unless further

modified.

In [7], [8], we have shown that by applying the Reservoir

Computing (RC) framework to such materials, we can exploit

interesting temporal properties that were previously unused.

We call this Reservoir Computing in materio, RCiM. The ad-

dition of the RC framework has enabled us to attempt temporal

problems requiring both dynamic behaviour and memory.

Here, we investigate how well the new reservoir/material

framework compares in performance to the vanilla EiM tech-

nique, on a non-temporal task. The task is to perform classifi-

cation on the Fisher Iris data set across a range of carbon

nanotube composites, including a control case (a resistor

array) and similar density materials used in the vanilla system

[21], [22]. The final section presents two simple analysis

techniques that could provide further understanding as to what

reservoir/material properties are being exploited by evolution.

II. RESERVOIR COMPUTING

Reservoir Computing emerged as an efficient mechanism

for training recurrent neural networks but also evolved into a

general theoretical model for many dynamical systems [24].

By applying only a relatively simple training mechanism many

physical systems have become exploitable unconventional

computers (see [6]).

Reservoirs function as temporal kernels [14] and can rep-

resent any excitable non-linear medium, given the medium

can: (i) create a high-dimensional projection of the input into

observable reservoir states; and (ii) possess a fading memory

of previous inputs and internal states. These prerequisite

properties are described by the separation, approximation [15]

and echo state properties [11]. With these properties a reservoir

can realise any non-linear filter with bounded memory, and

with the aid of a trained readout approximate any function.

To interpret the material as a reservoir we define the

observed reservoir states x(n) of the material as a combination

of the implicit material function and the discrete observation

of the material:

x(n) = Ω(E(Winu(t))) (1)

where Ω(n) is the observation of the macroscopic material

behaviour and E(t) the continuous microscopic material func-

tion when driven by the input u(t) and the input weight matrix

Win.

Training of the reservoir’s linear readout is typically done

using Ridge Regression [13], manipulating the weights Wout

to reduce the error (Normalised Root Mean Squared Error

NRMSE) between the training signal ytarget(n) and the reser-

voir output y(n):

Wout = YtargetX
T (XXT + βI)−1 (2)

where I is the identity matrix and β the Tikhonov regularisa-

tion parameter. The trained in materio reservoir is defined in

eqn.(3), the same as a traditional echo state network.

y(n) = Woutx(n) (3)

III. EXPERIMENTAL PLATFORM

The materials used in this RCiM experiment consist of

various concentrations (w.r.t weight) of single-walled car-

bon nanotubes, randomly dispersed in an insulating polymer:

poly-butyl-methacrylate (PBMA) or poly-methyl-methacrylate

(PMMA). Each material is deposited onto a gold/chromium

microelectrode array of 12 electrodes used to form input-

outputs to the material (see Fig.1). The electronic properties

of the dispersed nanotubes are approximately one-third metal-

lic nanotubes and two-thirds semiconducting nanotubes. The

relative size of the nanotubes (100nm to 1000nm length and

diameter between 0.8nm and 1.2nm) is significantly less than

the gap between the electrodes (between 100 to 150 µm), sug-

gesting that the nanotubes form conductive pathways between

the electrodes. The polymer mixed with the nanotubes acts

both as a dielectric and as a suspension for the nanotube

network. In previous experiments, it has been observed that

both a conductive network is formed and a high computational

performance is reached around a percolation threshold of 1%

carbon nanotubes [7], [8], [16].

To interface the computer with the material, two in-

put/output data acquisition cards are used. Each card is con-

trolled by a MATLAB interface and is set to either input,

or read, analogue voltages from the microelectrode array. To

allow each card to communicate with any electrode, a cross-

point switch is used. The evolutionary process can reconfigure

the switch, and route different input-output combinations.

IV. MACHINE LEARNING CLASSIFICATION

The Iris data set1 (also known as Fisher’s Iris data set) is a

well-known multivariate data type classification problem, and

has been used to benchmark the vanilla evolution in materio

technique [4], [21], [22]. The task is to classify three species

of the Iris plant given the four attributes of petal and sepal

length and width. The Iris data set contains 150 instances,

with 50 instances of each class/species.

