Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

PHILOSOPHICAL
TRANSACTIONS A

rsta.royalsocietypublishing.org

®

RE\”ew CrossMark

Cite this article: Kendon V, Sebald A, Stepney
S. 2015 Heterotic computing: past, present and

future. Phil. Trans. R. Soc. A 373: 20140225.
http://dx.doi.org/10.1098/rsta.2014.0225

Accepted: 10 April 2015

One contribution of 13 to a Theo Murphy
meeting issue ‘Heterotic computing:
exploiting hybrid computational devices.
Subject Areas:

hybrid computing

Keywords:
heterotic computing, unconventional
computing, hybrid computing

Author for correspondence:
Susan Stepney
e-mail: susan.stepney@york.ac.uk

THE ROYAL SOCIETY

PUBLISHING

Heterotic computing: past,
present and future

d2,4

Viv Kendon', Angelika Sebald®* and Susan Stepney>*

"Department of Physics, Durham University, Durham DH1 3LE, UK
2Department of Chemistry, >Department of Computer Science, and
Hork Centre for Complex Systems Analysis, University of York,
York Y010 5DD, UK

VK, 0000-0002-6551-3056; SS, 0000-0003-3146-5401

We introduce and define ‘heterotic computing” as a
combination of two or more computational systems
such that they provide an advantage over either
substrate used separately. This first requires a
definition of physical computation. We take the
framework in Horsman et al. (Horsman et al. 2014 Proc.
R. Soc. A 470, 20140182. (d0i:10.1098/rspa.2014.0182)),
now known as abstract-representation theory, then
outline how to compose such computational systems.
We use examples to illustrate the ubiquity of heterotic
computing, and to discuss the issues raised when one
or more of the substrates is not a conventional silicon-
based computer. We briefly outline the requirements
for a proper theoretical treatment of heterotic
computational systems, and the advantages such a
theory would provide.

1. Introduction

Hybrid computational systems are ubiquitous. From
graphics co-processors in desktop computers to GPS
chips in mobile phones, commercial computational
devices have long included specialized hardware to
perform time-critical tasks more efficiently. Less convent-
ional computational devices almost always include a
classical computer as a control system somewhere in
the set-up. Theoretical computer science, on the other
hand, is based around elegant single-paradigm models
for which computability and complexity results can be
derived and comparisons made. However, the relevance
of this theory to real-world devices is often unclear,
and certainly does not incorporate the motivations
for combining diverse computational systems when
designing practical computers.

© 2015 The Author(s) Published by the Royal Society. Al rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2014.0225&domain=pdf&date_stamp=2015-06-15
mailto:susan.stepney@york.ac.uk
http://orcid.org/0000-0002-6551-3056
http://orcid.org/0000-0003-3146-5401
http://dx.doi.org/doi:10.1098/rspa.2014.0182
http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

Observing that this hybridization is not merely for convenience, but can achieve substantial
advantage in the performance of the hybrid systems, we have introduced the concept of ‘heterotic
computing’ [1,2]. ‘Heterotic’, from the Greek heterosis, is a term used in genetics to mean "hybrid
vigour’. We use the term to mean the composition of two or more potentially widely differing
kinds of physical computational substrates to produce a computer that has certain computational
advantages over an individual system alone. For example, two non-universal systems might be
composed into a universal one, or two universal but not efficiently inter-simulable systems might
be composed with an increase in computational power. These differing substrates may exploit
physical, chemical and biological properties, and may include classical silicon chips.

This computational advantage may be computational power, in the case where the substrates
by themselves are non-universal. More commonly, it may be due to supporting a more natural
mapping of the computational problems of interest, such as where representation in an analogue
component can exhibit a smaller ‘semantic gap” to the problem. In this case, it may be that no one
component can naturally map to the entire problem, but each heterotic component can naturally
map to a component of the overall problem.

Given the existence of such heterotic devices, either the currently existing ones, or future ones
to be designed, we need a theoretical analysis and design framework:

Given that we have different basic types of computers, not necessarily Turing universal, it is
natural to ask how to compose them into hybrid — ‘heterotic’ — computers, and to ask about
the computational power of the composition. Thus, we need a framework that not only
allows different models of computation to be compared and contrasted, but also allows us
to compose different models and determine the resulting computational power.

Kendon et al. [1, p. 113]

Moreover, when combining computational systems there immediately arises the question of
how the components are connected, and the communication required between the components,
which may require transduction if the components and/or communication channels use different
encodings of the data. This is particularly important because these communication steps may
involve non-trivial computation, for example translation of encodings, and hence contribute to
the overall resource requirements and computational power of the system. A full accounting of all
the computation in a hybrid device is crucial for fair comparisons to be made between disparate
computational systems.

We begin, in §2, by defining what we mean by computation in potentially unconventional
substrates, in order to distinguish computation from the substrate just ‘doing its thing’. In §3, we
extend this definition to heterotic systems, with two separate physical substrates. In §4, we give
an overview of the current somewhat ad hoc state of the art in heterotic computing. Then in §5
we discuss the requirements for an appropriate theoretical framework to support the principled
design and analysis of heterotic devices encompassing a range of substrate types.

