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Abstract. Artificial Signalling Networks (ASNs) are computational mo-
dels inspired by cellular signalling processes that interpret environmental
information. This paper introduces an ASN-based approach to control-
ling chaotic dynamics in discrete dynamical systems, which are repre-
sentative of complex behaviours which occur in the real world. Con-
sidering the main biological interpretations of signalling pathways, two
ASN models are developed. They highlight how pathways’ complex be-
havioural dynamics can be captured and represented within evolutionary
algorithms. In addition, the regulatory capacity of the major regulatory
functions within living organisms is also explored. The results highlight
the importance of the representation to model signalling pathway be-
haviours and reveal that the inclusion of crosstalk positively affects the
performance of the model.

1 Introduction

Cells need to engage in many forms of communication in order to sense and
respond to the outside world. This capacity is vital for cells to survive. Cellular
signalling involves a chain of events that permits cells to interact with their envi-
ronment. It starts with the triggering of a biochemical signal and terminates with
an adaptive cellular response. Classically, cellular signalling may be conceived
as follows: a surface receptor binds an extracellular messenger (e.g. hormone,
growth factor), which diffuses an intracellular signal to an effector protein inside
the cell. This then produces secondary messengers, which transmit the informa-
tion further into the cell. Spatially or temporally variable catalytic reactions or
cascades of protein kinases finally lead to changes in gene expression, bringing
about a change in cellular activity.

In this paper we propose a new Artificial Signalling Network (ASN) approach
to modelling the spatial properties and temporal topologies of cellular signalling,
capturing its intrinsic dynamics. In order to test the model we apply it to the



control of a numerical dynamical system, whose properties mirror the complexity
of cellular environments. Controlling dynamics also represents a classical multi-
disciplinary problem in its own right.

This paper is organised as follows: Section 2 presents a brief overview of
dynamical systems, Section 3 reviews the current literature on ASNs, Section 4
introduces the new model and defines its methodology, Section 5 presents some
initial results, and Section 6 concludes.

2 Dynamical Systems

A dynamical system is a mathematical model where a function, or evolution rule,
characterises its state based on the system’s current state and initial conditions
[12]. The evolution rule defines the motion and behaviour of the system across the
state space. Dynamical systems are initially divided into autonomous and non-

autonomous. The former is a closed system whose dynamics are not perturbed
by the outside world. The latter defines an open system changing over time, as
inputs are received from an external environment. Likewise, dynamical systems
can be discrete or continuous in time, depending on the type of evolution rule:
difference equations in the former and differential equations in the latter.

Given a set of initial points within a discrete state space, the evolution rule
defines their trajectories as a sequence of states over a period of time. A dyna-
mical system where trajectories do not contract to a limited region of the state
space is known as a conservative system.

Dynamical systems can display a wide range of behaviours. The most inter-
esting are those involving holistic irregular and unpredictable properties; this
atypical dynamism is known as chaos. Despite being deterministic, chaotic sys-
tems display aperiodic behaviours characterised by an exponential sensitivity
to initial conditions and the existence of strange attractors. Whereas the for-
mer suggests that small changes in the initial conditions convey highly different
trajectories throughout the state space, the latter defines fractal and non-linear
regions where trajectories may converge.

2.1 Chirikov’s Standard Map

Chirikov’s standard map [4] is a conservative and discrete two-dimensional dyna-
mical system representing iteratively the interactions of two canonical variables
within the unit square:

xn+1 = (xn + yn+1) mod 1 yn+1 = yn −
k

2π
sin(2πxn) (1)

One of the map’s main properties is its capacity to represent different dynamics
as its nonlinearily increases. Thus, low values of k preserve an ordered state
where trajectories lead to periodic and quasi-periodic trajectories bounded on
the y-axis (see Fig.1(a)). As k increases, chaotic dynamics arise in the form of
chaotic islands along the y-axis, which are never visited (see Fig.1(b)). The type



of trajectories depends on the map’s initial conditions. The map shows a be-
havioural inflection point, kc, at k ≈ 0.972. Initial impermeability progressively
disappears as k > kc (see Fig. 1(c)–(d)), enabling trajectories to vertically travel
across the map. The example in Figure 1 shows the permeability of the map in-
creasing as k increases, characterised by the gradual encroachment of the chaotic
regions.