The data set was evenly divided into training and testing sets

of 75 randomised instances, containing 25 instances of each

class. Each class in the reservoir framework is represented as

a separate reservoir output (Fig.2) with a binary value, and

each attribute is represented by a floating-point input voltage.

V. TRAINING RESERVOIR COMPUTERS

Each material is deposited onto a microelectrode array,

providing electrical inputs and outputs to the system. Using

computer-controlled evolution, the role of each electrode is

decided, as well as reservoir input parameters. For example,

evolution decides which electrodes are inputs u(n), or outputs

x(n), and evolves a weight value for each input (see Fig.2). In

addition to the weights, another parameter is evolved, called

the leak rate. The leak rate parameter α is used to match

the dynamics of the reservoir to the task input and/or target

output. The leak rate parameter is applied post-collection of

states, eqn.(4).

x̃(n) = (1− α)x(n− 1) + αΩ(E(Winu(t))) (4)

1The Iris data set can be found on the UCI Machine learning repository
at: https://archive.ics.uci.edu/ml/

Fig. 1: Substrates under test. Top left, SWCNT/PBMA mixture with a concentration of 1% SWCNT by weight. Top right,

SWCNT/PBMA 0.53%. Bottom left, gold resistor array. Bottom right, SWCNT/PMMA 0.1%

u1(n)

x3(n)

x5(n) x6(n)

GND x2(n)

x1(n)

x7(n) x4(n)

y1(n)

Win

Wout

u3(n)

u4(n)

u2(n)
y2(n)

y3(n)

Fig. 2: Input-Output mapping of the task inputs u(n) and observed reservoir states x(n). For this task 4 inputs are required

(u1:4(n)), each input is multiplied by the input weight matrix Win and applied to an electrode (green). To form the 3 output

classes y1:3(n), the reservoir states (x1:7(n)) are multiplied by the output matrix Wout (the trained readout layer).

This turns eqn.(3) into eqn.(5) – this parameter, however, is

assumed to have minimal effect on reservoir performance as

data points (t) have no temporal relationship.

y(n) = Woutx̃(n) (5)

In each experiment we apply an elitist evolutionary strategy

(ES) of 1+λ (λ = 4) for 150 generations, with 20 independent

runs. At each generation, a population of five individuals

(configurations) are created containing: the “fittest” individual

from the previous generation, and the mutation-only offspring

(λ) of said individual. When combined with Gaussian mutation

operators, the implementation of this strategy acts somewhat

like a hill-climber algorithm. This was chosen to reduce the

retention effect of degenerative fitness jumps often experienced

by rapidly changing the configuration parameters; most no-

tably found when flipping inputs to outputs and vice versa.

However, applying Gaussian adaptation to the (1+λ) ES could

push training towards local optima. Therefore, to train these

materials requires some level of comprise, as the material may

not be truly “reset”, i.e. the material may retain charge from

previous inputs and evaluations, or, the material may have

permanently changed its phase space – a pertinent issue if

the underlying material structure is non-stationary.

Training and testing is split into two phases. Using the train-

ing set, evolution selects appropriate input-output mappings

and input weights, then ridge regression trains the readout

layer. In testing, a final evaluation of the material configuration

and trained readout performance is carried out on previously

unseen test set data.

A. Fitness Evaluation

To train the reservoir and evolve a solution, the NRMSE

between the trained output and the target output is used to

define fitness. Here the task is to classify binary classes, rather

than a time-series output, so a threshold mechanism is used

to translate the trained outputs into binary classes. To evaluate

the accuracy of the binary classifier, and to conduct a fair

comparison with the previous vanilla EiM results, the fitness

calculation in [21] is applied:

fitness =
TP × TN

(TP + FP)(TN + FN)
(6)

where TP is the number of true positives, TN is true negatives,

FP is false positives, and FN is false negatives.

