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Abstract. Artificial gene regulatory networks are computational mod-
els which draw inspiration from real world networks of biological gene
regulation. Since their inception they have been used to infer knowledge
about gene regulation and as methods of computation. These computa-
tional models have been shown to possess properties typically found in
the biological world such as robustness and self organisation. Recently,
it has become apparent that epigenetic mechanisms play an important
role in gene regulation. This paper introduces a new model, the Artifi-
cial Epigenetic Regulatory Network (AERN) which builds upon existing
models by adding an epigenetic control layer. The results demonstrate
that the AERNs are more adept at controlling multiple opposing trajec-
tories within Chirikov’s standard map, suggesting that AERNs are an
interesting area for further investigation.

1 Introduction

Gene regulatory networks are complex structures which underpin an organism’s
ability to control its internal environment [23]. From a biological perspective,
the study of gene regulation is of interest because it determines cellular differ-
entiation which is responsible for the development of the different tissues and
organs that underpin the structure of higher organisms [17]. From a computa-
tional perspective, gene networks are interesting because they are robust control
structures, capable of dealing with serious environmental perturbations, and yet
maintaining structure and order. Because of this, there has been significant in-
terest in modeling gene regulatory networks in silico in order to capture these
features [18,21]. Due to the complexity of biological gene regulation, compu-
tational analogues are vastly simplified. However, research has shown that rela-
tively simple networks such as the random Boolean network can exhibit emergent
properties such as self organisation and robustness and, in addition to this, can
model real regulatory circuits [15, 14]. It is the balance between complexity and
function which is often the limiting factor in the creation of truly analogous
computational models.



It is apparent that computational analogues of gene regulation fail to include
models of one of the most pervasive methods of gene regulation, epigenetics.
In this sense, the regulatory nature of these computational analogues may be
limited in terms of complexity and performance. In this paper, we attempt to de-
fine a representation of epigenetic information which to some extent captures the
useful properties of epigenetics for the control of a complex dynamical system.

2 Gene Regulation and Epigenetics

A gene is a unit of hereditary information within a living organism, most com-
monly considered to be a section of DNA that specifies the primary structure
of a protein. The genetic code is a biological blueprint that details which pro-
teins can be produced, and ultimately, the phenotypic space which the organism
can exist within. The lowest known threshold on the number of genes required
to naturally facilitate life is that of Mycoplasma genitalium, which has approx-
imately 470 predicted genes [9]. Even in nature’s most minimalist example of
a gene regulatory network, 470 genes have to be coordinated in such a way to
maintain the optimum internal environment of the organism, highlighting that
even the simplest of gene regulatory networks are inherently complex.

Epigenetic mechanisms allow a further layer of control over gene regulation.
This is commonly done by physically restricting the accessibility of the genes.
One of the principal epigenetic mechanisms is DNA methylation which refers
to the addition of a methyl group to either the cytosine or adenine nucleobase
in DNA (Figure 1). It acts as an epigenetic marker which can regulate many
physiological processes [3,11]. With increasingly complex organisms, higher or-
der structures such as chromatin have been shown to influence gene expression.
Chromatin has two functions; Firstly, in the case of human cells, there are ap-
proximately 3400Mb of DNA of approximately 2.3m in length. Chromatin pro-
vides a structure for the condensation of DNA, so that it can be fully contained
in a nucleus of approximately 6um [1,2,6]. Secondly, chromatin modifications
have the ability to control access to the DNA, which in turn acts as an addi-
tional level of genetic control. Generally, DNA methylation provides a more long
term, stable effect on gene expression when compared to relatively short term
reversible chromatin modifications [7]. However, research suggests that in some
instances chromatin modifications and DNA methylation are intrinsically linked
[12].

One of the more interesting aspects of epigenetics is that in certain instances,
epigenetic traits can be inherited by successive generations of cells, and some-
times organisms [4]. In addition to this, epigenetic modifications can give the
genetic code a relative memory [3], which can then be used in such processes
as cellular differentiation [20]. However, the specific mechanisms and processes
which control epigenetics, and in turn gene expression, are not yet wholly un-
derstood.

