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We are interested in fundamental limits to computation imposed by physical constraints.
In particular, the physical laws of motion constrain the speed at which a computer can

transition between well-defined states. Here, we discuss speed limits in the context of
quantum computing. We review some relevant parts of the theory of Finsler metrics

on Lie groups and homogeneous spaces such as the special unitary groups and complex

projective spaces. We show how these constructions can be applied to analysing the
limit to the speed of quantum information processing operations in constrained quantum

systems with finite dimensional Hilbert spaces of states. We demonstrate the approach

applied to a spin chain system.
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1. Problem and Motivation

The Margolus-Levitin (ML) bound [18] indicates a limit to the speed of dynamical

evolution of any quantum system with a time-independent Hamiltonian in terms of

the system’s energy expectation. This and other such speed limit bounds have an

interpretation in terms of the maximum information processing rate of any quantum

system [17]. This bound complements the Mandelstam-Tamm inequality [25], a

bound to the speed of dynamical evolution of a quantum system in terms of the

energy uncertainty. These bounds have been combined into the ‘unified bound’ [16]

which is, in a sense, tight for all systems. Bounds are also know for the optimal time

in which a quantum gate can be implemented [8]. There is a geometric derivation

of the ML bound [13].

In the application of quantum optimal control to quantum computing, a time-

dependent Hamiltonian is more common [24], and so a more complete analysis of the

limit to the speed of quantum computers needs to take into account the time depen-

dence of the Hamiltonian. A notable result analogous to the ML bound, applicable

to time dependent systems in the adiabatic regime, can be found in [1].



Both the Margolus-Levitin theorem and the Time-Energy uncertainty relation

quantify the quantum information processing (QIP) capacity of a quantum system

by counting or estimating the number of orthogonal states the system can pass

between in a given amount of time [17]. The interpretation as a limit to QIP is

justified, because pairs of orthogonal states |ψ〉, |φ〉 are exactly the states that can

be distinguished with certainty using a single measurement of a projection operator

onto one of the states in question, such as |ψ〉〈ψ|.
Our current programme of work aims to put facts about the quantum speed limit

(QSL) on a firm geometric footing. We aim to do this in a fashion that is extensible

to other physical theories such as quantum field theory so that in the future the

limits to QIP presented by QFT can be analysed in a legitimately comparable

manner. Further to this we aim to establish the effectiveness of the application of

Finlser and related geometry to the investigation of speed limits to computation in

more general analogue models of computation, especially those inspired by physics.

As a step in this programme, in this paper:

• we review known speed limit theorems

• we review some relevant geometric quantum mechanics

• we review existing applications of geometry to the QSL

• we show how Finsler metrics on SU(N) and CPN can be used to derive

speed limit theorems that apply to any quantum system with potentially

time-dependent Hamiltonians

• we use this technique to re-derive some existing results and investigate its

application to Heisenberg model spin chains in one dimension

2. Quantum Speed Limits

Here we review known QSL theorems.

2.1. The Margolus Levitin Theorem

The Margolus-Levitin theorem [18] states that for any quantum system such that:

(1) the Hamiltonian Ĥ is non-degenerate, has a discrete spectrum and has lowest

eigenvalue 0

(2) the state |ψ〉 has energy expectation E = 〈ψ|Ĥ|ψ〉

then t⊥, the least possible time in which the system can transition from |ψ〉 to a

state orthogonal to |ψ〉, is bounded by:

t⊥ ≥
π~
2E

(1)

Note that condition (1) can readily be imposed via the transformation:

Ĥ 7→ Ĥ − E0Î (2)

which has no effect on the dynamics of any physical quantities. Here E0 is the lowest

eigenvalue of Ĥ.



2.2. The Time-Energy ‘Uncertainty Relation’

The Time-Energy ‘Uncertainty Relation’ is unlike other uncertainty relations in

quantum mechanics: time is not an operator in quantum mechanics but instead a

privileged, independent variable on which the state depends [7]. Although there are

some situations in which time can be treated as an operator [7], that view is not

taken here, and we employ the standard use of time as a real-valued independent

variable throughout.