To select a threshold, a simple optimisation loop was used

(post-state collection). The best threshold was then attached

and stored to the given configuration and reimplemented at

0.1% 0.53% 0.71%(1) 0.71%(2) 1% Resistor

A
c
c
u
ra

c
y
(%

)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 3: Evolved accuracies of each material for the Iris task.

TABLE I: RCiM compared to EiM. Average (mean) accuracies

(in percentages) are shown for training and test data. For

RCiM, standard deviation (std) is provided.

System : Material Training std Test std

EiM [21] : PMMA 0.71% 84.7 — 77.1 —
RCiM : PMMA 0.71% (1) 96.96 0.92 88.15 10.01
RCiM : PMMA 0.71% (2) 94.9 3.92 87.91 7.85

EiM [22] : PBMA 1% 93.33 — 87.87 —
RCiM : PBMA 1% 97.14 1.61 91.90 5.48

CGP [21] 97.7 — 93.6 —

the testing phase. The implementation of this fitness schema

is applied here only for comparison purposes; fitness might be

better represented using cross-entropy [12].

VI. EXPERIMENTAL RESULTS

Fig.3 shows the evolved accuracies of each material using

the RCiM framework. Each material shows training accuracy

(blue, left) and test accuracy (red, right) across 20 evolution-

ary runs. The 0.71%(1) and 0.71%(2) entries refer to two

different samples of the same concentration. In this figure,

we see the control material (resistor array) has statistically

lower accuracies than the lower density materials, suggesting

material properties beyond resistivity are being exploited. As

the distributions are non-normal, the non-parametric Wilcoxon

rank sum test (equivalent to Mann-Whitney U-test) is used

to test the null hypothesis H0 = the medians of the samples

are the same. A value p < 0.05 indicates statistically signif-

icant rejection of H0 at the 95% confidence level. The non-

parametric Vargha-Delaney effect size A [26] is also given

(only for p < 0.05 in Table II and Table III). A > 0.71
symbolises a large effect size and therefore the significance

is of substantial importance and not simply an effect of the

sample size. The rejection of H0 with a large effect size

in Table II shows that the materials provide a significant

contribution to the solution, and that the solution is not

dominated by contributions from rest of the system, or from

resistivity alone.

TABLE II: Wilcoxon/Mann-Whitney (U) and Vargha-Delaney

A effect sizes, between different density materials and the

control.

Test materials p U effect size A

0.1% / Resistor 0.002 0.78
0.53% / Resistor 0.0001 0.85
1% / 0.71% (1) 0.086 —
1% / 0.71% (2) 0.051 —

TABLE III: Wilcoxon/Mann-Whitney (U) and Vargha-Delaney

A effect sizes, between PBMA 1% material and simulated

reservoirs.

Test materials p U effect size A

1% / 7-node ESN 0.51 —
1% / 7-node (sampled) ESN 0.74 —
1% / 50-node ESN 0.0481 0.684

Fig.3 shows RCiM performance varies with respect to

carbon nanotube density, with densities of 0.71% and above

producing the highest accuracies. However, Table II shows

no statistical significance between the higher concentration

materials (0.71% and 1%), demonstrating similar medians and

distributions with p-values > 0.05. This suggests once a net-

work of nanotubes is established – effectively determined by

nanotube density – an increase in computational performance

is minimal. The same hypothesis is discussed in [16].

Table I shows the comparison between EiM, RCiM and an

in silico evolutionary optimisation technique called Cartesian

Genetic Programming (CGP) [21], [22]. The reported EiM

accuracies in Table I come from two different hardware

configurations: [21] uses Mecobo 3.0, a digital stimulation

and measurement board; [22] uses Mecobo 3.5, an analogue

stimulation and measurement board. The accuracies quoted

are assumed to be mean values, across 10 runs for [22] and

20 runs for [21]. Standard deviation was not provided for the

EiM method and is therefore omitted from Table I. In our

comparison experiments we use 20 runs and provide standard

deviations.

