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1 Introduction

In this chapter we investigate computation from a dynamical systems perspective.
A dynamical system is described in terms of its abstract state space, the system’s

current state within its state space, and a rule that determines its motion through
its state space. In a classical computational system, that rule is given explicitly by
the computer program; in a physical system, that rule is the underlying physical
law governing the behaviour of the system. So a dynamical systems approach to
computation allows us to take a unified view of computation in classical discrete
systems and in systems performing non-classical computation. In particular, it gives
a route to a computational interpretation of physical embodied systems exploiting
the natural dynamics of their material substrates.

We start with autonomous (closed) dynamical systems: those whose dynamics is
not an explicit function of time, in particular, those with no inputs from an external
environment. We begin with computationally conventional discrete systems, exam-
ining their computational abilities from a dynamical systems perspective. The aim
here is both to introduce the necessary dynamical systems concepts, and to demon-
strate how classical computation can be viewed from this perspective. We then move
on to continuous dynamical systems, such as those inherent in the complex dynam-
ics of matter, and show how these too can be interpreted computationally, and see
how the material embodiment can give such computation “for free”, without the
need to explicitly implement the dynamics.

We next broaden the outlook to open (non-autonomous) dynamical systems,
where the dynamics is a function of time, in the form of inputs from an external
environment, and which may be in a closely coupled feedback loop with that envi-
ronment.

We finally look at constructive, or developmental, dynamical systems, where the
structure of the state space is changing during the computation. This includes vari-
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ous growth processes, again investigated from a computational dynamical systems
perspective.

These later sections are less developed than for the autonomous cases, as the
theory is less mature (or even non-existent); however these are the more interesting
computational domains, as they move us into the arena of considering biological and
other natural systems as computational, open, developmental, dynamical systems.

2 Autonomous dynamical systems

Consider a dynamical system with N degrees of freedom; it has an abstract state
space XN . Its state can be defined by N state variables xi ∈X, or, equivalently, by an
ND state vector x∈XN (for example, x may be a vector of binary bits, or a vector of
continuous variables such as position and momentum). The state vector xt defines
the value of the system state at a given time.

The deterministic dynamics is given by a function f : XN → XN , which defines
how a state vector x changes with time, that is, it defines the trajectory that the
system takes through its state space. So the dynamics associates a vector with each
point in the state space, defining how that point evolves under the dynamics1. If f is
not itself an explicit function of time, then the system is autonomous.

In general, dynamical systems theory is not concerned with details of individual
trajectories, but rather with the qualitative behaviours of sets of trajectories. For ex-
ample, consider a set of states occupying some initial volume of the state space: as
these states evolve under the dynamics, how does the volume change? We are mostly
interested here in dissipative systems, where the volume contracts to attractors (re-
gions of state space that attract trajectories), and we interpret such attractors from a
computational perspective. This contracting behaviour is a property of systems that
dissipate energy or information. (Closed non-dissipative dynamical systems, on the
other hand, have no attractor structure.)

2.1 Discrete space, discrete time dynamical systems

We start by considering finite discrete spaces (finite number of finite dimensions),
with discrete time dynamics t ∈N (where N is the set of natural numbers).

1 In conventional use, the meaning of this vector is unfortunately different in the discrete and
continuous time cases. In the discrete time case (§2.1, §2.2), xt+1 = f (xt), and so the vector is
the next state; in the continuous time case (§2.3),

.
x = f (x), and so the vector is the derivative,

pointing towards the next state an infinitesimal time later: xt+dt = xt + f (xt)dt. It would be possible
to have a uniform meaning, by redefining the discrete case vector to be the difference in states,
with xt+1 = xt + f (xt) (and an implicit ∆ t = 1). However, here we follow the conventional, and
inconsistent, use.
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We take X = S, some set with finite cardinality |S| ∈ N (typically S will be the
boolean set B, but it is not restricted to this). For an N dimensional system, the state
is defined by N state variables si ∈ S, and the state space SN comprises |S|N distinct
discrete states. (When S = B, these states fall on the vertices of an N-dimensional
hypercube.) Let the state vector be s ∈ SN .

The dynamics of a particular system are determined by its particular transition
function f : SN → SN , with st+1 = f (st). There are (|S|N)|S|

N
such functions f .