Current research demonstrates that epigenetic mechanisms allow for a level
of genetic memory, and a method of genetic control above the genetic code itself.
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Fig. 1: An illustration of a highly methylated DNA region. The attachment of a methyl
group (M) to the cytosine (C) nucleobase (DNA methylation) has been shown to be
able to regulate physiological processes [3,11]

This creates the ability for organisms to express high levels of adaptability via
utilisation of the extra dynamical processing which epigenetics facilitates. In the
following sections the idea of incorporating a level of artificial epigenetic informa-
tion in pre-existing artificial gene regulatory networks is introduced. Simulations
are conducted to ascertain if the addition of epigenetic information can yield any
performance increases when controlling two trajectories within Chirikov’s stan-
dard map.

3 Artificial Genetic Regulatory Networks

Gene regulation in biology is a set of mechanisms which maintains control of an
organism’s internal environment (homeostasis). The aim of artificial gene regula-
tion is to create a computational model of genetic behaviour which exhibits the
useful and interesting properties of gene regulation in nature, namely self organ-
isation and robustness. The first such example was the random Boolean network
(RBN) [15]. RBNs represent genes as Boolean expressions. These artificial genes
are referred to as node’s. The network has a connectivity value (k) which spec-
ifies how many node’s influence a given nodes expression level. The state of a
node is defined by randomly initiated state transition rules. Upon execution, the
network is iterated over a number of time steps, during which each node modifies
its value depending upon its connectivity and its state transition rules. These
networks demonstrate that with a k value of 2 or 3, distinct order and repetitive
patterns can be generated. Moreover, for certain parameter ranges, the RBNs
expressed high levels of robustness, maintaining relative order when exposed to
external perturbations [10].

Subsequent models of gene regulation draw inspiration from the RBN. How-
ever there has been a shift towards continuous models [16, 18], as they are com-



putationally more flexible. In addition, it has been shown that these models can
be applied to the control of complex systems [18].

3.1 Artificial Epigenetic Regulatory Networks

This paper extends the model of artificial gene regulation (AGN) described in
[18] by incorporating epigenetic information. The aim is to ascertain if an addi-
tional level of regulatory control will result in any performance benefits over the
previous model. The Artificial Epigenetic Regulatory Network (AERN) uses an
analogue of DNA methylation in combination with chromatin modifications as
its epigenetic elements. This gives the network the ability to change its epige-
netic information both during evolution, and within a single generation via the
changing of epigenetic frames (E¢ in definition below). Table 1 gives an example
of an evolved AERN.

The AERN can be formally described as: < G, Lg, Ig, Og, Eg > where :

G = An indexed set of genes {go, ..., gn : i =< Ai, Ri, fi >}, where:
Ai @ R is the expression level of a gene
R;C G is the set of regulatory inputs used by the genes
Ji : Ri = A is a gene’s regulatory function

L¢ is an indexed set of initial expression levels, where, |Lg| = |G|

I CG are the external inputs applied to the network

O CG are the outputs of the network

E¢CG is a data structure specifying which genes are active at a given
instance

The AERN is executed as follows :

G1. A\g.... A, are initialised from L (if AERN not previously executed).

G2. Expression levels of enzymes in Ig are set by the external inputs.

G3. At each time step, each active gene g; applies its regulatory function f;
to the current expression levels of its active regulating genes R; in order
to calculate its expression at the next time step, )\;

G4. After a given number of iterations, execution is halted and the
expression levels of enzymes in O are copied to the external outputs.

The expectation is that epigenetic control will enable the network to evolve in
such a way that it will have certain genes that are more able to perform a given
objective. The inclusion of epigenetic information would give the network the
ability to allocate different genes to different tasks, effectively regulating gene
expression according to the environment in which it is operating.

Each gene uses a parameterisable sigmoid function which has been shown in
[18] to be the most effective in traversing the complex. The parameter settings
are summarised in Table 2.