As shown in Table I, our RCiM method outperforms the

EiM technique across both Mecobo platforms. The mean

accuracies of both Mecobo platforms fall outside the 95%

confidence levels of our RCiM experiments, suggesting our

increase in performance is significant. The performances of

our physical reservoirs also compare favourably to the in silico

evolutionary programming technique (CGP). The CGP mean

accuracy, although higher than the RCiM accuracy, falls within

the 95% confidence level of the PBMA 1% material (that is,

it is not statistically significantly higher).

For the final comparison, we present evolvable in silico

reservoirs (Echo State Networks (ESNs) [11]). Fig.4 compares

the performance of the best material (1% PBMA) to three

evolved simulated reservoirs, with training accuracy (blue, left)

and test accuracy (red, right) given across 20 evolutionary

runs. In this experiment, two reservoir sizes are compared; a

network with 7 internal nodes and two networks containing 50

7 Node 7 Node (Sampled) 1% PBMA 50 Node

A
c
c
u
ra

c
y
(%

)

0.75

0.8

0.85

0.9

0.95

1

Fig. 4: Experimental results of three simulated reservoirs and

the 1% PBMA material.

internal nodes. The 50-node reservoirs are split into different

readout types; one where all nodes are accessible to the

readout layer and another where the readout can only access 7

randomly chosen nodes. The hypothesis is that when extracting

states from our material, we only sample a small subset of

the materials state space – in our case, through roughly 7

electrodes. It is therefore imperative to observe how this effects

simulated reservoirs.

The similarity in accuracies found in Fig.4 suggests the ma-

terial forms a trainable reservoir within a similar performance

range of the 7-node and the sampled reservoirs. As shown

in Table III, there is no statistically significant difference in

performance when comparing the material to the sampled and

7-node simulated reservoirs. However, the 50-node network is

statistically significant for the Mann-Whitney test (i.e. different

medians).

Upon examination of Fig.4, we can see the material may be

exploiting the benefits of a smaller readout combined with a

larger network for this task, much like the sampled network.

This is shown on the 50-node network where overfitting is

present, but reduced in the 50-node network where only 7

neuron states are sampled to form the output. This sampling

effect, in the context of the number of electrodes available, is

an interesting and possibly advantageous, or limiting factor,

that needs to be further understood.

In summary, three key points are highlighted in the ex-

perimental results,: (i) the material is both significant to the

computational system and possesses properties beyond resis-

tivity (Table II); (ii) RCiM performance varies with respect to

nanotube density (Fig.3), but, variation in performance is less

significant at higher densities (Table II); and (iii) our RCiM

method, on this task, can compete with two optimised in silico

methods, CGP and simulated reservoirs (Table I, Fig.4 and

Table III), and can outperform vanilla EiM (Table I).

A. Discussion

The results of these experiments are intriguing, as they

show an increase in performance over EiM when applying

the reservoir computing framework and its programmable

output layer. This might appear counterintuitive as the direct

programming nature of EiM should arguably outperform a

system that adds a layer of general-purpose programmability;

an increase in programmability typically results in a sacrifice

in performance or evolvability [5]. Yet, this does not appear to

be the case. However, this exception might be attributed to the

new measurement and stimulation technique. For example, an

increase in performance might be a result of: (i) stimulating

the material with variations of the input causes interesting

interactions not present in the vanilla technique alone; (ii) a

conductive network might not be present across all electrodes

and instead several networks may exist across the array,

therefore additional inputs-outputs grant access to each of

these networks; (iii) combining the outputs and weighting their

importance allows training to exploit the whole material rather

than exploiting a single area around a particular electrode

(relating closely to (ii)). These hypothesised explanations still

require further exploration.