Given a particular state s0 ∈ SN , its trajectory under f is a sequence of states
s0,s1, . . . ,st , . . . . Eventually, because the state space is finite, a state that was met
before will be met again: there exists a k such that sk = sk+p, for some p. Since
the dynamics is deterministic, the trajectory will then recur: for all i ≥ k.si = si+p.
The system has entered an attractor, with cycle length or period p. States not on an
attractor are called transient.

Given a trajectory . . . ,st ,st+1, . . . , then st is the pre-image of st+1 in this trajec-
tory, and st+1 is the successor of st . Every state has precisely one successor (because
the dynamics is deterministic). It may have zero, one, or more pre-images (trajecto-
ries may merge); if it has zero pre-images, it is a Garden of Eden state.

The set of all states si whose trajectories lead to the same attractor forms the basin
of attraction of that attractor. The total state space is partitioned into these basins:
every state is in precisely one basin. Note that there is no necessary correlation
between the volume of the basin (the proportion of state space it occupies, and
hence the probability that a state chosen at random will be in it) and the length of
the attractor that it leads to.

The microstate of the system is which particular s ∈ S it is in. The macrostate
is which particular attractor (or basin of attraction if the microstate is currently a
transient state) the system is in.

For a given dynamics f , there is a minimum of one attractor basin (all states are
in the same attractor basin, for example, the zero function), and a maximum of |S|N
(the identity function where every state forms its own single-state attractor basin).
There is a minimum transient length of 0 (all states on some attractor cycle, for ex-
ample, the increment modulo 2N function, interpreting the binary encoded state BN

as a number), and a maximum transient length of |S|N −1 (for example, the decre-
ment and halt on zero function). There is a minimum number of Garden of Eden
states of 0 (all states on some attractor cycle), and a maximum number of Garden
of Eden states of |S|N − 1 (for example, the zero function). Non-trivial dissipative
computational systems rarely lie at any of these extremes, however. (Note that re-
versible, non-dissipative, systems have no Garden of Eden states, and no merging
trajectories.)

2.1.1 Visualising the attractor field

Visualising the basins of attraction can help in understanding some aspects of their
dynamics. For small systems, the most common approach is to lay out the state tran-
sition graph to highlight the separate basins, their attractors, and their symmetries
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Fig. 1 Visualisation of part of the state transition graph for ECA rule 110 (see §2.1.5 on Elementary
Cellular Automata), on the periodic lattice N = 12, showing three of the basins of attraction. Each
node corresponds to a state si; each edge corrsponds to a transition si → si+1. The leaves of the
graphs are Garden of Eden states; the attractor cycles can be seen at the centres of the basins.

(see figure 1). Wolfram [108, fig 9.1] used this approach in early work on cellular
automata; Wuensche [110, 111] has developed special purpose layout software, and
uses this approach consistently, to highlight aspects of the dynamics.

2.1.2 Computation

Given a finite system in initial microstate s0 (which may be considered to contain
an encoding of any input data), the system follows its dynamics f until it reaches
the relevant attractor. If this attractor has a cycle length of one, the system then stays
in the single attractor state. For longer cycle lengths, the system perpetually repeats
the cycle of states.

In terms of attractors. The computation performed by the system as it follows its
dynamics f can be interpreted as the determination of which attractor basin it is in,
by progressing to the attractor from its initial state s0.

The output of the computation may be the microstates, or some suitable projec-
tion thereof, of the discovered attractor cycle. (See, for example, §2.1.5, Example 1:
the density classification task).

In terms of trajectories. Alternatively, the computation performed by the system
as it follows its dynamics f can be considered to be (some projection of) the mi-
crostates it passes through along its trajectory, including both transient and attractor
cycle states. (See, for example, §2.1.5, example 2: the Rule 30 PRNG).
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Programming task. The programming task involves determining a dynamics f
that leads to the required trajectories or attractor structure. (See, for example, sec-
tion 2.1.5, Example 1: the density classification task.)

For feasible programs, the discovery of an attractor should be performed in poly-
nomial time (implying polynomial length transients and attractor cycles). At the
other complexity extreme, the dynamics should not be defined merely by a |S|N-
entry lookup table (which would allow all computations to find the attractor in a
single step); it should admit a “compressed” description. (See, for example, §2.1.5
on cellular automata, and §2.1.6 on random Boolean networks, which define the
global dynamics f in terms of the composition of local dynamics φi.)