2. Definition of physical computing

Computation as an abstract concept can be described and defined mathematically. Although there
is debate over precise definitions, these do not impede our discussion here of the process of
actually carrying out a specific computation using a physical computational device. While we can
all agree that our smart phones, laptops and desktop computers are carrying out computations
for us, there are more exotic examples where the presence of an actual computation is less clear
cut. Consider, for example, leech neurons on a silicon substrate [3]: Is it computing? What is
computing? How can we tell?

The question of when a physical system is computing was considered in detail by Horsman
et al. [4]. The basic framework is shown in figure 1. The key step is the use of representation relations
(vertical double arrows in the figure). Representation is how we connect abstract concepts and
physical objects. Two types of representation relations are shown in figure 1: (i) the modelling

STTONLOT SELE ¥ 205 supiy iyg BioBuiysygndiaaposjesorerss

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

abstract

physical

H(p)
p » P

Figure 1. A physical system p being used to compute an abstract computation m.

representation relation Rz indicates creation of an abstract model of a physical system; (ii) the
instantiation representation relation Rz indicates an abstract model is instantiated as a physical
system. Despite the apparent symmetry in the figure, instantiation R requires much more work
than modelling R7. It requires us to understand the theory 7 sufficiently well that we can
engineer a corresponding physical system.

Given these relations, physical computing can be explained as follows. We start with an
abstract mathematical problem to be solved, m1s. This is encoded into the mathematical model
of the computer myp using the encoding £. The desired abstract computation would result in
mi,, from which the result of the computation m is extracted using the decoding process &.
The physical computer p is then programmed using the description mp and the instantiation
relation, and the program allowed to run, H(p). The final state p’ is inspected through the
modelling relation to obtain the mathematical description of the outcome 1. The physical
system, along with the relevant representation relations, has performed the desired computation
when the observed myp is a sufficiently close prediction of the desired mj,. The outcome
of the computation is then decoded using £ to obtain . Note that most of these steps
are highly non-trivial, and may themselves require significant computation, e.g. £ and £, or
involve prior work to engineer a suitable physical system and establish the instantiation and
representation relations.

From this, we can state several necessary conditions for physical computation to be actually
taking place [4], most crucial being the presence of the representation of the abstract computation
in the physical system. This in turn implies there must be something capable of supporting such
a representation, termed a computational entity by Horsman ef al. [4]. A computational entity does
not need to be human, or even biological; it simply has to be capable of supporting an abstract
model of the computation at the appropriate level of complexity. A key characteristic of the
abstract representation is that there is a degree of arbitrariness about it. For example, representing
the abstract binary values zero or one in a physical system could use ‘spin up’ to represent zero
and ‘spin down’ for one, or equally well use ‘spin down’ to represent zero and ‘spin up’ to
represent one. Without representation, there is no computation, there is only the physical system
doing its thing.

This framework allows a clear description of the case of a physical system simulating another
physical system, or even simulating itself (see [4, fig. 10]). The representation, and hence
the computational entity, must be present for the process to be a simulation, rather than just
the physical system evolving as it usually does. What is being simulated is the abstract model
of the physical system: computations are abstract mathematical concepts; the only way for one
system to simulate another is through a logical or mathematical theory of both systems.

0 S g B

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

p

Figure 2. Abbreviated version of figure 1: a single physical computational system.

In figure 2, the computational cycle in figure 1 has been abbreviated as a single two-way
representation in which the evolution H(p) is not explicitly shown. This enables us to more
compactly describe the heterotic case.

3. Heterotic physical computing

In §2, we defined physical computation as a single process using a single physical
system. Heterotic computation requires us to examine the physical system and abstract
model more closely, as subdivisions of the abstract mp and physical p systems shown in
figure 2. Or, equivalently, we can consider how to compose two or more such computational
systems. An important question is how the composition of physical systems affects the
composition of computational systems, reflected across the abstract/physical divide via the
representation relation.

A simple example of composition is a trivial composition of two identical systems to make one
larger one, a non-trivial computational advantage in the sense that one now has a larger computer
capable of larger computations than the two systems side by side with no connections between
them.

There are essentially two ways to compose computational systems: serial and parallel. In serial
composition, figure 3a, information flows from one system to the next, uni-directionally. Input
is provided to the first system, and output from the second. In parallel composition, figure 30,
information can flow both ways between the two systems. Input and output are most naturally
handled via one of the systems, but can be from both.

When the composition is of two different types of system, transduction (conversion of
information and/or energy) of input and output formats may be required, if information is
represented differently in the two systems. This is shown as a transduction ‘cloud” at the
abstract level, and as a box at the physical level, in figure 3. The similarity between transduction
and computation is not accidental: conversion of data formats usually involves non-trivial
computation, and clearly there is a representation arrow that could be placed between the abstract
transduction cloud and the physical transduction box. One can thus require the additional
constraint that composition can only be applied between compatible inputs and outputs; where
there is a mismatch, a third computational element—the transducer—must be used to convert
the signals. This restriction ensures that all computation associated with signal processing will
be counted. An example of a transduction step where a classical computer is employed in an
experiment involving unconventional substrates can be found in [5]. There, gate operations
performed on an nuclear magnetic resonance (NMR) computer are linked via classical control
systems.