The Time-Energy ‘Uncertainty Relation’ states:

t⊥ ≥
π~

2∆E
(3)

where ∆E is the variance of energy, or ‘energy uncertainty’, ∆E =√
〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ|ψ〉2 .

3. Geometric Quantum Mechanics

Geometric quantum mechanics is an attempt to reformulate the theory of quantum

mechanics in terms of differential geometry [6]. We find this a particularly fruitful

formulation for investigating QSL questions.

In this section, we review the material needed to derive our results in following

sections. We are concerned only with finite dimensional systems: systems for which

the Hilbert space of states in the standard formulation of QM is finite dimensional.

3.1. CPN as the Space of States

The space of states in quantum mechanics is typically formulated as a complex

vector space CN+1 with a hermitian inner-product 〈·|·〉 : CN+1 → CN+1 [10]. How-

ever, not every vector in the space of states corresponds to a truly different physical

state, as physical states are normalised to have norm one (according to the norm

|| |ψ〉 || =
√
〈ψ|ψ〉 ), and global phases are not physical quantities (i.e. they cannot

be observed) [7]. The space of physically distinct states is given by CPN , as shown

below.

3.1.1. Normalisation

The first step in realising CPN as the space of physically distinct states is treating

the normalisation condition. Define an equivalence relation ∼1 ⊆ CN+1×CN+1 by:

|ψ〉 ∼1 λ|ψ〉 ∀λ ∈ R/{0}. This yields a realisation of the sphere S2N+1 as a set

of equivalence classes of points in CN+1. This construction can also be clarified by

writing an arbitrary state as:

|ψ〉 =

k=N∑
k

αk|Ak〉 (4)



where |Ak〉 are any orthonormal basis of CN . The condition that the state has norm

one becomes:

〈ψ|ψ〉 =

k=N∑
k

|αk|2 =

k=N∑
k

<(αk)2 + =(αk)2 = 1 (5)

which is the formula defining a sphere of radius 1.

3.1.2. Phase

The next step is to associate states which differ only by a global phase eiθ. Take

a quotient of S2N+1 into equivalence classes, where the equivalence relation ∼2 ⊆
S2N+1 × S2N+1 is defined by [|ψ〉]∼1

∼2 e
iθ[ |ψ〉 ]∼1

∀θ ∈ R. The new space is:

S2N+1/U(1) ∼= CPN (6)

This quotienting process can be represented by:

CN+1 S2N+1 CPNφ1

φ:=φ2◦φ1

φ2

where:

φ1 : |ψ〉 7→ [|ψ〉]∼1
(7)

φ2 : [|ψ〉]∼1
7→ [[|ψ〉]∼1

]∼2
(8)

Here φ : CN+1 → CPN and realises the quotient by the equivalence relation ∼ ⊆
CN+1 × CN+1 defined by |ψ1〉 ∼ λeiθ|ψ1〉 ∀λ ∈ R/{0}, θ ∈ R. The purpose of

breaking the quotienting process into two steps is to illustrate the mathematical

realisation of the two physical principals: that states are normalised and that global

phases are unphysical.

3.2. SU(N) as the Space of Quantum Time Evolution Operators

Typically in quantum mechanics the set of all time evolution operators Û : CN →
CN is taken to be the group of unitary operators. A condition (there are other

equivalent ones) for unitary of an operator Û is that all inner products are preserved

by its action of CN :

〈ψ|Û†Û |ψ〉 = 〈ψ|ψ〉 ∀ |ψ〉 ∈ CN (9)

This is exactly the condition that the total probability of finding a system in any

state is preserved to be 1.

The condition that the phase of the state is unchanged by time evolution is

more difficult to analyse. Unitary operators can ‘re-phase’ a state, for example the

operator eiθ Î is unitary. This operator has the action on a state |ψ〉:

eiθ Î|ψ〉 = eiθ|ψ〉 (10)



In our approach to QSL, optimal times for implementing a gate should be related

to distances between points on the group, for some appropriate notion of distance.

So we do not want to include changes in unphysical parameters (such as the global

phase of an operator) when devising notions of distance on the group, In order to

avoid changes in global phase of Ût contributing to the length of its trajectory on

the group, we study metric structure on the special unitary group, rather than on

the unitary group.