Implementation. Natural physical systems do not tend to directly implement a
discrete dynamics, particularly one that has been designed to perform a specific
task. However, any such dynamics can be implemented (or simulated) on a classical
digital computer. Hence there are no implementation constraints imposed on the
design of the dynamics f .

Inputs and outputs. The input is encoded into the initial state; the output is de-
coded from (a projection of) the resulting attractor state(s). It is important when
analysing the complexity of the computation to take into account any “hidden” com-
putation needed to encode the input, or to decode the output. This is particularly
important if the computational interpretation is far removed from the dynamics, for
example, if there is some kind of virtual machine present.

2.1.3 Virtual machine dynamics

In some cases a dynamics need to be accompanied by a very carefully chosen ini-
tial condition in order to implement the required computation. For example, when
cellular automata are used to implement Turing Machines (TMs; see §2.1.5 on Uni-
versality), they are given a carefully chosen initial configuration that corresponds to
the “program” of the TM, plus the “true” input corresponding to its initial tape. This
requirement for an exquisitely tuned initial condition constrains the system to tra-
verse only a very small part of its state space (certain basins of attraction are never
explored; some transient trajectories are never taken). What is happening in these
cases is that the underlying broader dynamics is being used to implement a “virtual
machine” with its own dynamics confined to a small sub-space of the underlying
system; this sub-space and its trajectories correspond to the computation of the vir-
tual machine, and may possibly be implemented more directly. In the continuous
case, this more direct implementation is what we want: the natural dynamics of the
system, with no need for such highly tuned initial conditions, performs the desired
computation.



6 Susan Stepney Department of Computer Science, University of York, UK

i

i

i
i

Fig. 2 CA neighbourhood. (a) A CA’s regular neighbourhood, ν , illustrated in a 2D lattice. The
neighbourhood of cell i is the image of the neighbourhood of cell 0, translated by i. (b) The state
of the neighbourhood, illustrated in a 1D lattice. χi, the state of the neighbourhood of cell i, is the
projection of the full state s onto the neighbourhood νi.

2.1.4 Infinite dimensional state spaces

When N is (countably) infinite, the dynamics of the system can change qualitatively.
In a finite dissipative system (which contains both transients and cycles), there

must be Garden of Eden states, but this is no longer true in an infinite system:
transient behaviour on the way to the attractor cycle need not have any starting
Garden of Eden states (for example, the decrement and halt on zero function).

An infinite system need not have an attractor cycle: there is no guarantee that
the system will reach a previously seen state (for example, the increment function).
Even if there are attractor cycles, there may be states not in their basins (for example,
the function if even then add 2 else halt).

A Turing Machine (TM) operates in a state space with a countably infinite (or,
more precisely, finite but unbounded) number of dimensions. In dynamical systems
terms, halting is reaching one of a number of particular attractor cycles of length 1,
which describes the halting states. The output of the TM (the contents of its tape)
is simply the microstate of the subspace representing the tape in this halting state.
Hence there are potentially many attractors, one for each halting state with different
tape contents, corresponding to different initial tape contents (different initial states
s0).

The Halting Problem means that it is in general undecidable whether a given
initial state s0 is in a halting basin, in some other (“looping”) basin, or not in a basin
at all.

2.1.5 Cellular automata

A finite cellular automaton (CA) comprises N cells laid out in a regular grid or lat-
tice, usually arranged as an n-dimensional torus (n in common examples is typically
1 or 2). Each cell i at time t has a state value ci,t ∈ S.

Each cell has a neighbourhood of k cells, comprising itself and certain nearby
cells in the grid. This neighbourhood is the same for all cells, in that νi, the neigh-
bourhood of ci, is ν0, the neighbourhood of the origin c0, translated by i (figure 2a).
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Fig. 3 Visualisation of the time evolution of ECA rule 110 (see §2.1.5 on Elementary Cellular
Automata), with N = 971, with random initial state s0, over 468 timesteps. Each horizontal line
shows the N-bit representation of the state st ; subsequent lines correspond to subsequent timesteps
st ,st+1, . . ..

The state of cell ci’s neighbourhood νi at time t is χi,t ∈ Sk, a k-tuple of cell states
that is the projection of the full state onto the neighbourhood νi (figure 2b).