Clearly, one can compose more than two systems in a similar manner, but in what follows for
simplicity we consider just two different systems composed. Since we are focusing on the physical

<anig ey ooy i g Gotwionnioess [

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

Figure 3. Genericways to compose computational systems (using the abbreviated figure style of figure 2): (a) serial composition
with transduction of communication, t; (b) parallel composition with two-way transduction.

systems, we generally omit the abstract model of the system from the following figures. It is to be
understood that for these systems to be actually used for computation, the abstract component
must also be present, and the representation relation between the abstract model and the physical
system established by the computational entity that is using the computer [4].

4. Current examples of heterotic computing

We now flesh out these definitions by giving examples of a range of existing computers that
can be described in heterotic terms. In all these cases, there are two distinct physical systems of
computational substrate; in most cases, one system is a classical computer, and one is a somewhat
more or less unconventional substrate. Future heterotic devices may well include multiple diverse
unconventional substrates, and may omit a classical system. This section allows us to bring out
by example some of the many issues that arise in hybrid and heterotic computation.

(a) Classical computing co-processors

Classical desktop computer architectures have for years included specialized co-processors to do
common tasks more efficiently. While the basic CPU (central processing unit) is computationally
complete (for its size and available memory), one of the most crucial aspects of desktop computers
is their speed relative to their human users. This is particularly apparent for the display screens,
for which graphics co-processors (GPUs) have been standard for a couple of decades. The

SCL0VMOT L€ 205y supil 14g BioBuysigndaaposieforers:

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical
' CPU
system
request response
CO-processor GPU

Figure 4. Co-processor computing.

GPU is also computationally complete, but has a different architecture from the main CPU to
facilitate parallel updating of the pixels in the display. While the main CPU is optimized for serial
processing of data, with a few processing cores running in parallel (typically four to 16 today),
the GPU has hundreds or thousands of cores each dedicated to a few pixels. This facilitates the
real time updating of the display screen faster than the reading and reaction time of a human
user. A modern computer thus has two complementary processing units, one optimized for
serial processing where the next step in the computation typically depends on any or all of
the results of the current step, the other optimized for parallel processing where the processing
steps are typically similar for all data and dependent only on local values of the data. Using the
CPU for screen rendering would be far slower, suitable only for the text display that the early
computers had.

Figure 4 shows a (highly simplified) structure of this situation as a heterotic system. There
are two physical systems, a classical computer and a co-processor, connected in parallel,
corresponding to the p and q in the lower portion of figure 3b. The transduction in this case is
trivial: both systems represent information using the same digital encoding and physical memory.
Of course, the detailed architecture is more complicated than this (e.g. [6]), but those details are
not necessary for this particular description.

The power of GPUs has been harnessed for other data processing tasks that lend themselves
to a high degree of parallel processing, and chips with the GPU architecture are now produced
specifically for these computational tasks as well as for graphics cards. Both uses require the
interplay between the GPU as a fast processor and the CPU as the controller, providing the
instructions to the GPU and taking the higher level decisions about what to compute and when.
These are tasks that are naturally serial, depending on the outcome of previous computations and
instructions from the user.

There are many other silicon-based but non-CPU style co-processors, including floating point
co-processors, non-universal ASICs (application-specific integrated circuits), field-programmable
gate arrays (FPGAs) and field-programmable analog arrays. They all share the co-processor
architecture of the GPU (figure 4) and are all motivated by the efficiency gained through
optimizing the architecture for a specific type of computation.

(b) Measurement-based quantum computing

Quantum computation is in a different computational complexity class from classical
computation. By using the intrinsic parallel nature of quantum physics in the form of interference
effects (wave phenomena), superposition (being in more than one state at the same time)
and entanglement (physical correlations between states), quantum computers can solve some
problems fundamentally faster than can classical computers. The canonical examples are database

0 S g B

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical '
measurement decide

system

cluster O ”QWO O
we OO -@-@® O
O O ~-@-0O O

Figure 5. Cluster state computing (adapted from Stepney et al. [2, fig. Ta]).

searching [7], polynomially faster than the fastest possible classical algorithm, and factoring large
semi-primes [8,9], exponentially faster than the fastest known classical algorithm. In a quantum
computer, classical bits are replaced by quantum bits or qubits, which can be in a superposition
of zero and one at the same time, thus representing several numbers in the memory required
for a single number in a classical computer register. There are several distinct architectures for
quantum computers, though none have been built beyond the proof-of-concept stage yet.

Of particular interest here is the cluster state or one-way quantum computer [10], also known
as a measurement-based quantum computer (MBQC). In MBQCs, an entangled resource of many
qubits is prepared, then the computation proceeds by measuring the qubits in turn. The observed
outcomes from the measurements feed forward to determine the type of measurement performed
on the next qubits (figure 5).

The role of the classical controlling system in MBQCs was first noted by Jozsa [11],
while demonstrating the equivalence of measurement-based and teleportation-based quantum
computing schemes. Anders & Browne [12] realized that the classical computation required to
control and feed-forward information in MBQC is a crucial part of the computational power.
Applying measurements without feed-forward is efficiently classically simulable, as is (trivially)
the classical part of the computation. However, the combination of the two is equivalent to
the quantum circuit model with unbounded fan-out [13], which is not (efficiently) classically
simulable. Thus, the combination of two or more systems, to form a new computational system
composed of several distinct physical systems, can be in a more powerful computational class
than the systems acting separately.