0

0

0.2 0.4 0.8

X

Y

0.2

0.4

0.8

0.6

0.6

1

1

(a) k = 0.4

0

0

0.2 0.4 0.8

X

Y

0.2

0.4

0.8

0.6

0.6

1

1

(b) k = 0.972

0

0

0.2 0.4 0.8

X

Y

0.2

0.4

0.8

0.6

0.6

1

1

(c) k = 1.1

0

0

0.2 0.4 0.8

X

Y

0.2

0.4

0.8

0.6

0.6

1

1

(d) k = 2.0

Fig. 1. Sampled trajectories of Chirikov’s standard map using different values of k,
showing the change from the ordered to the chaotic state. Each map is plotted using
400 randomly chosen initial points across the unit interval over 800 iterations.

2.2 State Space Targeting

The sensitivity underlying chaotic dynamics brings about a broad band of com-
plex, unstable and unpredictable behaviours using arbitrary control signals. Con-
trolling chaos or chaos targeting attempts to provoke large behavioural changes
in the dynamics using relatively small perturbations, which are achievable by
the modification of the system’s control signals. Therefore, it looks at finding
the fastest path from an initial condition to a target point. Existing research
has shown that targeting in conservative systems, such as Chirikov’s standard



map, is achievable using small perturbations to drive across the different chaotic
regions of the state space [9, 14]. Consequently, the map becomes navigable from
the bottom to the top and it is possible to find a controller able to transverse it.

3 Artificial Signalling Networks

As an abstraction of cellular signalling, Artificial Signalling Networks try to
model the particular characteristics that allow cells to take chemical signals as
inputs and generate some adaptive output. Given our motivation to preserve
biological plausibility, we are interested in investigating the ASN’s ability to
implement control functionalities. From a computational perspective, the im-
portance of ASNs lies in their capacity to coordinate the set of events within
cells that trigger robust, efficient and specific responses, their ability to work
as independent processing units and their capacity to adapt to environmental
perturbations.

One way to model ASNs relies on the quantitative description of particular
pathways. Experimental and mathematical approaches facilitate the identifica-
tion of the functional elements as well as their interactions in concrete pathways,
thereby simplifying their modelling. Thus, the fuzzy model suggested in [7] com-
putes the dynamics of the IL-6 pathway based on the state of the components,
the initial inputs and a set of fuzzy rules. Likewise, the validity of logic-based
modelling has been widely demonstrated [10]. These models have a direct phys-
ical basis. Said et al. in [13] take a more abstract approach, modelling the in-
teraction between two participating elements, and then, applying it to simulate
MAP kinase cascade as a Markov chain. However, the reconstruction of these
pathways was insufficiently accurate since the complexity displayed by some of
the components could not be captured.

Another way to design ASNs is to use evolutionary algorithms. They can
induce complex behaviours in a concise and evolvable way [9] and some specific
functionalities are achievable only through evolutionary processes [6]. In fact,
evolved ASNs have been successfully used to capture simple forms of biological
signal processing [3, 5]. In this paper we propose an alternative approach: we use
a generic evolved artificial signalling network, where no specific information of
either the participating elements or their interactions is needed. Therefore, all
limitations emerging from the pathway’s particular characteristics are dismissed
and the ASN’s topology is the result of its interaction with the environment.
This increases its adaptability when facing different types of environment. A
similar approach has been suggested in [8]. However, it models ASNs as Boolean
networks and limits the connectivity between the participating elements.

4 State Space Targeting with ASNs

Most of the signalling processes inside the cells involve complex interactions bet-
ween enzymes. Although these interactions may vary in size, they are essential in
the transmission of signals. In practice, enzymes are not functional unless they



are grouped together into a biological structure. Likewise, some of the main cel-
lular functions are only achievable under certain spatial distributions. There are
a wide variety of abstractions aiming to represent the properties of intracellu-
lar signalling networks. However, many of them fail to fulfill this objective, or
it is only partially achieved. For example, Bayesian Networks [11, 15], limit the
representation of complex dynamics due to their acyclic nature. This paper pro-
poses the usage of interaction graphs to capture the topological and temporal
patterns intrinsic to signalling pathways. An interaction graph is a mathematical
representation modelling the dynamical behaviours of a system formed by mul-
tiple actors interacting over time; thus, we consider ASNs as dynamical systems
defined by interactions between enzymes.