SU(N) is a linear algebraic group (LAG) [4]a; that is, it is a subgroup of

GL(CN ). These groups have a simplifying feature: the differentials of left and right

translation (where Û , V̂ ∈ SU(N)),

dLV̂
∣∣
Û

: TÛSU(N)→ TLV̂ (Û)SU(N) = TV̂ ÛSU(N) (11)

dRV̂
∣∣
Û

: TÛSU(N)→ TRV̂ (Û)SU(N) = TÛV̂ SU(N)

act on tangent vectors Â ∈ TÛSU(N) in a particularly simply way:

dLV̂
∣∣
Û

(Â) = Û Â (12)

dRV̂
∣∣
Û

(Â) = ÂÛ

This follows from the fact that a linear map is always equal to its own differential.

3.3. Finsler Metrics on SU(N) and CPN

3.3.1. Finsler Metrics

A Finsler metric is a generalisation of a Riemannian metric.

Definition 1 (Minkowski Norm [9]) A Minkowski Norm on a real, finite di-

mensional vector space V is a map ‖ · ‖ : V → R such that the following hold:

(1) F (v) ≥ 0 ∀v ∈ V and F (v) = 0⇔ v = 0 (Non-degeneracy)

(2) F (λv) = λF (v), ∀λ ∈ R/{0}, ∀v ∈ V (Positive homogeneity)

(3) The Hessian of F 2 at each vector in V is positive definite. (Strong Convexity)

Condition (3) in the definition of a Minkowski Norm, expressed in full, reads:

gy(u, v) =
1

2

∂2

∂s∂t
F (y + su+ tv)2

∣∣∣∣
s=t=0

(13)

aIt is often misstated that U(N) ∼= SU(N)×U(1). This can be directly shown to be false by apply-
ing the well known first isomorphism theorem for groups to the homomorphism φ : SU(N)×U(1)→
U(N) given by φ(Û , eiθ) = eiθÂ. The correct statement is instead that U(N) can be written as
a semi-direct product of SU(N) and a U(1) subgroup of SU(N). The object which behaves as

U(N) with operators identified up to a global phase is the projective unitary group PSU(N). It
is defined by the quotient U(N)

/
Z(U(N)) where Z(U(N)) is the centre of U(N), well know to

be the ‘scalar matrices’ {eiθ Î
∣∣θ ∈ [0, 2π)}. However it is true that U(N) ∼= (SU(N)× U(1))

/
ZN ,

which is the conclusion of applying the first isomorphism theorem to the homomorphism φ. As
the Lie algebras of PSU(N) and SU(N) are identical, working with SU(N) rather than PSU(N)

does not affect anything that follows in this paper; this footnote is included for completeness.



Definition 2 (Finsler Metric [2, 9]) A Finsler metric is a map Fp : TpM → R
such that F is a Minkowski Norm ∀p ∈ M and F is smooth on the slit tangent

bundle (often denoted TM/{0} by a mild abuse of notation) of M .

Definition 3 (Reversible Finsler metric [9]) A Finsler metric F on a mani-

fold M is said to be Reversible if it satisfies: Fp(v) = Fp(−v) ∀p ∈M , ∀v ∈ TpM .

Note that reversible Finsler metrics are exactly those for which the Minkowski norm

is, point-wise, a norm in the usual sense of a normed vector space on each tangent

space.

Example 4. Every Riemannian metric g on M defines a Finsler metric F by:

Fp(v) =
√
gp(v, v) (14)

It is in this sense that Finsler geometry generalises Riemannian geometry.

3.4. Some Notions of Invariance

There are several related notions of invariance of a Finsler metric on a Lie group.

Definition 5 (Left and Right Invariant Finsler Metric [9]) A Finsler met-

ric F on a Lie group G is a Left Invariant Finsler metric if, ∀g, h ∈ G, ∀v ∈ TgG:

FLh(g)

(
dLh

∣∣
g
(v)
)

= Fhg

(
dLh

∣∣
g
(v)
)

= Fg(v) (15)

The corresponding condition for a Right Invariant Finlser metric is:

FRh(g)

(
dRh

∣∣
g
(v)
)

= Fgh

(
dRh

∣∣
g
(v)
)

= Fg(v) (16)

These conditions simplify somewhat in the case of a LAG such as SU(N), where

the notions of left and right translation have a simple form. The left and right

invariance conditions respectively take the form:

Fhg (hv) = Fg(v) (17)

Fgh (vh) = Fg(v) (18)

where the composition of a group element (such as g, h above) and a tangent vector

(such as v above) is understood to be achieved by standard matrix multiplication.