This is to date the only known example where a heterotic computer is actually in a different
complexity class from its components, though this is largely because this is an unexplored area,
and we expect further examples to be forthcoming.

(c) NMR computing

Liquid-state NMR has been used to perform simple classical gate logic, such as NAND, and to
compute small circuits of gates [5]. Figure 6 shows the two physical systems involved, a classical
control system and an NMR system, composed in parallel. The NMR system is configured to
implement logic gates. The specific input bit values are transduced into the relevant frequency
and phase of the NMR operation. The radio frequency output is transduced by integrating and
thresholding, to result in the value of the output bit. The classical system sequences the outputs
from one gate to the inputs of the next in the circuit.

Using NMR as a platform to perform classical computing involves choosing from the very
rich set of available parameters some subset that is suitable for representing a particular
logic operation. Additionally, the physical operations chosen must be compatible with the
requirements of having an ensemble of nuclear spins that behaves classically: the ensemble must

P E Ry e - |

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical
control sequence
System
0,1 L 0,1
T == |
I frequency. A ‘
\ > \
\ phase bl ,Hitegfa,te, _
e J
, ¢I/ w
NMR
system

Figure 6. NMR classical computing (adapted from Stepney et al. [2, fig. 1b]).

be kept in fully determined classical states (in NMR spectroscopy terminology: the spin dynamics
must be such that they can be represented by a magnetization vector).

Prior work on computation using NMR mostly deals with implementations of quantum
computations, predominantly based on solution-state NMR experiments (for a review, see [14]),
with some examples exploiting solid-state NMR [15]. As a test-bed for techniques, NMR has
been very useful in the development of quantum computing, but liquid-state NMR has intrinsic
shortcomings related to the purity of the quantum states and lacks scalability for building
production-size hardware. Where NMR 1is used for the implementation of (pseudo)quantum
computations, the choice of experimental parameters for encoding is slightly more restricted than
for the classical case, but the limitations on the physical properties are reduced: for these purposes
more complicated, much rich spin dynamics are wanted (and necessary).

As a step towards characterizing the computational power of the NMR system, Bechmann
et al. [16] have produced a preliminary classification of the experimental NMR parameters
for implementing classical logic gates. This work has been extended to take advantage of the
inherently continuous nature of the NMR parameter space of non-coupled spin species [17] by
implementing continuous gates, so the combined system performs an analogue computation.

As with MBQC, the classical control system plays an essential role in the computation, but
by itself it does not perform the individual gate logic. The extent to which such control system
contributes to the overall computational power of quantum or classical NMR computing has yet
to be formally analysed.

(d) Ancilla-based quantum computing

Most gate-based architectures for quantum computers use some sort of ancillary system to
enact the two-qubit gates. The dilemma is this: quantum systems are fragile and susceptible to
disturbance by their environment, which corrupts the quantum information they represent. In
order to minimize this disturbance, they need to be isolated as far as possible. However, enacting
quantum gates requires controlled disturbance, which is hard to do to well-protected systems.
There are many ways to optimize the storage of quantum information (quantum memories) as
well as the efficiency of quantum gates, but all involve extra operations or trade-off between
optimal properties. One of the most useful techniques in practice is to use ancillary quantum
systems to enact the quantum gates (e.g. [18]).

The theory of ancilla-mediated quantum computation has been abstracted into a framework
where a quantum system (ancilla) controls another quantum system (the qubits), with [19] or
without [20] measurement of the ancilla system during the computation. This framework is
capable of modelling many types of hybrid quantum computing architectures. For some common

0 S g B

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

continuous variable
bus system

qubit system

Figure 7. Ancilla-based computing (adapted from Stepney et al. [2, fig. 1c]).

types of gate sequences, extra efficiency savings become available [21,22] due to the extra degrees
of freedom in the ancilla.

The qubus quantum computer uses a quantum state known as a coherent state as the ancilla,
which has two quadratures, which act as two coupled continuous variable quantum systems. This
type of ancilla can interact with many qubits at the same time, allowing savings in the number
of basic operations required for gate operations [21] and for building cluster states [23,24] for
MBQC. Figure 7 shows a sequence of six operations that performs four gates, one between each
possible pair of the three qubits. Each gate performed separately would require two operations,
thus this sequence saves at least two operations over standard methods, more if the qubits
have to be swapped to adjacent positions for direct gates. Typically, this provides polynomial
reductions in the number of elementary operations required for a computation, when compared
with interacting the qubits directly.

However, compiling these gate sequences requires classical computation, which is usually
regarded as ‘free’ when calculating the resources required for the computation. Hence the savings
are achieved in part because of the differential cost of quantum and classical computation,
where unloading everything possible onto a classical computer is cost effective. In general, all
quantum computers run a program that is specified as classical data, and for many architectures
classical controls are also required to implement the gate sequences. One architecture that does
not need classical controls during execution of the algorithm is computation by continuous-
time quantum walk [25]. The computation proceeds by allowing a quantum process to travel
ballistically through a graph that represents the gate sequence for the computation. Even so, the
graph structure on which the quantum walk takes place still has to be computed or compiled.

