
Rule Migration: Exploring a design framework
for emergence

HEATHER R. TURNER?, SUSAN STEPNEY, FIONA A. C. POLACK

Department of Computer Science, University of York, UK

Received 31 October 2005

We propose a framework for engineering emergent behaviour
that allows system specification and design at the level of the
emergence. We discuss how rule migration can be used to trans-
late this high-level multi-layer design (mobile process model)
into an equivalent simple cellular automaton model with only
local rules, and emergent behaviour. In this paper, we use a case
study in 2D to illustrate the process involved in deriving a mi-
gration rule for a simple random walk. We discuss how the mo-
bile process architecture may be extended to model systems with
multiple levels of emergence.

Key words: Rule migration, engineered emergence, cellular automata,
mobile processes, occam-pi, random walk.

1 INTRODUCTION

To secure the future of practical applications of complex emergent systems,
research needs to establish appropriate engineering principles. Engineering
is a quality-enhancing activity, and is essential for the safe exploitation of
emergence in nature-inspired computational systems; the engineered emer-
gent system would be robust, with assurance of functionality and safety. In
exploring emergent systems engineering, we need to consider architectural
issues, as well as developmental issues such as compositionality and refine-
ment.

? email: turner@cs.york.ac.uk

1



We consider complex emergent systems, which comprise many simple
components. Often-cited examples of complex emergent systems include net-
work navigation by ants (real or simulated), construction by termites, swarm-
ing and flocking, for example by birds or their simulated equivalent, boids. In
this work, we focus on systems akin to cellular automata (CAs).

In developing a system, several levels of description are needed. For exam-
ple, separate behavioural descriptions are needed for individual components
and for larger structures or aggregates. In an emergent system, there is a dis-
continuity in the descriptions of the various levels. For example, in CAs the
low-level components are described as changing state, whereas the system de-
scription might be in terms of the movement of patterns. The higher, system,
level typically describes the required emergent properties.

In this paper, we use a simple case study in 2D to illustrate the process
involved in deriving a migration rule, enabling high-level system specifica-
tions to be migrated into low-level system implementations with the required
emergent behaviour.

2 CONTEXT AND RELATED WORK

Elsewhere [8], we describe a generally-applicable system architecture to un-
derpin engineering of complex emergent systems. We identify three key ele-
ments: the high-level description of the required system; the specification of
the components that form the lowest level of the system; and the specification
of the representation that integrates the first two elements. Conventional de-
velopment approaches, relying on a linear reduction in non-determinism (data
and process refinement; model-driven development, etc) are applicable within
each element, but the low-level system components cannot be systematically
derived from the system specification. The components are fundamentally
different from the overall system, and cannot be described using the same
language concepts.

Subsequently [9], we explore the extraction of a layered component model,
derived from pure CA models, and use this to deduce some characteristics
of causal linkage among the system elements. We show how macro-scale
descriptive layers can be used to express control, motion and relative char-
acteristics in appropriate models or language, whilst appropriate micro-scale
models can be used at the component layer. We can introduce and experi-
ment with models related to the proposed system architecture, such as mod-
els of environmental interaction (at the macro-level) and of local chemical
diffusion and other features of the immediate context of components (at the

2



component level). Lower-level features are monitored by the higher-layer
structures, which also communicate control signals to the CAs.

In engineering terms, we use layering and causality to devise architectural
patterns for the design of emergent systems. This will allow the incorporation
of good engineering practices, such as validation, testing and safety argumen-
tation to the development process associated with this layered architecture.

2.1 Our background research
To test the validity of the ideas behind our postulated system architecture
and causality framework, we are exploring two CA-like applications. The
first, based on a pure CA, relates to the tracking of emergent patterns such as
gliders. The second, and more detailed application, is a very simple model of
artificial blood platelets (see [9] for details).

As part of a wider research exercise? , we initially focused on a one-
dimensional (1D) representation of the artificial blood platelets model. A
pure CA was used to model the movement and aggregation of platelets† .
Probabilistic CA rules determine whether an update rule fires in a particular
situation. This capacity was subsequently migrated to a higher level. [9] de-
scribes a model for the resulting two-layer system, using mobile processes
(MPs) to perform higher-level monitor and control functions on the sites of
the “CA” that hold platelets.