3.5. Existing Geometric Investigation into the Quantum Speed

Limit

Various authors have initiated a geometric investigation into the QSL with a vari-

ety of approaches. The earliest application of geometry to rationalisation times [5]

applies the known formula for the geodesics lengths (of the Fubini-Study metric on

CPN ) to pairs of orthogonal states in a two level system. Others [13,25] attempt a

derivation of the ML theorem and MT inequality for finite dimensional systems with

time independent Hamiltonians also based on the geodesic lengths of such curves



on CPN . See the original papers for the progress of this attempt. Most recently [15]

initiates an investigation of the relationship between metric (in the finite sense of

metric spaces, not the infinitesimal sense of differential geometry applied in this

work) structures on U(N) and the QSL.

4. Constrained Systems and Finsler Metrics

4.1. General Manifolds

Consider a “navigator” on a general manifold M (taken to be compact and con-

nected), where there is some internal limitation restricting the motion on M that

they can achieve. This can be represented, for each p ∈M , by Ap, a set of ‘allowed’

tangent vectors to any trajectory of the navigator at the point p ∈ M . For a more

complete discussion of the type of navigation problem see [22]; for a discussion in

the context specifically of quantum mechanics see [20].

We wish to achieve a geometric analysis of the limitation on the speed with

which the navigator can traverse a desired specific trajectory. To do so, we define

the following type of metric:

Definition 6 (Constraint Compatible Finsler Metric) Given a manifold

(compact and connected), and given a constraint in the form of a set of subsets

Ap ⊂ TpM (one for each p ∈M), we say that a Finsler metric Fp : TpM → R such

that ∀p ∈M, ∀x ∈ Ap, Fp(x) ≤ 1 is Constraint Compatible.

Our definition is justified by the following theorem, which shows how such a

metric is related to the speed limit for the navigation problem in a constrained

dynamical system on a manifold M :

Theorem 7. Given:

(1) A connected and compact smooth manifold M

(2) A constraint in the form of a collection of subsets Ap ⊂ TpM ∀p ∈M
(3) A constraint compatible Finsler metric F

then any parametrised curve γ : [0, T ]→M satisfying:

dγ

dt
∈ Aγ(t) (19)

has the property

T ≥ L[γ] =

∫ T

0

Fγ(t)

(
dγ

dt

)
dt (20)

Proof. L[γ] =
∫ T
0
Fγ(t)

(
dγ
dt

)
dt ≤

∫ T
0

1 dt = T



4.2. Speed Limits and Finsler Metrics on SU(N)

We now apply theorem (7) to constrained quantum mechanical systems, and as-

sess the minimum time in which they can implement a desired QIP task, from a

geometric perspective. In order to implement a desired quantum operation Ô in a

quantum system, one must have a system with the property that Ût = Ô, where Ût
is the system’s time evolution operator at some time t [24].

The time evolution operator Ût : CN → CN in quantum mechanics obeys the

Schrödinger equation [11]:

d

dt
Ût = − i

~
ĤtÛt (21)

Now suppose that the Hamiltonian Ĥt (possibly time dependent) is constrained

(for all time), due to physical limitations in the lab, to be in some set of allowed

Hamiltonians Ĥt ∈ H. This results in the tangent vector to the trajectory of Ût,
d
dt Ût being constrained to lie in the set − i

~HÛt at time t. The set − i
~HÛt is the

right translation of the set of tangent vectors − i
~H ⊂ TÎ(SU(N)) to the identity.

We have the following specific objects playing the role of the objects appearing in

the premises of theorem (7):

(1) A compact, connected manifold SU(N)

(2) The time evolution operator playing the role of the navigator on the manifold

(3) The set of allowed tangent vectors at a point Û on SU(N) is AÛ = − i
~HÛ

As the set of allowed tangent vectors is right invariant (its construction by

right translation guarantees this), and we seek metrics satisfying the premises of

theorem (7), then it is correct to restrict to considering only right invariant metrics.