According to the different types of pathways inside cells, we introduce two
approaches for ASN modelling. Whilst the first model considers ASNs as a sub-
type of metabolic network (see Fig. 2(a)), the second considers them to be cas-
cades of protein kinases (see Fig. 2(b)). Both approaches extend the model des-
cribed in [9]. Both are continuous-valued models as this enables a more realistic
representation of biological systems. To allow a valid comparison between both
models, they are deterministic and synchronous.
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Fig. 2. Representation of both ASN models. Each models has three inputs, Ii, and one
global output Oi. ASNmn contains 15 enzymes. ASNc has 3 ASNmn, each of which
has 10 enzymes. Crosstalk edges are the arcs connecting two ASNmns.

The artificial signalling network as a metabolic network (ASNmn)
is defined as a directed interaction graph, where the nodes are an indexed
set of enzymes and the edges represent their biochemical reactions. Every en-



zyme contains a set of substrates, a set of products and a mapping function
relating the concentrations of both sets of chemicals. Formally: ASNmn =<
C,E,R, IE , OE >, where:

C is the indexed set of random chemical concentrations {c0, c1, . . . , cn : IR}.
E is the indexed set of enzymes {e0, e1, . . . , en : ei =< Si, Pi,mi >}, where:

Si ⊆ C is the concentration of the substrates used by the enzyme.
Pi ⊆ C is the concentration of the products generated by the enzyme.
mi : IR

n → IRn is the enzymes’ substrate-product mapping function.
R defines the set of enzymatic reactions {r0, r1, . . . , rn : ri ∈ {+,−}}. Nega-

tive and positive values indicate enhancing and inhibition respectively.
IE ⊂ E is the set of enzymes used as inputs.
OE ⊂ E is the set of enzymes used as outputs.

The execution of the ASN proceeds as follows:

1. Si and Pi are randomly initialised (if ASN not previously executed).
2. The concentrations of Si in IE are set by the external inputs.
3. At each time step, each enzyme ei applies its mapping function mi to deter-

mine the new concentration of the products Pi based on the concentration
of its substrates Si. In the particular case where the substrate is provided by
multiple enzymes, the new concentration is the mean output of all different
contributing enzymes.

4. After a number of time steps the execution is halted and the concentrations
of the products in OE are copied to the external outputs.

The artificial signalling network as a set of protein kinases cascade

(ASNc) extends the previous model by grouping the enzymes into an indexed
set of ASNmn, each of which represents a signalling pathway. Additionally, path-
way crosstalk is simulated by a set of edges connecting two ASNmns. Formally
ASNc =< ASN,CR, OE , IE >, where:

ASN is an indexed set of artificial signalling networks {asn0, asn1, . . . , asnn :
asni ≡ ASNmn =< C,E,R, IE , OE >}.

IE ⊂ E is the set of enzymes used as inputs, where |ASNmn| = |IE |.
OE ⊂ E is the set of enzymes used as outputs.
CR ∈ [0, 1] is the probability of crosstalk.

The execution of ASNc is similar to that of ASNmn:

1. Si and Pi are randomly initialised (if ASN not previously executed).
2. The concentrations of Si in IE are set by the external inputs. Each ASNmn

has only one input.
3. At each time step, each enzyme ei applies its mapping function mi to deter-

mine the new concentration of the products Pi based on the concentration
of its substrates Si. When the substrate is provided by multiple enzymes,
the new concentration is the mean output of all different contributing en-
zymes. Additionally, enzymes having a crosstalk edge have their products
asymptotically reduced to half of their maximum rate.



4. After a number of time steps (ts ∈ [1, 100]) the execution is halted and the
external outputs are calculated as the mean output value of all contributing
networks.

We also analyse the effect of having two types of enzymes depending on the
number of times they are phosphorylated (single and double). This more closely
represents the different phosphorylation states in cascades of protein kinases.

4.1 Mappings

Three types of parameterisable functions are chosen as enzyme mappings: the
Hill, the Michaelis-Menten and the first-order kinetics equations. They are the
most common models of molecular regulatory functions within living organisms.