The engineering advantage of a model that uses layering, such as using
MPs to control movement and aggregation, is that a model of each layer can
be built using the abstractions and concepts appropriate to that layer. This
has the potential to improve both modelling and verification of models. Inter-
action between layers is essentially in terms of control signals (passed from
higher to lower behaviours) and state information (from lower to higher lev-
els).

2.2 Extending the case studies
We are working towards models of artificial blood platelets in three dimen-
sions, that are capable of representing the local environment of blood vessels,
and aspects of the global environment such as vessel constriction and wound-
ing. In this paper, we extend the rule migration aspect first presented in [9] to
a 2D scenario.

? The TUNA collaboration, EPSRC grant EP/C516966/1
† Specified and analysed in CSP by S. A. Schneider and H. Treharne, as part of TUNA; with

A. Cavalcanti and J. C. P. Woodcock, TUNA has also produced CSP models for more elaborate
platelet models.

3



To explore the process of rule migration, we present two simplified ver-
sions of the 2D platelet model. The first is a 2D CA. The second is a two-
layered MP model. We explore the relationship between the two models,
and establish their equivalence, constituting a migration rule between the two
models. This illustrates how we can devise engineering procedures for map-
ping designs expressed in terms of higher-level emergent requirements into
lower-level component rules.

2.3 Related work

The hierarchical structure of emergence has been identified and discussed
by many researchers. A recent literature survey by Fernando [4] provides a
useful introduction to both the theoretical and experimental research in this
area. He focusses on hierarchical complexity, and a study of the modelling
constraints that are necessary to evolve this structure.

There appears to be a limited amount of material available concerning
higher levels of emergence. Mayer and Rasmussen [7] also use a variation
on a CA in their Lattice Molecular Automaton. The state and dynamics of
this model are highly complicated, and the rules are derived from the laws of
physics. The authors claim that this detail is necessary to achieve the higher
order structures. It would be interesting to discover if we can derive a similar
model from the top down, using our MP architecture, and rule migration.

Another researcher who uses a multi-layer architecture is Capcarrere [2].
His model, Phuon, is constructed from two layers, the active cellular layer,
and a passive environmental layer. Those layers correspond quite closely to
the layers in our MP architecture, and we have chosen to name our lower
layer in the same way for consistency. That model particularly considers the
simulation of growth and development, but in addition incorporates motion at
the cellular layer.

Other authors have considered how to model movement using just CA
rules, although the explicit detail of how the movement is achieved in terms of
the local rules is not always clear. Goel and Thompson [5] use movable finite
automata in a specific biological case study. Wolfram [13] considers motion
in a CA at the macro-level in terms of its ability to model fluid dynamics. That
paper concentrates heavily on the mathematics of the macro-level behaviour,
and the underlying rules for movement are not entirely clear.

4



FIGURE 1
Relationships between and within (a) the CA model, and (b) the MP model.

3 RELEVANT MODELS

There are three distinct kinds of mobile process model that use rule migration.
It is important to clarify the differences between them, and show how they
relate to one another in the context of this research.

3.1 Upward versus downward causation
Our MP models have different levels of description. If all the behaviour is a
result purely of the lowest level of description, this is upward causation: the
upper layers merely record emergent properties of the lower layers, and have
no causative influence on the model.

If, on the other hand, some of the behaviour of the lowest level is caused by
higher level entities, this is downward causation: the upper layers are actively
engaged in the behaviour. Whether or not this happens in physical systems is
moot: it is certainly relevant in design models.

3.2 Tagging emergent properties
Mobile processes may be used to tag identified emergent properties in a
model. For example, in a CA, a MP could be attached to a configuration
of ‘on’ cells that appear to be ‘moving’ across the CA grid, thus identifying
them as a glider, and capturing the emergent property of motion. This glider
can then be considered as an entity in its own right, and discussed at a higher
level than the CA rules. When used in this tagging way, the MP does not
control the behaviour of the glider; all the rules are applied at the level of the

5



CA cells. The MP simply tags the consequences of emergence, responding to
upward causation.

Given mechanisms for the automatic identification of gliders, and other ob-
jects in CAs, a MP layer would then provide a useful platform for discussing
higher-level interactions between these entities. Additional MP layers could
be added to identify any emergent behaviour resulting from these higher-level
interactions. Figure 1 shows how the CA model (a) can be tagged as a three
tier MP model (b), by tagging an environmental layer with two MP layers.