The material’s ability to suppress any recurrent dependen-

cies, as seen by the time-independent nature of the task, may

suggest certain configurations act more akin to non-temporal

kernels or Extreme Learning Machines (ELM) [10], rather

than typical temporal reservoirs. To attempt time-independent

tasks with simulated reservoirs, reducing the spectral radius

and increasing the input scaling parameter would intuitively

minimise any dependencies. Others however have proposed

techniques to “break” the recurrent dependency on previous

states and inputs altogether [9]. The interesting point here is

that different configurations – on the same materials – have

been shown to exploit temporal features on time-dependent

tasks and also to vary considerably across different configura-

tions [7], [8]. This suggests tuning of the echo state property

is possible through configuration, rather than the material

behaving entirely as a non-temporal reservoir/kernel/ELM.

Further analysis of the materials and the type of reservoir

dynamics required, or exploited, for this task may indicate

why this plausible.

VII. ANALYSING RESERVOIR AND MATERIAL

CHARACTERISTICS

As part of the investigation three evolved simulated reser-

voirs (Echo State Networks) of different sizes were added for

comparison (Fig.4). The general parameters and structure for

these networks are: a sparse reservoir connectivity of 10%,

uniformly distributed weights between [−1 1] for input and

reservoir weights, tanh neurons, no feedback weights, and a

readout trained using ridge regression.

Each reservoir has three key parameters that were selected

through evolution; the spectral radius, input scaling and

leak rate. Each parameter is adjusted to tune the dynamical

behaviour and memory of the reservoir. In echo state networks,

the spectral radius determines how fast the influence of the

input degrades and the stability of the reservoirs activations.

The Input scaling parameter is used to tune the non-linearity of

the reservoir and tune the proportional effect the current input

Spectral Radius

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
p

u
t

S
ca

li
n

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

84

86

88

90

92

94

96

98

(a) 7 node network - Spectral Radius vs. Input Scaling

Spectral Radius

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
ea

k
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

84

86

88

90

92

94

96

98

(b) 7 node network - Spectral Radius vs. Leak Rate

Spectral Radius

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
p

u
t

S
ca

li
n

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80

82

84

86

88

90

92

94

(c) 50 node network - Spectral Radius vs. Input Scaling

Spectral Radius

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
ea

k
 R

at
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80

82

84

86

88

90

92

94

(d) 50 node network - Spectral Radius vs. Leak Rate

Spectral Radius

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

In
p

u
t

S
ca

li
n

g

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

88

89

90

91

92

93

94

95

96

(e) 7 node (sampled) network - Spectral Radius vs. Input Scaling

Spectral Radius

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

L
ea

k
 R

at
e

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

88

89

90

91

92

93

94

95

96

(f) 7 node (sampled) network - Spectral Radius vs. Leak Rate

Fig. 5: Each plot displays 20 evolved Echo State Networks with network sizes of; 7 nodes (a & b), 50 nodes (c & d), and 50

nodes with only 7 nodes being used to train/form the output (e & f). The parameters under evolution are input scaling, leak

rate and spectral radius. The colour map shows test accuracy of each evolved parameter set.

(a) 0.53% PMMA (b) 0.71% PMMA(1)

(c) 0.71% PMMA(2) (d) 1% PBMA

Fig. 6: Evolved circular electrode plot: Each plot shows how frequently an electrode is selected as an input (circle size) for

each material, and the average input weight (circle colour), i.e. average voltage intensity, converged upon through evolution.

has compared to previous activations. The final parameter, leak

rate, is used to match the speed of the reservoir’s dynamics

to the task input and/or output, essentially applying additional

filtering to the activation of each node [13].

Fig.5 shows the relationship between parameters and task

performance for each evolved network. By visualising the

evolved parameters and their relative performance, we can

determine the desired dynamics for a given task and suggest

what dynamics need to be exploited within the material. From

the graphs we can see each network (independent of size)

typically possesses the following for the Iris task:

• Low spectral radius; i.e. does not require a long memory

(output depends upon current input) and the reservoir is

stable.

• Input scaling around 1; neurons sometimes saturate and

become nonlinear (see 50-node, Fig.5c). However, there

is more variation in dynamics in the 7-node and sampled

networks.

• Large variation in leak rates (or close to 1); suggesting the

parameter does not significantly effect performance – as

expected with other parameters that reduce the reservoirs

memory capacity. See Fig.5b, 5d and 5f.