The classical component in quantum computation is an understudied area, and it is
not known in general what the minimal quantum component is that can achieve universal
quantum computation. Nor, for that matter, is the minimum ‘classical’ component in quantum
computing known: all experimental proof-of-concept quantum computers contain extensive
classical controls.

(e) Chemical and biological co-processors

There are many uses of unconventional chemical and biological substrates that are given
as examples of unconventional computers. When examined, many of these are acting as
unconventional co-processors, with a classical computational component performing a non-
trivial part of the computation. In many cases, this classical computation comprises a substantial

S 753 i i oo

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical pattern
system recognition
J - JL o
e capture |
I configure | | p \
\ [I visual
I system | | ‘
‘____\[___J | output |

chemical
system

chemical pattern computation

Figure 8. Generic chemical computing.

image processing stage to extract the computational result residing as a spatial pattern in the
unconventional substrate.

Figure 8 illustrates the generic arrangement. A classical system defines the configuration
required of the chemical system (for example, the placement of chemical spots). The
chemical system evolves for a time, and then the spatial configuration is captured, typically
photographically. The resultant image is post-processed classically to extract the result of the
computation.

Reaction—diffusion (RD) computers [26] use interacting chemical substrates to perform a
variety of computations. For example, an RD computer can be used to calculate a two-
dimensional Voronoi diagram from a set of points [27,28]. The input set of abstract mathematical
two-dimensional points is instantiated in a set of chemical droplets in two-dimensional space. The
chemical substrate is designed so that reaction waves propagate from these points at a constant
speed. Where waves intersect, their reactions result in a different colour, and form the visible
boundaries between the respective regions. The output is this visible pattern of chemicals. To
convert this output into its mathematical representation of edges and regions requires image
processing on a classical computer. Similarly, RD computers can be used to find shortest paths
through a maze [29], but classical post-processing of the visible output is needed to extract the
actual path.

Slime moulds are another substrate used to compute various shortest-path problems [30]. Here
planar graph nodes are instantiated as oat flakes in the corresponding positions. The slime mould
grows between these oat flake food sources forming its body into a shortest-length configuration:
the resulting slime mould body instantiates the graph edges. Again, post-processing is necessary
to convert this output into the relevant mathematical representation of a graph.

(f) Intrinsic evolution

Evolutionary algorithms (e.g. [31]) are a class of meta-heuristic search algorithms, inspired by
the process of Darwinian evolution. A population of candidates have their fitness (closeness to
the desired solution) evaluated; fitter candidates are preferentially selected to produce the next
generation, using a variety of operators such as mutation and crossover.

When the problem is purely computational, the fitness can be calculated in silico. When the
problem involves the design of a physical artefact, there are two alternatives: simulation of the
physical solution in silico and intrinsic evaluation, using either the actual physical system, or a
physical simulation (for example, a scale model) of the actual physical system.

Where the evaluation is intrinsic, we can see this as a form of heterotic computing. The
selection and breeding is done in a classical software ‘evolutionary harness’, as is the definition

S 753 i i oo

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical reproduction,
evo system variation, selection
777J7777 [#‘_“_‘ngiiil
‘f fi : } measure |
configure Lo I
[, .g | individual |
I individual | | . [
. ______1 1 fitness
[e
Intrinsic evaluation
system

Figure 9. Intrinsic evolutionary computing.

classical . . .
reproduction, variation, selection

evo system
R [
: provide H configure | measure
: input ! individual I output

configurable)

in materio evaluation

system

Figure 10. /n materio computing, evolutionary search stage.

of the configuration of the individuals to be constructed and assessed. The individuals are
constructed, and their resulting fitness is measured, to feed back into the evolutionary harness
(figure 9). The computational gain comes from not having to provide a simulation, from
not having to know the physical theory of the material, and from having an essentially nil
semantic gap.

(g) In materio computation

Intrinsic evolution can be used to design computational artefacts. In such a case, where the
different individuals can each be configured in the same piece of hardware, rather than each
created from scratch, intrinsic evolution is called ‘evolvable hardware’ (for silicon devices
including FPGAs) or ‘evolution in materio” (for non-silicon devices such as liquid crystals and
carbon nanotubes). Lohn & Hornby [32] provide a survey of evolvable hardware, and Miller et al.
[33] a survey of in materio computing. Specific examples include Thompson'’s evolved FPGA tone
discriminator [34], Harding and Miller’s liquid crystal systems [35] and more general in materio
computing [36], and evolutionary robotics [37].

Figure 10 shows the evolution phase of the process. There are two inputs to the configurable
system: configuration instructions, and computational input. The system performs its function,
and the output is observed, and used as a fitness measure in the evolutionary process. This is
computation, rather than mere experiment [4]. In an experiment, we are trying to discover the
underlying dynamics of a system; here, we are trying to discover which system in an ensemble

STTONLOT SELE ¥ 205 supiy iyg BioBuiysygndiaaposjesorerss

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

classical
control control

system

provide | | measure |
input |j———=———=- I output
ettt configured | W S8
{ i individual | 1

configured
in materio
system

evaluation

Figure 11. In materio computing, use stage.

has the desired computational dynamics (alternatively: we are trying to engineer the configurable
system to have the desired computational dynamics).