3.3 Upward rule migration
Once emergent properties have been tagged, we may discover aspects of the
system behaviour, or elements of the control structure, that are easier to de-
scribe at the level of the MPs than in the low-level CA rules. We may want
to modify the behaviour by adding new control structures, or just to simplify
the model: the CA layer can have simpler states if it does not need to record
decisions about the direction of movement (see Section 4.2). This can be
achieved by migrating some of the rules upwards, from the CA to the MP
layer. The modified system uses downward causation, allowing MPs to exert
some control over the low-level environmental layer behaviour. The control
might, for example, manifest itself as ‘permission giving’, or keeping track
of group membership, or perhaps adding probabilistic choice.

Figure 1 also illustrates upward rule migration, as it is feature tagging, plus
downward causation.

3.4 Downward rule migration
In contrast to the applications described above, downward rule migration is
used in the engineering of systems with emergent behaviour. The tiered struc-
ture enables models to be designed at a level where the rules are simple, and
easy to define, giving a multi-layered design using abstractions, and concepts
appropriate at each layer. Such a model is not directly implementable as
a pure agent system or CA system, however, requiring as it does potential
global control and communication to implement the downward causation.
Migrating the rules downwards from higher layers into the lower layers can
then create an equivalent implementable system with only upward causation,
in which the MPs provide only tagging. This structure is also illustrated by
Figure 1.

3.5 The challenge
Developing the framework to enable downward rule migration is the main
focus of this paper. Here, we take an initially layered system, and implement

6



it with a CA. For most real applications, however, migrating the rules down
to a CA would be inappropriate, and the lowest implementation level might
correspond, for example, to a multi-agent system.

Migrating the rules down to the CA level in this way, will almost cer-
tainly result in a CA with a large state space. This appears to oppose one
of the key properties of a CA: its ability to produce complex behaviour from
a very small state space. However, consider von Neumann’s first attempt
at a self-replicating CA [12]. His CA had 29 states, and served to prove that
such behaviour could be achieved. In the years that followed, many others de-
voted time and effort to discover simpler CAs that still exhibit self-replication.
Moshe Sipper provides an excellent summary of the developments in this area
[10], from which we have taken the following key developments: Codd re-
duced the number of states required to 8 [3]; Langton used a smaller self-
replicating structure in an automaton with the same size of state space [6],
which was then improved upon by Byl, reducing the number of states re-
quired to 6 [1]. Here, we are concentrating on proof-of-concept, rather than
efficiency and conciseness.

Reverse-engineering the CA rules which exhibit particular emergent be-
haviour is a challenging task. When we consider how it might be achieved,
we expect to require some exploration, and adjustment to the source and target
models (see Section 5 for more discussion). It would be impractical to have
to perform this from scratch every time a new system is to be engineered,
and also redundant, as many different systems will share common aspects of
behaviour. Returning to our CA example, movement is an emergent property
of a CA, and is likely to be required in many different CA models. If we can
define an alignment between a MP model of movement, and a CA model of
movement, it can be used as a translation rule to migrate between such MP
models and their CA equivalents. The same is true for other forms of be-
haviour such as aggregation, and signalling. Movement itself is a non-trivial
form of behaviour, incorporating, for example, diffusion, random-walks, bi-
ased random-walks, and deterministic directed motion. As mappings are cre-
ated between MP models and corresponding CA models, we can add these to
a translation dictionary, to facilitate rule migration.

A MP model displaying movement of aggregates can be designed as the
three tier model shown in Figure 1b. The upper layer controls the aggregation,
whilst the middle layer controls the movement. We hypothesise that rule
migration will allow us to migrate all the control down through the layers by
applying the appropriate translation rules (for details of how this might be
achieved, see section 6).

7



In the following sections, we discuss a process for deriving the first trans-
lation rule, for simple movement. This paper describes one entry in the trans-
lation dictionary.

4 CASE STUDY: SIMPLE RANDOM WALK (SRW)

4.1 Motivation
The inspiration for this work on rule migration came from our attempts to
model the emergent properties that blood platelets display when they en-
counter a change to their environment, the blood vessel. Simple behaviours
that we identified include biased random movement (carried by blood flow),
aggregation (formation of blood clots), and movement of aggregates (clots
that have not yet attached to heal wounds). There are also other, more compli-
cated behaviours, including the diffusion of signalling molecules that trigger
the clotting behaviour.