This is justified since any non-right invariant metric can yield only speed limits

that are not as tight as those yielded by some right invariant metric, i.e. the right

translation of a metric for which the indicatrix is as small as possible at that point.

The optimality of right invariant metrics follows from the right invariance of the

set of allowed tangent vectors. Then, if a metric is optimal at a point, its right

translation is optimal at all points.

It is also the case that bi-invariant metrics are simpler to calculate with, and

thus to obtain explicit speed limit formulae, which are all right invariant.

Definition 8 (Shattan p-Norms [3]) The Shattan p-norm of a matrix Â ∈
MatsN×N (C) for p ∈ R, such that 1 ≤ p, is given by:

‖Â‖p =
(

Tr(|Â|p)
)1/p

(22)

where |Â| := (Â†Â)1/2. This matrix square root is taken to be the principal one,

guaranteed to exist and be unique, as Â†Â is positive semi-definite.

We can readily observe by a simple calculation that the left or right translation of

this norm from the tangent space at the identity of SU(N) is a bi-invariant Finlser



metric. These Finsler metrics are given by:

FÛ (ÂÛ) = Tr(|ÂÛ |p)1/p = Tr((Û†Â†ÂÛ)p/2)1/p (23)

= Tr(Û†(Â†Â)p/2Û)1/p = (Tr(|Â|p))1/p = FÎ(Â) = ‖Â‖p
The calculation checking left invariance is similar, and so omitted.

It is a theorem that a bi-Invariant Finlser metric on a compact, connected Lie

group G has the property that its geodesics coincide with the one parameter sub-

groups [12, 14]. This fact is now exploited in order to derive speed limit theorems

for constrained quantum systems.

Theorem 9. Any quantum system (with potentially time dependant Hamiltonian)

Ĥt such that α‖ i~Ĥt‖p ≤ 1 ∀t ∈ R cannot implement quantum gate Ô in a time less

than αTr(| log(Ô)|p)1/p = α‖ log(Ô)‖p.

Proof. We need the following facts:

(1) The metric, say F , defined as any positive multiple, say α, of the right trans-

lation of the Shatten p-norm at the identity on SU(N) is bi-invariant and

reversible.

(2) Bi-invariant Finlser metrics have the one parameter subgroups as their

geodesics.

(3) Any physical trajectory of the time evolution operator is a solution to the

Schrodinger equation.

We have, by assumption, that the system has α‖ i~Ĥt‖p ≤ 1 for all times. This

and (3) above entail that the time evolution operator has:

FÛt

(
d

dt
Ût

)
= FÛt

(
− i
~
ĤtÛt

)
= α

∥∥∥∥− i~Ĥt

∥∥∥∥
p

= α

∥∥∥∥ i~Ĥt

∥∥∥∥
p

≤ 1 (24)

and thus we see that this metric is a constraint compatible metric for this constraint.

The final step uses the fact that the metrics formed by the right translation

of the Shattan-p norm at the identity are manifestly reversible. In fact, the set of

allowed tangent vectors at a point is exactly the indicatrix (Finsler analogue of the

unit sphere) of this metric acting on the tangent space at that point.

Next we need that the length of the trajectory of Ût parametrised between t = 0

and t = T on SU(N) according to such an F is given by:

L[Ût] =

∫ t=T

t=0

FÛt

(
d

dt
Ût

)
dt ≥ Topt (25)

where the final inequality is due to an application of theorem (7) made possible by

the observation that the metric is compatible with the constraint.

Now, if we wish to implement operation Ô time optimally using a system with

a constrained Hamiltonian, as described in the premises, then we seek the least

time Topt such that Ût = Ô. We have (from basic properties of the time evolution

operator) that Û0 = Î. Next we seek the length of a geodesic of F connecting Î to Ô



in order to obtain the tightest bound available among all curves connecting the same

end points. As stated above, such a geodesic must be a one parameter subgroup

(in the sense that they share the same image on SU(N), but perhaps not the same

parametrisation). As the length of a curve is independent of the parametrisation of

that curve, any parametrisation can be chosen.