These evolved dynamics align closely with the known

unperturbed electrical properties of our materials; both stable

with modest non-linear I-V characteristics. This might suggest

why the in materio reservoirs perform similarly to in silico

reservoirs, even after relatively few iterations (typically <50

generations).

Discovering task-specific parameters for simulated reser-

voirs – prior to physical implementation – can reduce exper-

iment times. It can also inform the experimenter as to what

tasks are reasonable to attempt. With future experiments using

new materials, e.g. using materials with dynamic structure,

these desirable dynamic traits can “seed” experiments with

known configurations that produce such dynamics.

Mapping the dynamical relationships between different ar-

chitectural reservoir systems can be enlightening, not only

to benchmark systems but to help identify what electrical

properties of the material respond well to reservoir-style

training. However, identifying exactly what properties in the

material are being exploited by evolution is challenging.

As discussed in [6], analysing and modelling the nanotube

structures and electrical pathways being utilised is difficult. In

Fig.6 we introduce a simple visualisation that highlights areas

of interesting activity frequently exploited by evolution. The

figure displays the electrode arrangement for each material,

showing what frequency an electrode is selected as an input

(circle size) and what average voltage value is supplied (circle

colour) across different evolutionary runs.

This simple visualisation correlates visual carbon nanotube

groupings with areas of possible interest. It also highlights

regions where there might be weak connectivity between

electrodes. For example, in Fig.6a, the low frequency at

which an electrode is chosen as a stimulus source (shown in

circle size) may indicate local isolation in that region of the

network/material. This quick visualisation is a useful tool in

identifying materials with limited connectivity or homogene-

ity, as dispersion of the carbon nanotubes is largely stochastic.

VIII. CONCLUSION

In this investigation we show that adding on the reservoir

framework to the evolution in materio technique, materials

experience no degradation in performance. This result is

significant as the reservoir framework allows both access

to the temporal domain and provides a level of general-

purpose functionality not present before. This is demonstrated

across several materials, including a control (a resistor array)

and similar materials used in comparison work. This initial

experiment demonstrates that reservoir computing in materio

(RCiM) can outperform evolution in materio (EiM), and in

some cases match the performance of in silico techniques.

The final section of this work presents visualisation tools

to aid understanding of the required task dynamics. These

tools can be used to identify suitable tasks for the material,

and identify regions of interesting activity/conductivity in the

material often exploited by evolution.

ACKNOWLEDGEMENTS

Matthew Dale is funded by a Defence Science and Tech-

nology Laboratory (DSTL) PhD studentship. The authors

thank the EU NASCENCE Project for providing the SWCNT

materials used in this work.

REFERENCES

[1] A. Adamatzky, L. Bull, and B. D. L. Costello. Unconventional

computing 2007. Luniver Press, 2007.
[2] S. Bose, C. Lawrence, Z. Liu, K. Makarenko, R. van Damme,

H. Broersma, and W. van der Wiel. Evolution of a designless nanopar-
ticle network into reconfigurable boolean logic. Nature nanotechnology,
doi:10.1038/nnano.2015.207, 2015.

[3] H. Broersma, J. F. Miller, and S. Nichele. Computational matter: Evolv-
ing computational functions in nanoscale materials. In A. Adamatzky,
editor, Advances in Unconventional Computing, volume 2, pages 397–
428. Springer, 2017.

[4] K. D. Clegg, J. F. Miller, M. K. Massey, and M. C. Petty. Practical issues
for configuring carbon nanotube composite materials for computation.
In ICES 2014, IEEE International Conference on Evolvable Systems,
pages 61–68. IEEE, 2014.

[5] M. Conrad. The price of programmability. The universal turing machine

a half-century survey, pages 261–281, 1995.
[6] M. Dale, J. F. Miller, and S. Stepney. Reservoir computing as a

model for in-materio computing. In A. Adamatzky, editor, Advances in

Unconventional Computing, volume 1, pages 533–571. Springer, 2017.