The Hill equation describes the cooperative level between an enzyme and its
substrate as f(x) = v|x|h/kh|x|h, where v ∈ [0, 1] is the asymptotic threshold,
k ∈ [0, 1] determines its gradient and h ∈ IRn is the hill coefficient indicating
the degree of cooperativeness. The equation can also be extended by adding the
probability of binding β ∈ [0, 1]. If h = 1 the Hill equation is equivalent to the

Michaelis-Menten equation. For multiple inputs, x =
∑n

j=0

ijwj

n
. Negative values

indicate inhibition and f(x)− = 1− f(x).

The Michaelis-Menten equation characterises the enzyme kinetic reactions.
It is a hyperbolic function f(x) = v|x|/(k − |x|), where v ∈ [0, 1] is the asymp-
totic threshold and k ∈ [0, 1] determines its gradient. For multiple inputs, x =
∑n

j=0

ijwj

n
, where i0 . . . in are inputs and w0 . . . wn ∈ [−1, 1] are the correspond-

ing input weights. Negative values indicate inhibition and f(x)− = 1− f(x).

The Multi-Dimensional Michaelis-Menten equation defines the enzymes’
kinetics when substrates are produced by multiple enzymes based on the proba-
bility of binding as f(x) =

∑k

i=0
βi(xi/ki)

ni/1+
∑n

i=0
(xi/ki)

mi , where β ∈ [0, 1]
is the binding probability, v ∈ [0, 1] is the asymptotic threshold and k ∈ [0, 1]
determines its gradient. m,n ∈ IRn, where m = n for activation and n = 0 and
m > 0 for repression [1].

The first-order kinetics equation is the simplest kinetics model relating to
the rate of phosphorylation of an enzyme to the concentration of its active site
and the concentration of the unphosphorylated substrate. When single phos-
phorylated f(x) = v|x|/(1 + |x|), and when double f(x) = vx2/(1 + |x| + x2),

where v ∈ [0, 1] is the asymptotic threshold. For multiple inputs, x =
∑n

j=0

ijwj

n
.

Negative values indicate inhibition and f(x)− = 1− f(x).



4.2 Methodology

Both ASN models have been evolved using a standard generational evolutionary
algorithm with tournament selection (size=4), uniform crossover (rate = 0.48),
and point mutation (rate = 0.16). 40% of the solutions are mutated. An ASN
is encoded as an array of genes, followed by an integer within the interval [0,
100] representing the number of time steps for execution. Crossover points lie
between the enzymes’ boundaries. In an attempt to reduce the complexity of
the analysis, the number of genes and enzymes has been fixed at 10. All runs
terminate after 100 generations.

Initial chemical values and mapping parameters are represented using floating-
point values and mutated using a Gaussian function with its center at the current
values. However, mutation is constrained to one of the following operations to
fulfill the restrictions proposed in [16] to model the reactions between molecules:

1. Increasing or decreasing the chemical values.
2. Changing the state of the biochemical reactions by modifying the parameters

of the mapping functions.
3. Variation of the reaction rates by changing their weight values.
4. Adding or removing participants (edges) to/from the reactions.
5. Variation of the number of time steps.

Each ASN is represented as an interaction graph in which each vertex is an
enzyme. External inputs, which represent the controller’s state space location
at the start of execution, are always delivered to the inputs of low-numbered
enzymes (in terms of the network’s genetic encoding). External outputs, which
determine the new values for control signals, are always read from the outputs
of high-numbered enzymes.

Traversing Chirikov’s standard map: The goal is to evolve an ASN-based
controller which can guide trajectories from a designated region at the bottom of
the map to a designated region at the top of the map by modulating the control
signal k within the range [1.0, 1.1]. Inputs of the ASN are the position in the
map and the Euclidean distance from the current position to the top-centre of
the map, < x, y, d >, the output is the value of k (suitably scaled). The fitness
function is the number of steps the controller needs to transverse the map and is
limited to a maximum number of 1000 steps. Controllers exceeding this threshold
are penalised with a fitness of 2000 steps. A population size of 500 is used.