As the desired geodesic is guaranteed to be a one parameter subgroup, we need

consider only curves of the form:

Ût = exp

(
− i
~
tĤ

)
(26)

where Ĥ† = Ĥ (so that − i
~Ĥ ∈ su(N), the special unitary Lie algebra).

Such a geodesic can be found by supposing that ÛT = Ô holds, then taking

matrix logarithms of both sides to yield:

Ĥ = − ~
iT

log(Ô) (27)

Substituting this into equation (26), we find the desired curve to be:

Ût = exp

(
t

T
log(Ô)

)
(28)

To obtain the final result we derive the length of this curve and apply theorem (7)

as follows:

Topt ≥ L[Ût] =

∫ t=T

t=0

FÛt

(
d

dt
Ût

)
dt (29)

=

∫ t=T

t=0

Fexp( t
T log(Ô))

(
d

dt
exp

(
t

T
log(Ô)

))
dt

=

∫ t=T

t=0

Fexp( t
T log(Ô))

(
1

T
log(Ô) exp

(
t

T
log(Ô)

))
dt

(by right invariance of F ) =

∫ t=T

t=0

FÎ

(
1

T
log(Ô)

)
dt

(as F is homogeneous) =

(
1

T

∫ t=T

t=0

dt

)
FÎ

(
log(Ô)

)
(by definition of F ) = αTr

(∣∣∣log(Ô)
∣∣∣p)1/p

4.3. Speed Limits and Finsler Metrics on CPN

There is a unique Riemannian metric, up to a constant multiple, on CPN that is

invariant under the natural choice of action of the unitary group on CPN . That is to

say it has the property that U(N) consists only of isometries [6]. This metric is the

Fubini-Study metric; there is more than one way to represent its metric tensor. One

such way, well adapted for use in quantum mechanics, is to write it as a function on

the tangent spaces to CN+1 that is constant on equivalence classes of the equivalence



relation that allows CPN to be constructed from CN+1 as described earlier. The

formula is:

ds2 =
〈δψ|δψ〉
〈ψ|ψ〉

− 〈δψ|ψ〉〈ψ|δψ〉
〈ψ|ψ〉2

(30)

This metric can readily be used to prove the Time Energy uncertainty relation

by knowing that the geodesic distance between orthogonal states in Hilbert space

is π
2 . This can be observed by noting that the finite form of this metric is [23]:

γ(|ψ〉, |φ〉) = arccos

√
|〈ψ|φ〉|2

〈ψ|ψ〉2〈φ|φ〉2
(31)

The metric clearly has the same unitary invariance properties as its infinitesimal

form, eqn.(30).

The following relationship between the time energy uncertainty relation is well

known; we re-derive it to illustrate the usefulness of geometric constructions in

proving quantum speed limit theorems.

In the case that |ψt〉 solves the Schrödinger equation for a time-independent

Hamiltonian Ĥ we have:

|δψt〉 =
d

dt
|ψt〉 =

d

dt
exp

(
−itĤ

)
|ψ0〉 = −iĤ exp(−itĤ)|ψ0〉 = −iĤ|ψt〉 (32)

Substituting this into the definition of arc length corresponding to the metric at

hand, we find:

L[|ψt〉] =

∫ t=τ

t=0

√
〈δψt|δψt〉 − 〈δψt|ψt〉〈ψt|δψt〉 dt (33)

=

∫ t=τ

t=0

√
〈ψt|Ĥ2|ψt〉 − 〈ψt|Ĥ|ψt〉2 dt

=

∫ t=τ

t=0

∆E|ψt〉dt =

∫ t=τ

t=0

∆E|ψ0〉dt = τ∆E|ψ0〉 ≥
π

2

∆E|ψt〉dt can be replaced by ∆E|ψ0〉 in the last line, since here the Hamiltonian

is time-independent, which implies that the energy uncertainty is also. From this

follows the Mandelstam-Tamm inequality:

τ ≥ π

2∆E|ψ0〉
(34)

Compare this derivation to that in [13] (their eqns. 22-25; note that the ‘Wootters

distance’ is simply the finite form of the Fubini-Study metric applied to normalised

states). There the finite form of the metric is differentiated; here we use the differ-

ential form of the metric immediately.