Figure 11 shows the use of the resulting evolved system. The desired configuration of the
system as discovered by the evolutionary process is fixed into the system, configuring it to be the
desired physical system. The computational input is provided to the system, which performs its
function. The output is observed, and interpreted as the result of the computation.

5. Summary and conclusion

(a) Need for heterotic computing

As we have demonstrated through our examples, single paradigm computation is the exception in
practical devices. The era of faster general purpose computers through smaller faster components
(via Moore’s law) is already over. The need to reduce power consumption has required multi-
core CPU designs, and the demand for fast and realistic graphics spawned GPU co-processors
two decades ago. Future developments are focused on achieving greater speed and efficiency
through better matching of the device to the task. The diversity of computing applications from
space probes to nanobots is driving innovation in many directions including the development
of a much wider selection of physical computational systems, each with advantages for
specific applications.

Heterotic computing is essential for effective development of unconventional computational
systems, which are rarely viable without additional computational components. Single substrate
computation has many issues, as laid out in Stepney et al. [38], such as non-universality, wiring
problems in communicating between parts of the substrate, and encoding and decoding the input
and output. All of these can be—and are being—solved by combining complementary substrates,
and often by including more conventional control systems. As we have demonstrated in the
examples in §4, the importance of these control systems to the overall computational power of
the devices is largely unrecognized, which hinders the design and development of applications.

Also crucial to applying these new computational substrates in practical devices is a proper
and fair evaluation of their computational abilities. Some unconventional substrates where super-
computational properties are claimed, are hiding their computation in unfamiliar resources [39]
and in the transduction stages. Applying a heterotic analysis will help to expose the hidden
assumptions and understand these systems fully.

(b) Requirements for heterotic computing

If we want to use an unconventional physical system for computation, the first question to
answer is whether this system is actually computing in the situation we want to use it [4].

SR G 753 i i B

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

Without a sufficiently well-tested theory of how the system works, we cannot rely on it for
computation, although we can of course design experiments that will improve our confidence.
From a theoretical point of view, single-substrate computation is certainly easier to analyse and
abstractly model. However, such models may be ‘unphysical” in the sense that they ignore the
practical requirements for transduction, control and scalability of real physical devices. This
leaves us unable to apply the theoretical analysis to the design of actual computers, unless we
have a framework in which all the physical requirements can be included.

A framework for heterotic computing will be highly non-trivial. Many of the issues it will
need to handle involve the encodings used to represent the data, and the signal transduction
required to convert the data formats when information is passed between different substrates.
The information input to and output from diverse substrates will often be in different materials
or energy types. For example, optical computation is very fast but conversion to electronic
signals to interface with classical computers can be a bottleneck that negates the optical gains.
The current trend to mitigate this is for all optical computation, but this cannot be a general
solution, especially for substrates where communication is slow or difficult to achieve effectively
at all.

When the substrate has been chosen to be a good match to the data types for the computation,
explicit accounting of the data encoding and decoding is also required: we cannot just convert
everything to a common standard without losing some of the computational advantages.
Different substrates may also compute on very different timescales, resulting in an impedance
mismatch when connected. Compare nanoseconds for optical, seconds for chemical and hours
or days for biological computation [38], and the need for compatible memories to store the
signals until required becomes clear. The correct programming model for such diverse systems in
combination is also largely unexplored.

Given a hybrid system we would like to analyse, there may be several valid decompositions
into constituent systems, depending on the focus of our study. This is especially true when highly
engineered substrates are being used, such as various engineered nanoparticle structures, or
electrical-chemical composites, where the engineered physical system is not as well characterized
as is the ‘pure’ system. Further research is required to understand the relationship between
different possible decompositions.

() Future of heterotic computing

All of our examples in §4 consist of a substrate with interesting computational potential combined
with a classical control layer provided by a conventional digital computer. One potential
exception is in quantum computing with ancilla-mediated quantum gates (§7), although there
are classical controls of one form or another required for most versions of this model. In fact, it is
not clear that quantum computing without any classical component is possible if ‘whole system’
analysis is performed.

Stepney et al. [38] have proposed a heterotic system combining optical, bacterial and chemical
computing as a proof-of-concept exploration of the very different time scales in these systems,
but with direct interfaces that do not require a classical computer to mediate.

As we have sought to demonstrate with our examples and discussion, most of our current
computing is in fact heterotic. Acknowledging this, and developing the theory to go along with
the practice, will enable future computation to be better understood and hence more reliable,
more efficient in both computational power and resource requirements, and better adapted to its
purpose in a myriad of settings.

Authors” contributions. All authors contributed equally to developing the ideas; S.S. and VK. drafted the
manuscript; A.S. helped to draft the manuscript; all authors gave final approval for publication.

Competing interests. The authors have no competing interests.

Funding. S.S. acknowledges partial funding by the EU FP7 FET Coordination Activity TRUCE (Training and
Research in Unconventional Computation in Europe), project reference number 318235. VK. is funded by
EPSRC (UK Engineering and Physical Sciences Research Council) fellowship EP /1022303 /1.

S 753 i i oo

http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Kendon V, Sebald A, Stepney S, Bechmann M, Hines P, Wagner RC. 2011 Heterotic computing.
In Unconventional computation 2011, Turku, Finland, June 2011. LNCS, no. 6714, pp. 113-124.
Berlin, Germany: Springer.