The blood platelet case study will eventually use the downward rule mi-
gration process. Before we are able to do this, however, we must derive MP
model to CA model translation rules for, at the very least, biased random
movement, and aggregation. With this goal in mind, we first explore a more
general translation rule for the simple random walk (SRW), unbiased random
movement. In the descriptions that follow, we use the general term ‘agent’ to
refer to entities that are perceived to ‘move’ through an environment. In the
artificial blood platelet model, the agents would be the platelets.

The simple random walk on a square grid allows an agent to move to any
one of its eight neighbouring sites with equal probability. The situation is
made interesting by the presence of multiple agents; these act as obstacles to
movement, and can compete for environmental real-estate.

In the subsections that follow, we discuss two different models of the sim-
ple random walk by agents on a 2D square grid, one a CA, one an MP model.
The models have already gone through a process of alignment (see Section
5.1), and are therefore equivalent.

4.2 Cellular automaton model: emergent movement
The CA model of a SRW adheres to many of the properties that we consider
to be the defining characteristics of a CA. Space is modelled by a regular grid
of sites that update in synchrony at discrete time intervals. Each site is in one
of 17 possible states. The update rules, which define how the sites change
state based on their own state, and those of their neighbours, are defined for
the Moore neighbourhood of size 9. The automaton is homogeneous, that is,

8



FIGURE 2
One time step in the evolution of the CA. Four different passes update the states of the
grid sites, comprising type, indicated by the colour of the grid square, and direction,
identified by the arrows. By applying the simple local rules, we simulate observable
random motion.

all the sites in the grid use the same rules. In contrast to the usual definition
of a CA, the rules are probabilistic.

The rules for simple CAs are usually given as a lookup table, mapping the
current state of a site’s neighbourhood to its corresponding next state. For
this CA, with 17 states (illustrated in Figure 2; direction is not used in empty
cells) and a neighbourhood of size nine, there would be 179 (> 1011) entries
in the lookup table. Instead the rule is described as a compressed algorithm.

The 17 states of the CA are derived from two variables, type with three

9



values, and direction with eight (not all combinations are possible). The
type can take the value black, white, and grey, corresponding to the concepts
occupied, empty, and attempting move, respectively. Direction indicates N,
NE, E, SE, S, SW, W, and NW, corresponding to neighbouring sites in each
of the compass positions. The value of direction is irrelevant when type is
white (empty). The different states are shown in Figure 2 by combining the
appropriate symbols from the key to the diagram.

The occupied sites represent the agents. They have the ability to choose
their desired direction of motion, based on the availability of empty sites in
their neighbourhood. CA sites can update only their own state, and so have
no direct means of telling the chosen destination site that it has been selected.
A more indirect approach is needed. We use a series of passes in the CA rule
to allow the sites to indicate their preference, verify selection, and perform
the necessary state updates.

We now describe in detail how this strategy can be employed for our SRW
model. Figure 2 shows a possible initial configuration for the CA grid, with
different snapshots, or passes, identifying different synchronisation phases of
the CA rule.

At the beginning of each time step, all sites are either black (occupied),
or white (empty). Each black site (agent) is given the opportunity to try to
“move”. It first evaluates the states of the neighbouring sites, to establish a
current view of its surroundings. The agent may move only to a cell that is
empty during this evaluation. Having determined the availability of empty
sites in the eight neighbouring directions, one is selected, with uniform prob-
ability, if any are available. The black site indicates its chosen destination by
setting its direction state appropriately. This is the situation shown in Figure
2 as Pass 1.

The agent cannot just move in the chosen direction, as that would involve
updating the state of its neighbouring site (forbidden by CA rules). In Pass
2, the black sites change their type to grey to indicate that their contents are
ready to move.

In Pass 3, the white (empty) sites evaluate their neighbourhood, and deter-
mine whether any agents want to move into them. They evaluate both the type
and direction of their neighbouring sites, counting any prospective new occu-
pants. They select with uniform probability any neighbouring agent wanting
to move, and set their type to black (indicating the move into this site), and
direction to point at the selected agent. Otherwise the site is unchanged.

In Pass 4 the grey sites update to indicate whether the agent successfully
moved, or whether it failed at this particular time step. Each grey site checks

10



FIGURE 3
Mobile process model architecture. State information at the environmental layer re-
flects the state of the MPs in the upper layer.

that it has one black neighbour with its direction pointing back at the grey
site. If so, the grey site changes its type to white, thus completing the agent’s
move out of this site. If the neighbouring states indicate that the move is not
accepted, the grey site changes back to black (no move occurs); the agent can
attempt to execute a move again in the next time step. The direction is no
longer relevant.