[7] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer. Evolving
carbon nanotube reservoir computers. In Unconventional Computation

and Natural Computation: 15th International Conference, UCNC 2016,

Manchester, UK, July 11-15, 2016, pages 49–61. Springer International
Publishing, 2016.

[8] M. Dale, S. Stepney, J. F. Miller, and M. Trefzer. Reservoir computing
in materio: An evaluation of configuration through evolution. In 2016

IEEE Symposium Series on Computational Intelligence (SSCI), pages
1–8, Dec 2016.

[9] M. J. Embrechts, L. A. Alexandre, and J. D. Linton. Reservoir
computing for static pattern recognition. In 17th European Symposium

on Artificial Neural Networks (ESANN 2009), 2009.
[10] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine:

theory and applications. Neurocomputing, 70(1):489–501, 2006.
[11] H. Jaeger. The “echo state” approach to analysing and training recurrent

neural networks-with an erratum note. Bonn, Germany: German

National Research Center for Information Technology GMD Technical

Report, 148:34, 2001.
[12] D. M. Kline and V. L. Berardi. Revisiting squared-error and cross-

entropy functions for training neural network classifiers. Neural Com-

puting & Applications, 14(4):310–318, 2005.
[13] M. Lukoševičius. A practical guide to applying echo state networks. In

Neural Networks: Tricks of the Trade, pages 659–686. Springer, 2012.
[14] M. Lukoševičius, H. Jaeger, and B. Schrauwen. Reservoir computing

trends. KI-Künstliche Intelligenz, 26(4):365–371, 2012.
[15] W. Maass. Liquid state machines: motivation, theory, and applications.

Computability in context: computation and logic in the real world, pages
275–296, 2010.

[16] M. Massey, A. Kotsialos, F. Qaiser, D. Zeze, C. Pearson, D. Volpati,
L. Bowen, and M. Petty. Computing with carbon nanotubes: Opti-
mization of threshold logic gates using disordered nanotube/polymer
composites. Journal of Applied Physics, 117(13):134903, 2015.

[17] M. Massey, A. Kotsialos, D. Volpati, E. Vissol-Gaudin, C. Pearson,
L. Bowen, B. Obara, D. Zeze, C. Groves, and M. Petty. Evolution of
electronic circuits using carbon nanotube composites. Scientific Reports,
6, 2016.

[18] J. F. Miller and K. Downing. Evolution in materio: Looking beyond the
silicon box. In NASA/DoD Conference on Evolvable Hardware 2002,
pages 167–176. IEEE, 2002.

[19] J. W. Mills. Polymer processors. Technical report, Technical Report
TR580, Department of Computer Science, University of Indiana, 1995.

[20] J. W. Mills. The nature of the extended analog computer. Physica D:

Nonlinear Phenomena, 237(9):1235–1256, 2008.
[21] M. Mohid, J. F. Miller, S. Harding, G. Tufte, O. R. Lykkebø, M. K.

Massey, and M. C. Petty. Evolution-in-materio: Solving machine
learning classification problems using materials. In PPSN XIII, Parallel

Problem Solving from Nature, pages 721–730. Springer, 2014.
[22] M. Mohid, J. F. Miller, S. L. Harding, G. Tufte, M. K. Massey, and

M. C. Petty. Evolving solutions to computational problems using
carbon nanotubes. International Journal of Unconventional Computing,
11(3/4):245–281, 2015.

[23] L. A. Rubel. The extended analog computer. Advances in Applied

Mathematics, 14(1):39–50, 1993.
[24] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview

of reservoir computing: theory, applications and implementations. In
Proceedings of the 15th European symposium on artificial neural

networks. Citeseer, 2007.
[25] S. Stepney. The neglected pillar of material computation. Physica D:

Nonlinear Phenomena, 237(9):1157–1164, 2008.
[26] A. Vargha and H. D. Delaney. A critique and improvement of the cl

common language effect size statistics of mcgraw and wong. Journal

of Educational and Behavioral Statistics, 25(2):101–132, 2000.