The local state transition rule, or update rule, is φ : Sk → S. (There are |S||S|k

such rules, some of which are related by symmetries. So, since typically k� N, CA
rules capture only a small fraction of all the possible dynamics over an ND space.)
These cells form an array of state transition machines. At each timestep, the state of
each cell is updated in parallel, ci,t+1 = φ(χi,t).

The global dynamics f is determined by the local rule φ and the shape of the
neighbourhood. This global behaviour from a given initial state is conventionally
visualised in the 1D case by drawing the global state at time t as a line of cells (with
colours corresponding to the local state), then drawing the state at t +1 directly be-
low, and so on (see figure 3). Higher dimensional CAs are conventionally visualised
as animations.

Figure 1 shows three basins of attraction of a small CA. There are many “re-
peated” basins (basins with identical topologies, over different specific states) due
to the symmetries in a CA rule [73, 74]. Every rule over a finite space with peri-
odic boundary conditions has “shift” symmetries from shifting the arbitrary origin;
additionally, some rules also have reflectional and other symmetries.

Elementary Cellular Automata (ECAs). ECAs are 2-state (S = B) CAs, with the
cells arranged in a 1D lattice, and with a neighbourhood size of 3 (comprising the
cell and its immediate left and right neighbours). There are 223

= 256 distinct ECA
rules, conventionally referred to by a base 10 number 0 . . .255, representing the base
10 interpretation of the rule table bitstring. After reflection and inversion symmetries
have been taken into account, there are 88 essentially distinct rules.

Wolfram’s classification. Wolfram [105, 104] provides a qualitative characterisa-
tion of CAs, classifying their long term evolution into four classes:
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Fig. 4 Sensitive dependence on initial conditions. Each plot overlays the evolutions of two initial
states differing in only one bit: the growing central dark region is different; the outer regions are
the same. N = 971, random initial state s0, over 646 timesteps (a) ECA rule 45; (b) ECA rule 110

1. a unique homogeneous state, independent of the initial state (a single state attrac-
tor cycle); patterns disappear with time

2. a simple periodic pattern of states (short attractor cycles, length�|S|N); patterns
become fixed

3. chaotic aperiodic pattern of states (long attractor cycles, length O(|S|N), or no
cycles in the infinite case); patterns grow indefinitely

4. complex localised long-lived structures; patterns grow and contract

Wolfram’s classification scheme has been criticised for a variety of reasons, in-
cluding the fact that even determination of quiescence (long term fixed patterns) is
undecidable [18]. This is a recurring problem for any classification scheme: “CA
behavior is so complex that almost any question about their long-term behavior is
undecidable” [24]. See also [94]. Wolfram classes are nevertheless widely used in a
qualitative manner to distinguish kinds of behaviours.

Class 3 and class 4 CAs demonstrate sensitive dependence on initial conditions:
the effect of a minimal (one cell state) change to the initial condition propagates
across the system, eventually resulting in a completely different dynamics (see fig-
ure 4). The 88 essentially distinct ECAs cover all 4 Wolfram classes of behaviour.

Universality. Even though CA rules capture only a small fraction of all the possible
dynamics over an ND space, there are Computationally Universal CAs, that can
emulate a TM. ECA rule 110 (figure 3) is universal [14], as is Conway’s Game of
Life 2D CA [10, 77]. The proof of universality in these cases involves constructing
a virtual machine in the CAs, on which is implemented a TM (or equivalent). In
other words, the computation is being performed by a carefully engineered initial
condition, and a carefully engineered interpretation of the dynamical behaviour. So
these systems explore only a small fraction of their full state space: that fraction that
corresponds to an interpretation of the state of a TM.

Wolfram [105, §8] speculates that “class 4 cellular automata are characterized by
the capability for universal computation” (in the case of infinite-dimensional CAs).

Example CA 1: the density classification task. The requirement is to design a
local two-state 1D CA rule φ , independent of lattice size N (assume N odd for
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Fig. 5 ECA rule 30 (equation 1), initial state of a single non-zero cell

simplicity), such that the global dynamics f has the following properties: (i) the
system has two attractors, each of cycle length 1, one being the all zeros state, one
being the all ones state; (ii) any initial state s0 with more zeros than ones is in the
basin of the all zeros state, and vice versa; (iii) the maximum transient length is
at worst polynomial in n (ie the attractor is discovered in polynomial time). The
computation determines which attractor basin the initial state is in, and hence, by
inference, whether the initial state has more zeros than ones.