5 Results

Results from controlling Chirikov’s standard map using both ASN approaches
are shown in Fig. 3. Both models led to effective controllers which were able to
solve the problem (see Fig. 5(a)–(b)). The best performance comes from ASNmn,
but ASNc can also lead to valid solutions when every pathway computes its
dynamics independently or quasi-independently. The degree of crosstalk has a



significant effect upon the solutions (see Fig. 4): low crosstalk seems to be be-
neficial, whereas high values add uncorrelated noise reducing the overall system
behaviour. Similar conclusions on the effect of crosstalk were noted in [2].

ASNmn(M)

ASNmn(MM)

ASNmn(H)

ASNmn(PH)
 

ASNc(FK,0.0)

ASNc(FK,0.5)

ASNc(M
,0.0)

ASNc(M
,0.5)

Enzyme regulation functions

0

100

200

300

400

500

600

700

800

Fi
tn

es
s(

m
ea

n 
st

ep
s)

Fig. 3. State space targeting results using evolved ASNs with (M)ichaelis-Menten,
(M)ulti-Dimensional (M)ichaelis-Menten, (H)ill, (P)robabilistic (H)ill, and (F)irst-
order (K)inetics as regulatory equations. For ASNc, the value next to the type of
equation indicates the crosstalk rate. Summary statistics of the 100 runs are shown as
box plots. Low values are better.

Perhaps the most interesting result is the capacity of ASNc to solve the
problem, even where there is no crosstalk. There is certainly an indication from
the results that complex problems can be divided into smaller and independent
tasks, which individually lead to valid solutions. A similar organization can be
seen inside cells, which not only enclose a wide number of specific pathways, but
also limit their interactions by using compartments. It highlights the essential
role that crosstalk may play in the formation of more complex and realistic mo-
dels. Despite the validity of the results, we believe that the procedure used to
determine the ASNc output (mean of all contributing networks) is not biolog-
ically plausible and therefore we might be losing some useful information. We
hypothesise that ASNc would be better able to cope with incomplete or corrupt
environmental information, enabling better environmental adaptation. This is
something we aim to test in future work.

The choice of the regulatory function also has significant consequences. Gen-
erally, all regulatory functions work better for the ASNmn model. The Michaelis-
Menten equation seems to provide the most effective controllers in both approa-
ches, however it needs to be complemented with a relatively high crosstalk
probability in ASNc. This effect contrasts with the results obtained using the



first-order kinetics equation, which offer a lower performance and require a low
crosstalk rate to achieve similar results (see Fig. 4).
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Fig. 4. Effect of crosstalk rate upon the effectiveness of ASNc controllers, showing the
rate of change in fitness 50 generations averaged over 100 runs.

6 Conclusions

In this paper we have presented an approach to modelling signalling pathways
using evolutionary algorithms. Our results are encouraging; demonstrating that
evolved artificial signalling networks can be used to regulate complex dynamical
behaviours within Chirikov’s standard map. Notably, our results show that effec-
tive controllers can also be found when signalling networks are interpreted as sets
of either pathways or cascades of protein kinases. These results are broadly si-
milar to the AGN- (Artificial Genetic Network) and AMN- (Artificial Metabolic
Network) based controllers described in [9]. This verifies that the robustness and
adaptability of signalling networks can be evolved. Likewise, an accurate repre-
sentation of their spatial and temporal dynamical properties was achieved with
no additional knowledge of the surrounding environment and the participating
elements.

This paper has highlighted the importance that representation plays in ef-
fectively modelling signalling pathway dynamics. Our results show how different
ASN models may be suited to different problems. In particular, we have illus-
trated the sensitivity of ASNs to the level of crosstalk between pathways, which
has a large impact upon the effectiveness of the controllers. However, we believe
crosstalk will be an important mechanism when looking for more complex and
sophisticated representations of signalling networks.



In future work, we plan to explore how ASNs’ complex dynamical behaviours
can be affected by their spatial and temporal properties, and to look at how these
can be used to solve more complex real-word problems.
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Fig. 5. Example of state space targeting from an area at the bottom, (0.45, 0) →
(0.55, 0.05), to a region at the top (0.45, 0.95) → (0.55, 1), in Chirikov’s Standard Map
with both ASN models. The ASNmn moves from the bottom to the top in 91 steps.
The ASNc does it in 262 steps. The plotted standard map corresponds to the k value
at the end of the ASN’s execution.
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