The four pass structure of this algorithm is used for clarity; it is equivalent
to one single rule that includes extra states that identify which pass the system
is in.

The “movement” of the agent is an emergent property of this CA. Nothing
has actually moved: sites merely change state. The rules have to be carefully
designed to yield this emergent movement and conservation of agents. De-
ducing the rules for a non-trivial 2D CA is a complicated and time-consuming
task. The emergent motion has to be reverse engineered into state-change
rules for neighbourhoods, with all possible contingencies accounted for: the
CA must not lose or gain agents.

4.3 Mobile process model: controlling the emergent movement
The MP model for this SRW example is built on a 2D cellular array, the
lower layer. Sites occupied by agents are “tagged” with mobile processes at
an upper layer. Some of the logic resides in the lower cellular layer, which
we call the environmental layer after [2], and some is captured by the MPs,
making the movement easier to model. This is an example of downward
causation (because the MPs affect the behaviour of the environmental layer).

An important aspect of the two layer architecture is the ability of each
layer to abstract away detail. Communication channels act like sensors into
the environment, providing a means by which the MP can sense and interact

11



with its neighbourhood. The environment contains state information indi-
cating whether each site has active connections to upper layer processes. In
Figure 3, which illustrates the architecture, each MP represents one agent,
and is connected to precisely one site at the environmental layer, so there is a
direct equivalence between sites representing agents and processes represent-
ing agents: the MPs “tag” the agents in the environmental layer. Each site
is connected to its eight immediate neighbours by two communication chan-
nels. Each site has two further channels, which can be connected to by any
MP at the upper layer. A communication protocol permits the transmission
of state information associated with neighbouring sites. An MP can move
from one site to a vacant neighbouring site by dropping its channel connec-
tions to the environmental site, and picking up those of the neighbour. An
implementation is described in [11], Appendix A.

At each time step, the MP tagging each agent submits a request to its en-
vironmental site for information about its neighbourhood. In this model, the
MP performs the probabilistic selection of movement direction. To do this,
the site at the environmental layer counts the available neighbouring sites and
reports back to the MP. The MP then chooses one with uniform probability,
and sends the ‘move’ request to its environmental site. The MP attempts to
move to the chosen neighbouring environmental site, using a mechanism sim-
ilar to that described in [11], Appendix A. If the movement is unsuccessful,
because, for example, another process is chosen to move to the site, the MP
will be unable to move. At this point, information about agent locations in the
two layers is no longer equivalent: the environmental layer must update. Sites
that have lost connections become empty, whilst those that find their channels
newly connected become occupied.

We can compare this MP model to the corresponding CA model. In the
MP model the tagged identity of the agents, and their explicit movement pro-
vides simplicity. In the CA model, movement is an emergent property: it is
not explicit in the context of the rules, making them hard to engineer. In ad-
dition, a large number of states are required to perform the signalling needed
to resolve the conflicts occurring with the probabilistic choice.

5 RULE MIGRATION

In the previous section, we describe two models of the SRW on a square
grid, one a pure CA, and the other a MP model. The two implementations are
equivalent, as we show here. At the beginning of a design process, models are
derived independently, so are unlikely to have exactly the same behaviour. We

12



explore how the differences in the models’ behaviours are resolved during the
alignment process, and show the similarities and the differences in the final,
aligned implementations.

5.1 Design and alignment
The first step in the design of a basic translation rule is the derivation of the
two relevant models (here the MP model and CA model of SRW). The next
step is to make the two models functionally equivalent, that is, produce the
same result at each main time step when given the same initial configuration.
This process can be seen as an alignment operation. We work from the MP
model, and from the CA model, and make any necessary modifications and
adjustments until the two models can ‘meet in the middle’, and be equivalent.

In our initial design of the MP model (which differs slightly from the im-
plementation described in the previous section), the agent, as a MP, appears
to have an identity, and it seems reasonable to offer ‘it’ flexibility in the deci-
sion making process. When two agents attempt to move to the same location,
one is prevented from moving. In the MP model, it is quite easy to provide
a ‘second chance’, and let the failed agent try another direction, at least un-
til it runs out of options. The simplicity is achieved because the MP and
its environmental site can freely exchange information without requiring the
complicated state changes that would be required in the CA model. In the MP
architecture, when the environmental site fails to fulfil a move request, it can
send a message to the MP, and ask it to pick a different direction. The MP
can reply with a new choice, and another move attempted.