No two-state CA with a bounded neighbourhood size can solve this problem ex-
actly on arbitrary lattice size N [49]. The best rules designed or evolved (for exam-
ple, [25, 61, 109]) fail to correctly classify about 20% of states: that is, they define
a dynamics where these states are in the “wrong” basin of attraction. Bossomaier et
al [11] investigate the problem specifically in terms of the attractor basins.

Example CA 2: the rule 30 pseudo-random number generator. Wolfram [108]
discusses ECA rule 30:

φ30(ci−1,ci,ci+1) = ci−1 XOR (ci OR ci+1) (1)

Starting from an initial state s0 with a single cell j “on”, ci,0 =(if i = j then 1 else 0),
(figure 5), then the sequence of bits under this single on bit, τ = c j,0,c j,1, . . . ,c j,t , . . .
forms a (pseudo-)random sequence. Wolfram [108] presents evidence that the cy-
cle length of the attractor starting from a state with a single non-zero cell grows
exponentially with CA lattice size N.

This sequence τ is a projection (onto the single boolean state variable c j) of the
trajectory from state s0 under the dynamics defined by rule 30.

2.1.6 Random Boolean Networks

A Random Boolean Network (RBN) comprises N nodes. Each node i at time t has
a binary valued state, ci,t ∈ B. Each node has k inputs assigned randomly from k
of the N nodes (an input may be from the node itself); the wiring pattern is fixed
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Fig. 6 An example RBN with N = 6,k = 2. Each node has k = 2 inputs; it can have any number
of outputs. So the neighbourhood function is νA = (A,F),νB = (C,F), etc. Each node combines
its inputs by a random boolean function φi: that function might ignore one (or both) of the inputs.

throughout the lifetime of the network. This wiring defines the cell’s neighbourhood,
νi. See figure 6.

The state of cell i’s neighbourhood at time t is χi,t ∈ Bk, a k-tuple of cell states
that is the projection of the full state onto the neighbourhood νi.

Each node has its own randomly chosen local state transition rule, or update
rule, φi : Bk→ B. These cells form a network of state transition machines. At each
timestep, the state of each cell is updated in parallel, ci,t+1 = φi(χi,t).

The global dynamics f is determined by the local rules φi and the connectivity
pattern of the nodes νi. In contrast to the regularity of a CA, in an RBN each node
has its own random neighbourhood connection pattern and its own random update
rule. Like CAs, RBNs capture only a small fraction of all the possible dynamics
over an ND space.

Kauffman [42, 43] investigates the properties of RBNs2 as a function of connec-
tivity k. Unlike CAs, RBNs tend not to have repeated basins, because of the random
nature of the connections, and hence the relative lack of symmetries. Despite all the
randomness, however, “such networks can exhibit powerfully ordered dynamics”
[42], particularly when k = 2 (figure 7; table 1). Drossel [23] notes that subsequent
computer simulation of much larger networks shows that “for larger N the apparent
square-root law does not hold any more, but that the increase with system size is
faster”.

Kauffman identifies k = 1 as the “ordered” regime, with a very large number of
short period attractors. Large k is the chaotic regime, with very long period attrac-
tors (compare Wolfram’s class 3 behaviour). k = 2 occurs at a “phase transition”

2 The wiring conditions given above are not stated explicitly in these references. However, in
the k = N case, Kauffman [43, p.192] states that “Since each element receives an input from all
other elements, there is only one possible wiring diagram”. This implies that multiple connections
from a single node are not allowed (otherwise more wiring diagrams would be possible) whereas
self connections are allowed (otherwise k would be restricted to a maximum value of N − 1).
Subsequent definitions (for example [23]) explicitly use the same conditions as given here.
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Fig. 7 Visualisation of the time evolution of three typical k = 2 RBNs, with N = 400, and ini-
tial condition all nodes “off”; after 150 timesteps all nodes are set to “on”, then all nodes are
randomised (50% “on”, 50% “off”) every further 150 timesteps, to explore other attractors. They
exhibit ordered behaviour: short transients, and low period attractors. The visualisation scheme
used here [91] orders the nodes to expose the frozen core [43, p.203] of nodes that do not change
state on the attractor; this frozen core is well-preserved on different attractors.

k attractor cycle length # attractors

1 O(
√

N) O(2N)
2 O(

√
N) O(

√
N)

> 5 O(2N) O(N)

Table 1 Dynamics of RBNs for different k (adapted from [43, table 5.1])

[42], separating the ordered and chaotic regimes; it exhibits a moderate number of
moderate period attractors.