Variable External Genes Outputs
Inputs (Ig) (0OcCG)
Gene Expression Values (Lg) |0.18| 0.81 |0.54/0.38|0.95|0.14|0.05| 0.47
Weights 0.47]-0.27 {0.24/0.99 |-0.87|-0.02|-0.47|  0.97
Sigmoid Offset -0.18| 0.24 |0.14(-0.50|-0.21|0.57|0.31| 0.38
Sigmoid Slope 1 10 5119 | 2 14 | 3 7
5 2 115 7 3 2 3
Connections 7 4 5 2 7 L !
5 2 5 3 2 3
4 4 1 7
Epigenetic Frame A (E¢CG) 1 0 1] 1 010 1
Epigenetic Frame B (EqCG) 0 1 110 1 1 1 1
Network Iterations 15

Table 1: Example data attributes for an AERN of size 8. The only difference between
the AERNs and the AGNs is the introduction of 2 epigenetic frames, which specify
which genes will be active for each objective

4 Dynamical Systems

A dynamical system is a system whose current state is a product of its previous
state and an evolution rule. For any given point within a dynamical system,
its trajectory through the space is governed by the iteration of this rule over
a given time frame. One of the most interesting groups of dynamical systems
are those that exhibit chaotic dynamics. Chaos can be recognised as irregular
and unpredictable behavior within a system, due to extreme sensitivity to initial
conditions [22]. However, unlike random behavior, this is the result of applying
deterministic evolution rules.

4.1 Standard Map

Chirikov’s standard map [8] is a dynamical system which under certain con-
ditions expresses chaotic dynamics. Its behaviour results from two difference
equations :

k.
Tnt1 = (T + Ynt1) mod 1 Ynil = Yn — o sin (27xy,) (1)

The modification of parameter k has a direct effect on the dynamics of the system
(Figure 2). In figures 2a and 2c it can be seen that the dynamics of the map are
for the most part homogeneous (with slight differences in the corner of the map).
However, when k reaches a critical value of 0.972, there is a distinct increase in
the number of elliptic islands, and the distance change at a given co-ordinate is
no longer consistent over the majority of the map [22] (Illustrated in figure 2b,
where k = 1).
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Fig.2: Sample of Chirikov’s Standard Map during ordered (a and c) and chaotic (b)
dynamical phases

4.2 State Space Targeting

The presence of chaos makes it difficult to predict subsequent points in a trajec-
tory. However, research has shown that targeting within the standard map during
periods of chaos is possible via the use of perturbations, allowing navigation to
different regions of the state space[18, 5].

5 Experimentation

In order to test the relative performance increases of the AERNSs, they have been
evaluated against the model from [18] when controlling two opposing trajectories
within the standard map.

5.1 Evolution Of The Networks

A genetic algorithm (GA) is used to evolve the network. GAs are population
based search algorithms [19], which often find near optimal solutions within a
tractable time frame, which makes it a favorable approach for this experiment.
The GA uses a crossover rate of 0.5, a mutation rate of 0.001 and tournament
selection of size 4 to evolve networks containing 20 genes. The simulation is run
over 50 generations, and the fittest individual at the 50th generation is the score
for that run. 50 runs were carried out for each network type.

5.2 State Space Targeting Using Artificial Regulatory Networks

Previous work demonstrates that artificial gene regulatory networks (AGN) can
be used to target specific regions of Chirikov’s map [18]. This paper builds upon
this by using the networks to control two opposing trajectories within the stan-
dard map. There were two objectives, which specify that the networks have to
guide a trajectory from the bottom to the top of the complex map, and then
from the top to the bottom in the lowest number of iterations.



(a) Objective A

Fig. 3: Chirikov’s standard map showing two start and finish areas for each objective

Each network received 3 inputs and produced 1 output. The three inputs
were the x co-ordinate, the y co-ordinate and the distance from the center of
the target. The output of the network was the new k value (see Eqn 1), which
is used in the next iteration of the equation. Since the output of the network
is a real value (Table 2), it must be scaled to the interval [1,1.1] to ensure that
the map remains in its chaotic phase. Upon initialisation, the starting point for
the trajectory is a randomly initiated point within the starting region, and the
networks are randomly initiated with values shown from Table 2. The epigenetic
frame changes when either the first objective is completed, or the the maximum
number of steps for that objective has been reached.