The pure CA model does not have this richer functionality, as it does not
fit so naturally with the CA style of rules. In the process of aligning these two
models, it is simpler to scale down the functionality of this more complicated
MP model. The ‘second chance’ for the MP is removed from the model, and
the alignment is complete. This is the situation in the algorithm described in
Section 4.3.

5.2 Comparing the models
The result of the alignment process is shown in Figure 4. It illustrates how
the equivalent functionality is achieved by different means in each algorithm.
The details are discussed below. To further clarify what we consider to be
equivalence, the configuration of the environmental layer of the MP model,
and the grid of the CA model, should be equivalent at the beginning and end
of each main time step. In the intermediate processing, the CA model makes
use of additional state information, and the MP model sends messages via

13



its communication channels, and changes their connections. Figure 5 shows
the different phases of execution of the two models as images of the grids,
along with brief descriptions of what is happening in each model, at different
stages. The intermediate steps in the different models are not synchronised
with each other; they are shown side-by-side to highlight the equivalence of
the initial and final configurations. The models are synchronised at each main
time step.

In Figure 4, we show the finished product of the alignment process. The
two models are functionally equivalent, and we can show where they per-
form similar operations by different means. In the diagram, numbered arrows
link the parts of the algorithm that perform equivalent operations. These are
described in more detail below:

1. In both models, the agents’ environments are evaluated.

2. In both models the agents select a direction in which to move.

3. In the CA model the agents that are trying to move change state so that they
can be distinguished in later passes from agents that have successfully moved.
There is no equivalent operation in the MP model.

4. In both models, the agents ascertain whether they were successful in their re-
quests to move.

5. In the CA model, all empty sites in the grid are evaluated to determine whether
any agents want to move into them. Many empty cells will not be near agents
and so do not change state. In the MP model there is no equivalent as compu-
tation is carried out only in the locality of the MPs.

6. Much of the CA algorithm is covered in one step of the MP model. In the MP
model, this step corresponds to the actual movement, and the communication
channels are rearranged at this point. In the CA model, we have the simple
case where there is no competition for the destination site and the movement
effectively occurs (although the source site must be updated later, as identified
by the second arrow marked with a 6). In the more complicated case where
there is a conflict, the destination site detects that more than one agent is trying
to move into it, and chooses one at random (this is not dissimilar from the
random element to the process scheduling that determines which MP moves
first). The successful agent moves at this point.

7. In both models, the agent did not get to its destination before it was occupied
by another. The agent does not move. In the CA model, the agent location from
the first pass is reactivated.

8. In the MP model, the environmental layer is updated to reflect the new locations
of the MPs. No equivalent operation is needed in the CA model.

14



We hypothesise that the functional equivalence described here for the SRW
can be generalised and used with other behaviours. By considering more
examples, and through further experimentation, we propose to find patterns
of operation in an MP model that correspond consistently to other patterns of
behaviour in an equivalent CA model. When we have built a dictionary of
such correspondences (migration rules), we will have accomplished a major
step towards an architecture for exploring emergence in CA-like systems.

6 DISCUSSION AND FUTURE WORK

We have shown how to achieve desired emergent behaviour in a CA model,
by using rule migration for an MP design model. We describe two levels in
an emergence hierarchy in terms of our MP architecture. Then, by applying
derived migration rules we build a low-level CA that displays emergent be-
haviour. The MP model can include moving, aggregating objects, and these
can be programmed explicitly. After migration, the rules for the CA model
produce the same behaviour, but this will be difficult to discern from the CA
rules themselves. The resulting behaviour may also be difficult to explain in
terms of the low-level CA rules; it will require description in a higher-level
language. We argue that although there is much controversy surrounding the
definition of emergence, the behaviour just described would be classified as
emergent.

Extending this idea, we plan to develop migration rules between MP lay-
ers, not just from MP models to CA models. Ultimately we want to be able to
model systems with multiple levels of emergence. By describing these sys-
tems in terms of MPs at the highest level with downward causation, we can
migrate the rules downwards to produce an MP model at a lower level, with
upward causation to the highest level. If the lower-level MPs also tag, and
influence (by downward causation), behaviour at a CA layer, then the rules
can be migrated downwards again, until eventually the rules are migrated to
a pure CA model with only upward causation. The MP to CA rule migration
is the special case, while the more general MP to MP migration rules will
permit us to model, at least in principle, an arbitrary hierarchy of emergence.