. Stepney S, Kendon V, Hines P, Sebald A. 2012 A framework for heterotic computing. In 8th

Workshop on Quantum Physics and Logic (QPL 2011), Nijmegen, The Netherlands. EPTCS, no. 95,
pp- 263-273.

. Fromherz P, Offenhausser A, Vetter T, Weis J. 1991 A neuron-silicon junction: a Retzius cell

of the leech on an insulated-gate field-effect transistor. Science 252, 1290-1293. (doi:10.1126/
science.1925540)

. Horsman C, Stepney S, Wagner RC, Kendon V. 2014 When does a physical system compute?

Proc. R. Soc. A 470, 20140182. (d0i:10.1098 /rspa.2014.0182)

. Rosell6-Merino M, Bechmann M, Sebald A, Stepney S. 2010 Classical computing in nuclear

magnetic resonance. Int. J. Unconv. Comput. 6, 163-195.

. Wilt N. 2013 The CUDA handbook: a comprehensive guide to GPU programming. Reading, MA:

Addison Wesley.

. Grover LK. 1996 A fast quantum mechanical algorithm for database search. In Proc. 28th

Annual ACM Symposium on the Theory of Computing (STOC), pp. 212-219. New York, NY: ACM.

. Shor P. 1994 Algorithms for quantum computation: discrete logarithms and factoring. In

35th Annual Symposium on Foundations of Computer Science, pp. 124-134. Piscataway, NJ: IEEE
Computer Society Press.

. Shor PW. 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. STAM J. Sci. Statist. Comput. 26, 1484. (d0i:10.1137 /50097539795293172)
Raussendorf R, Briegel HJ. 2001 A one-way quantum computer. Phys. Rev. Lett. 86, 5188-5191.
(doi:10.1103/PhysRevLett.86.5188)

Jozsa R. 2005 An introduction to measurement based quantum computation. (http://arxiv.
org/abs/quant-ph/0508124)

Anders J, Browne D. 2009 Computational power of correlations. Phys. Rev. Lett. 102, 050502.
(doi:10.1103 /PhysRevLett.102.050502)

Browne D, Kashefi E, Perdrix S. 2010 Computational depth complexity of measurement-
based quantum computation. In TQC 2010 (eds W van Dam, VM Kendon, S Severini). LNCS,
no. 6519, pp. 35-46. Berlin, Germany: Springer.

Jones JA. 2011 Quantum computing with NMR. Progr. Nuclear Magn. Reson. Spectroscopy 59,
91-120. (doi:10.1016/j.pnmrs.2010.11.001)

Collins D. 2000 NMR quantum computation with indirectly coupled gates. Phys. Rev. A 62,
022304. (d0i:10.1103 /PhysRevA.62.022304)

Bechmann M, Sebald A, Stepney S. 2012 Boolean logic-gate design principles in
unconventional computers: an NMR case study. Int.]. Unconov. Comput. 8, 139-159.
Bechmann M, Sebald A, Stepney S. 2010 From binary to continuous gates—and back again. In
ICES 2010, York, UK, September 2010. LNCS, no. 6274, pp. 335-347. Berlin, Germany: Springer.
Cirac JI, Zoller P. 1995 Quantum computations with cold trapped ions. Phys. Rev. Lett. 74,
4091. (doi:10.1103/PhysRevLett.74.4091)

Anders J, Oi DKL, Kashefi E, Browne DE, Andersson E. 2010 Ancilla-driven universal
quantum computation. Phys. Rev. A 82, 020301. (d0i:10.1103 /PhysRevA.82.020301)

Proctor T], Andersson E, Kendon V. 2013 Universal quantum computation by the unitary
control of ancilla qubits and using a fixed ancilla-register interaction. Phys. Rev. A 88, 042330.
(doi:10.1103 /PhysRevA.88.042330)

Brown KL, De S, Kendon V, Munro WJ. 2011 Ancilla-based quantum simulation. New J. Phys.
13, 095007. (doi:10.1088/1367-2630/13/9/095007)

Proctor TJ, Dooley S, Kendon V. 2015 Quantum computation mediated by ancillary qudits
and spin coherent states. Phys. Rev. A 91, 012308. (doi:10.1103/PhysRevA.91.012308)

Brown KL, Horsman C, Kendon V, Munro WJ]. 2012 Layer by layer generation of cluster states.
Phys. Rev. A 85, 052305. (doi:10.1103 /PhysRevA.85.052305)

Horsman C, Brown KL, Munro WJ, Kendon VM. 2011 Reduce, reuse, recycle for robust cluster-
state generation. Phys. Rev. A 83, 042327. (doi:10.1103 /PhysRevA.83.042327)