For the objective specifying the
trajectory is to travel from the bot-
tom to the top of the map, the ini-

tial start point is [0,0.05] for the y | Variable |Type|Range|
co-ordinate, and [0.45,0.55] for the x Gene Expression |Real| 0;1
co-ordinate. For the second objective, Weights Real| -1:1
the randomly initialised start point is Sigmoid Offset | Real| -1;1
between [0.95,1] for the y co-ordinate, Sigmoid Slope Int | 020
and [0.45,0.55] for the = co-ordinate. Epigenetic Objective| Int | 0:1
The score for that run is the average Network Tterations | Int | 1;20

number of steps to traverse the map
in both directions, up to a maximum
number of 1000 steps. During execu- Table 2: Parameters of the variables within
tion, the average of the 40 runs (20 for the AERN

each objective) are collated together,

and if there is an instance where the

network completed both objectives, the fitness is rewarded by 250 steps. If only
one objective is completed, the score is decremented by 100 steps up to a max-
imum of 1000 steps (the final results will not take into consideration rewards
and punishments, and only solutions that complete both objectives are able to



achieve a score less than 1000). This is to place emphasis on the networks com-
pleting both objectives, whilst allowing strong solutions that only complete one
objective to remain in the population.

6 Results

The results show that both the AGNs and the AERNs were able to produce
solutions that could control both trajectories. However, the results indicate that
the tasks were difficult (Figure 4), as only 35% of the AGN’s and 52% of the
AERNs were able to complete both objectives. The results demonstrate that the
AERNSs perform significantly better than the AGNs. The trend is more evident
when the unsuccessful instances are removed, as can be seen in Figure 5.
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Fig.4: Summary of the fitness distributions (low numbers are better). The results for
the AGN show less than a 50% success rate, and a best value of approximately 600
steps. The AERNs show a significant increase in success rate, and better solutions
overall.
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Fig.5: Data from Figure 4 with the unsuccessful results omitted (low numbers are
better). This shows a much clearer trend in the data, and the addition of the artificial
epigenetic information can be seen to increase performance by approximately 150 steps
on average.



One of the more interesting aspects of the results is that the data in Figure
5 shows that the vast majority of the successful AERNSs outperform almost all
of the successful results from the AGNs, and yet the trends of the data are quite
similar. On average the AERNSs produce an improvement of approximately 150
steps in terms of mean path length.

Aside from increased performance, the AERNs demonstrate further bene-
fits. First, with the ability to inactivate genes comes the ability to increase the
efficiency of the networks. Hence, with each inactive gene for each objective,
there is less computational effort required to complete a single iteration of the
network. Over the entirety of a simulation, this could lead to significant perfor-
mance increases. A further advantage is that the epigenetic layer of the networks
provides a source of qualitative analysis. By dissection of the network structures,
it could be seen that certain input variables are not needed in the navigation
of the complex map. In some of the best solutions, the input variable for the x
co-ordinate was not required, which provides additional information about the
problem space that otherwise would not have been readily available.

0 0.2 0.4 0.6 0.8 1

(a) Objective A (b) Objective B

Fig. 6: Example behaviour of the solutions produced by the AERNs. Objective A was
completed in 113 steps, and objective B was completed in 329 steps

7 Conclusions

This paper has illustrated the potential for incorporating epigenetic information
in computational models of gene regulation, and the initial results are highly
promising. The results demonstrate that evolved AERNs are able to assign cer-
tain genes to certain tasks, improving functionality and efficiency. This ties in
well with the biology of epigenetics, which allow for a higher level of genetic
control without compromising efficiency [13].

There is a significant amount of further research required to assess the full
functionality of the AERNs. In future work, the AERNs will be applied to a
range of tasks to best evaluate their strengths. Additionally, the topologies of



the networks will be looked at in more detail to ascertain the role and function
of varying epigenetic mechanisms. Furthermore, research will be conducted into
introducing a metabolic network to attempt to best utilise the efficiency potential
of the AERNS.
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