Our next step is to generate more migration rules. We will specialise the
SRW to provide a migration rule for a biased random walk, and design a
migration rule for aggregation. In addition, we will explore the combination
of simple properties such as movement and aggregation, into a more complete
model.

We expect it to be possible during the design process to either combine the

15



MP properties and then migrate the rules to a CA model, or to perform the
rule migration on the individual properties, before combining them. We hope
that properly designed rules will have a useful degree of commutativity (see
Figure 6), although we do not expect the relationships to be simple.

Once we have a satisfactory dictionary of migration rules, we can apply
them to model systems. We will begin with the artificial blood platelets, by
attempting to combine movement rules with aggregation rules. We expect
to require a three layered structure, the top layer representing blood clots
(aggregation of platelets), the next layer representing the platelets themselves,
and controlling their movement, and a final layer providing the model for the
implementation. The MPs representing clots may need to be connected to
(i.e. have control over) all of the MPs that make up the aggregate, as shown
in Figure 1b, or they may connect only to some key MPs. Movement of
aggregates may be achieved in the same way that a glider moves across a
CA, by translation of a fixed configuration, facilitated by intermediate state
changes.

There is much work to be done in this area, and many applications to which
we can apply the different forms of rule migration. We believe that the most
important contribution of this work will be in the study and design of systems
with multiple levels of emergence.

7 ACKNOWLEDGEMENTS

H. R. Turner is funded by an EPSRC and BAE Systems CASE Studentship.
The TUNA feasibility study is supported by EPSRC grant EP/C516966/1.

REFERENCES

[1] J. Byl. (1989). Self-reproduction in small cellular automata. Physica D, 34:295–299.

[2] M.S. Capcarrere. (2004). An evolving ontogenetic cellular system for better adaptiveness.
BioSystems, 76:177–189.

[3] E.F. Codd. (1968). Cellular Automata. Academic Press.

[4] C. Fernando. On the evolution of hierarchical levels of organisation. Unpublished DPhil
literature survey, University of Sussex. Available from:
http://www.informatics.susx.ac.uk/users/ctf20/end of year report sc.ps, accessed May 2005.

[5] N.S. Goel and R.L. Thompson. (1988). Movable finite automata. In C. Langton, editor,
Artificial Life, SFI Studies in the Sciences of Complexity. Addison-Wesley.

[6] C.G. Langton. (1984). Self-reproduction in cellular automata. Physica D, 10:135–144.

[7] B. Mayer and S. Rasmussen. (1998). Self-reproduction of dynamical hierarchies in
chemical systems. In C. Adami, R.K. Belew, H. Kitano, and C. Taylor, editors, Artificial
Life VI: proceedings of the Sixth International Conference on Artificial Life, pages 123–
129. MIT Press.

16



[8] F.A.C. Polack and S. Stepney. Emergent properties do not refine. In REFINE 2005,
BCS-FACS Refinement Workshop, ENTCS, volume 137, pages 163–181. Elsevier.

[9] F.A.C. Polack, S. Stepney, H.R. Turner, P.H. Welch, and F.R.M. Barnes. (2005). An
architecture for modelling emergence in CA-like systems. In ECAL 2005, LNCS, volume
3630, pages 471–480. Springer.

[10] M. Sipper. The artificial self-replication page. Available from: http://www.cs.bgu.ac.il/ sip-
per/selfrep/.

[11] H.R. Turner and S. Stepney. (2005). Rule migration: Exploring a design framework
for modelling emergence in CA-like systems. In C. Teuscher and A. Adamatzky, editors,
Workshop on Unconventional Computing. Luniver Press.

[12] J. von Neumann. (1966). Theory of Self-Reproducing Automata. University of Illinois
Press.

[13] S. Wolfram. (1996). Cellular automaton fluids: Basic theory. In S. Wolfram, editor,
Cellular Automata and Complexity: collected papers. Addison-Wesley.

17



FIGURE 4
The finished product of the alignment process. Numbered arrows show where the
algorithmic sub-units are equivalent, see text for more detail.

18



FIGURE 5
The two models are equivalent at the beginning and end of each iteration, but differ-
ing, and unsynchronised intermediate processing results in differing internal configu-
rations.

19



FIGURE 6
The hypothesised commutative nature of the migration and combination procedures.

20