Childs AM. 2009 Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501.
(doi:10.1103 /PhysRevLett.102.180501)

e E Ry e - |

http://dx.doi.org/doi:10.1126/science.1925540
http://dx.doi.org/doi:10.1126/science.1925540
http://dx.doi.org/doi:10.1098/rspa.2014.0182
http://dx.doi.org/doi:10.1137/S0097539795293172
http://dx.doi.org/doi:10.1103/PhysRevLett.86.5188
http://arxiv.org/abs/quant-ph/0508124
http://arxiv.org/abs/quant-ph/0508124
http://dx.doi.org/doi:10.1103/PhysRevLett.102.050502
http://dx.doi.org/doi:10.1016/j.pnmrs.2010.11.001
http://dx.doi.org/doi:10.1103/PhysRevA.62.022304
http://dx.doi.org/doi:10.1103/PhysRevLett.74.4091
http://dx.doi.org/doi:10.1103/PhysRevA.82.020301
http://dx.doi.org/doi:10.1103/PhysRevA.88.042330
http://dx.doi.org/doi:10.1088/1367-2630/13/9/095007
http://dx.doi.org/doi:10.1103/PhysRevA.91.012308
http://dx.doi.org/doi:10.1103/PhysRevA.85.052305
http://dx.doi.org/doi:10.1103/PhysRevA.83.042327
http://dx.doi.org/doi:10.1103/PhysRevLett.102.180501
http://rsta.royalsocietypublishing.org/

26.
27.

28.

29.

30

31.
32.

33.

34.

35.

36.

37.

38.

39.

Downloaded from http://rsta.royalsocietypublishing.org/ on June 18, 2015

Adamatzky A, de Lacy Costello B, Asai T. 2005 Reaction—diffusion computers. Elsevier.
Adamatzky A. 1994 Constructing a discrete generalized Voronoi diagram in reaction-diffusion
media. Neural Network World 4, 635-644.

Tolmachev D, Adamatzky A. 1996 Chemical processor for computation of Voronoi diagram.
Adv. Mater. Opt. Elect. 6, 191-196. (doi:10.1002/(SICI)1099-0712(199607)6:4<191::AID-
AMO238>3.0.CO;2-G)

Steinbock O, Téth A, Showalter K. 1995 Navigating complex labyrinths: optimal paths from
chemical waves. Science 267, 868-871. (d0i:10.1126/science.267.5199.868)

. Adamatzky A. 2010 Physarum machines: computers from slime mould. Singapore: World

Scientific.

Mitchell M. 1996 An introduction to genetic algorithms. Cambridge, MA: MIT Press.

Lohn JD, Hornby GS. 2006 Evolvable hardware: using evolutionary computation to design
and optimize hardware systems. IEEE Comput. Intell. Mag. 1, 19-27. (doi:10.1109/MCL
2006.1597058)

Miller JF, Harding SL, Tufte G. 2014 Evolution-in-materio: evolving computation in materials.
Evol. Intell. 7, 49-67. (d0i:10.1007 /s12065-014-0106-6)

Thompson A. 1997 An evolved circuit, intrinsic in silicon, entwined with physics. In
Proceedings of the First International Conference on Evolvable Systems: From Biology to Hardware,
ICES’97. LNCS, no. 1259, pp. 390—405. Berlin, Germany: Springer.

Harding SL, Miller JF, Rietman EA. 2008 Evolution in materio: exploiting the physics of
materials for computation. Int. |. Unconv. Comput. 4, 155-194.

Harding S, Miller JF. 2012 Evolution in materio. In Computational complexity (ed. RA Meyers),
pp- 1030-1042. Berlin, Germany: Springer.

Pollack JB, Lipson H, Ficci S, Funes P, Hornby G, Watson RA. 2000 Evolutionary techniques in
physical robotics. In Proceedings of the Third International Conference on Evolvable Systems: From
Biology to Hardware, ICES’00. LNCS, no. 1801, pp. 175-186. Berlin, Germany: Springer.
Stepney S, Abramsky S, Bechmann M, Gorecki], Kendon V, Naughton TJ, Perez-Jimenez
M]J, Romero-Campero FJ, Sebald A. 2012 Heterotic computing examples with optics, bacteria,
and chemicals. In Unconventional Computation and Natural Computation 2012, Orleans, France,
September 2012. LNCS, no. 7445, pp. 198-209. Berlin, Germany: Springer.

Blakey E. 2011 Unconventional complexity measures for unconventional computers. Nat.
Comput. 10, 1245-1259. (doi:10.1007 /s11047-010-9226-9)

0 S g B

http://dx.doi.org/doi:10.1002/(SICI)1099-0712(199607)6:4<191::AID-AMO238>3.0.CO;2-G
http://dx.doi.org/doi:10.1002/(SICI)1099-0712(199607)6:4<191::AID-AMO238>3.0.CO;2-G
http://dx.doi.org/doi:10.1126/science.267.5199.868
http://dx.doi.org/doi:10.1109/MCI.2006.1597058
http://dx.doi.org/doi:10.1109/MCI.2006.1597058
http://dx.doi.org/doi:10.1007/s12065-014-0106-6
http://dx.doi.org/doi:10.1007/s11047-010-9226-9
http://rsta.royalsocietypublishing.org/

	Introduction
	Definition of physical computing
	Heterotic physical computing
	Current examples of heterotic computing
	Classical computing co-processors
	Measurement-based quantum computing
	NMR computing
	Ancilla-based quantum computing
	Chemical and biological co-processors
	Intrinsic evolution
	In materio computation

	Summary and conclusion
	Need for heterotic computing
	Requirements for heterotic computing
	Future of heterotic computing

	References