At this point a relevant question is: can Finlser geometry be used to derive the

ML theorem in a similar way to the above derivation of the MT inequality? We

conjecture that it can.



4.4. The Correspondence Between Speed Limits on SU(N) and

CPN

Suppose that we want to calculate the optimal time to implement a transformation

from state |ψI〉 to some other state |φO〉 using a system with a constrained Hamil-

tonian (so that there is any speed limit at all!). It is physically intuitive that the

optimal time (T say) must be equal to the optimal time to drive the time evolution

operator Ût from Î at t = 0 to some ÛT such that ÛT |ψI〉 = |ψO〉. It is on this

intuition that the following method builds:

Definition 10 (Homogenous Space [9]) A manifold M which is equipped with

a transitive action of a Lie group G on M is called a Homogeneous Space.

Definition 11 (Stabilizer [9]) Given a point p ∈M , Gp = {g ∈ G | g ◦ p = p} is

called the Stabiliser Subgroup of p.

With the above definitions in mind the following relationship can be proved if

U(N) is taken to be the stabiliser of some fixed point [|ψ∗〉]∼ ∈ CPN :

Theorem 12 ( [9], ch. 2) CPN ∼= SU(N + 1)/U(N)

This equivalence is a taken to mean the existence of a diffeomorphism (invertible

smooth map between manifolds with smooth inverse). The / symbol means quo-

tienting into left cosets, that is SU(N + 1)/U(N) = {ÛU(N)
∣∣Û ∈ SU(N + 1)}.

There is no guarantee that this quotienting process yields a group structure, as

U(N) is not a normal subgroup of SU(N + 1). However, it is only an equivalence of

geometries, not algebraic structures. SU(N + 1) has an action on CN+1 (by stan-

dard matrix multiplication). This can be used to define an action on CPN given by

Û [|ψ〉]∼ = [Û |ψ〉]∼. One can readily check that this is equivalent to the action on

CPN .

The map γ : SU(N + 1)→ CPN given by

γ(Û) := [Û |ψ∗〉]∼ (35)

is constant on cosets as, for any V̂ ∈ U(N) the following holds:

γ(Û V̂ ) = [Û V̂ |ψ∗〉]∼ = Û(V̂ [|ψ∗〉]∼) = Û [|ψ∗〉]∼ = [Û |ψ∗〉]∼ = γ(Û) (36)

The isomorphism β : SU(N + 1)/U(N)→ CPN is given by [9]:

β(ÛU(N)) := γ(Û) (37)

from which it follows that:

β(ÛU(N)) = [Û |ψ∗〉]∼ (38)

The differential of the map β,

dβ
∣∣
Û

: T(ÛU(N))SU(N + 1)/U(N)→ Tβ(ÛU(N))CPN = T[Û |ψ∗〉]CPN (39)



can be used to study the relationship between Finsler metrics on CPN that are

invariant under the action of SU(N + 1), and Finsler metrics on SU(N + 1) itself

satisfying a complicated invariance property (discussed at length in [9, ch.2]). That

invariance property is being constant on cosets, or ‘compatible with the quotient’;

it must not depend on which representative of each equivalence class in SU(N) is

chosen: the ‘same’ tangent vectors at each point in a class must be assigned the

same length, so as to avoid ambiguity when assigning lengths to tangent vectors on

CPN .

The push forward of a Finsler metric on SU(N + 1), FÛ : TÛSU(N + 1) → R
defines an invariant Finsler metric on RÛU(N) : TÛU(N)CPN → R (under the

appropriate condition discussed above) via:

RÛU(N)(dβ
∣∣
Û

(Â)) := FÛ (Â) (40)

We use this to prove a QSL theorem next. Its use proving more general QSL

theorems will be studied in future work.

4.5. Orthogonality Times

One example of applying the relationship between metrics on the two spaces,

SU(N+1) and CPN , can be used to derive bounds on orthogonality times, outlined

below. We have yet to re-derive the known bound exactly using this method, but we

conjecture that it is possible, and here derive some bounds on orthogonality times

to illustrate the principle.

Any such Ût mapping some state |φ〉 to an orthogonal states (for a possibly

time-independent system) must have the following form for some unitary change of

basis matrix V̂ , some unitary Â and some θ ∈ [0, 2π]:

Ût = exp (−itĤ) = V̂ †B̂V̂ (41)

where

B̂ =


0 − exp(−iθ) 0 . . . 0

exp(iθ) 0 0 . . . 0

0 0
...

... Â

0 0

 (42)

Consider the norm on su(N), ‖ · ‖p : SU(N) → R (for p ≥ 1) defined as above.

Taking the norm of both sides of eqn.(41) yields:

Tr
(∣∣∣−itĤ∣∣∣p) = Tr

(∣∣∣log(V̂ †B̂V̂ )
∣∣∣p) (43)



This implies:

tp Tr(|Ĥ|p) = Tr(| log B̂|p) (44)

= Tr(| log

(
0 − exp(−iθ)

exp(iθ) 0

)
|p) + Tr(| log Â|p)

≤Tr(| log

(
0 − exp(−iθ)

exp(iθ) 0

)
|p) =

2πp

2p

Taking the pth root of each side yields our result, the bound:

t ≥ 2
1
pπ

2Tr(|Ĥ|p)
1
p

=
π

2

(
2

Tr(|Ĥ|p)

) 1
p

(45)

This is similar to, but not as strong as, the bounds given in [15].

This bound coincides, in the special case of a two level system, with the

Margolus-Levitin bound if p = 1.

5. Example of Geometric Derivation of QSL on SU(N): the

Controlled Heisenberg Spin Chain

We apply theorem (9) to obtain results for a specific quantum system of relevance

in quantum computing: a spin chain. A controlled Heisenberg spin chain of N spins

(with coupling constants Jx, Jy, Jz) has Hamiltonian [19]:

Ĥt =

 ∑
k∈{x,y,z}

Jk

(
N−2∑
n=0

Î⊗
n

2 ⊗ σk ⊗ σk ⊗ Î⊗
N−n−2

2

) (46)

+

(
N−1∑
n=0

fn(t)Î⊗
n

2 ⊗ σz ⊗ Î⊗
N−n−1

2

)
We impose the physical constraint that the total energy used to produce the

control functions is less than κ2, and obtain:

N−1∑
k=0

fn(t)2 ≤ κ2 (47)

We now find a constraint compatible, bi-invariant metric (in this example a

Riemannian one) as follows:

Theorem 13. The Finsler metric Fopt that is the largest multiple α of the metric

FÛ (ÂÛ) = Tr(Â†Â)1/2 = ‖Â‖2 such that the metric is constraint compatible with

the constraint in eqn(47) is given by:

Fopt(Â) =
Tr(Â†Â)1/2√

(N − 1)(Jx
2 + Jy

2 + Jz
2) + κ2

(48)



That is, the tightest speed limit (obtained from this specific one parameter family of

metrics alone) is obtained by setting:

α =
1√

(N − 1)(Jx
2 + Jy

2 + Jz
2) + κ2

(49)

Proof. Omitted: a simple but laborious substitution of iĤtÛ into the formula

for the prescribed metric at the point Û on the special unitary group given by

FÛ (iĤtÛ), followed by observation of the maximum value this quantity can take.

Constraint compatible, explicitly non-Riemannian Finsler metrics can also be found,

and will be part of further work.

We now conclude:

Theorem 14. The optimal time to implement a gate Ô in a constrained (as in con-

straint given in formula (47)) Heisenberg spin chain system of N spins is bounded

by:

Topt ≥
Tr(log(Ô)† log(Ô))1/2√

(N − 1)(Jx
2 + Jy

2 + Jz
2) + κ2

(50)

Proof. by a direct application of theorem (9).

6. Conclusions

We have demonstrated the use of geometric formalisms in deriving time bounds for

QIP in constrained quantum systems. We have shown the promise of the application

of Finsler geometry to the problem of the QSL in constrained quantum systems.

More importantly, the new formulation allows us to exploit the approach for time

dependent and constrained systems, as relevant to quantum computation. We have

demonstrated this by deriving and proving a speed limit result, theorem (9). We

have applied this to a spin chain system.
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