Kauffman investigates RBNs as simplified models of gene regulatory networks
(GRNs). He notes that “cell types are constrained and apparently stable recurrent
patterns of gene expression”, and interprets his RBN results as demonstrating that a
“cell type corresponds to a state cycle attractor” [43, p.467] (in a k = 2 network).

Emergent macrostates of the dynamics, in addition to the attractor cycle length,
are the number of nodes whose states change during a cycle, compared to the num-
ber that form the static frozen core. In the GRN interpretation, the frozen core would
correspond to genes whose regulatory state was constant in a particular cell type, and
the changing nodes to those genes whose regulatory state was cycling.
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2.2 Continuous space, discrete time

We next consider continuous spaces, with X = R (where R is the set of real num-
bers), with discrete time dynamics t ∈ N. Let the state vector be r ∈ RN . The dy-
namics of a particular system is determined by its particular transition function
f : RN → RN , with rt+1 = f (rt).

These systems are called difference equations or iterated maps. A discrete-time
trajectory rt ,rt+1,rt+2, . . . is also called an orbit.

The trajectories can display a range of behaviours, corresponding to a range of
types of attractor, depending on the system. Trajectories may diverge (|rt | → ∞);
they may converge to a fixed point attractor (rt → r∗, where f (r∗) = r∗); they may
converge to a periodic attractor; they may be chaotic, never repeating but still con-
fined to a particular sub-region of the state space. So continuous space systems have
chaotic behaviour that differs qualitatively from the “chaotic” behaviour of discrete
space systems, since the finite discrete systems must eventually repeat and hence be
periodic (although with exponentially long periods).

2.2.1 Parameterised families of systems

It is often convenient to consider a family of dynamics related by some parameter
p ∈ P, that is, f (r, p), and investigate how the dynamics of a system vary as a func-
tion of this parameter. The trajectories of such parameterised systems can display
the whole range of behaviours corresponding to the range of types of attractor, de-
pending on the value of the parameter. A small change to the parameter can make
a fixed point move, or become unstable, or periodic, or disappear. It can move a
system from period P to period 2P (period doubling), or from periodic to chaotic
behaviour. The parameter values where these qualitative changes in the dynamics
occur are called bifurcation points. As the parameter crosses the bifurcation point,
the change in the dynamics can be continuous (smooth), or discontinuous (catas-
trophic).

Many systems exhibit a sequence of period doublings as the parameter changes.
Subsequent doublings happen ever more rapidly (requiring ever smaller changes
to the parameter), then the system moves into a chaotic regime. This is known as
the period doubling route to chaos. Appearance of a period doubling cascade in a
parameterised system is indication that chaos will ensue if the parameter changes
further.

Another typical behaviour is the intermittency route to chaos. Here the parameter
starts in a region with periodic dynamics; as it is changed, the periodic behaviour
is broken by intermittent bursts of irregular behaviour. As the parameter changes
further, there are more and more of these bursts, until the behaviour becomes com-
pletely chaotic. Hence a fully deterministic system may be apparently periodic, in-
terrupted by what look like bursts of noise, where these bursts are simply part of the
same overall dynamics of the system, and in need of no external explanation.
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Fig. 8 Orbit diagram of the logistic map, (a) 2 ≤ λ ≤ 4, showing the period doubling route to
chaos; (b) 3.5≤ λ ≤ 4, zooming in on the window of period 3.

2.2.2 Logistic map

The logistic map, a parameterised family of 1D iterated maps:

rt+1 = λ rt(1− rt) (2)

is a well-studied example of such a system (see figures 8 and 9). It is usually stud-
ied for λ ∈ [0,4], since in this region its dynamics is confined to the unit interval:
r ∈ [0,1]. It does have complex dynamics for other values of λ , but these are not
constrained to the unit interval.

Its unintuitively rich, complex properties have been researched in detail, and in
1976 Robert May advised [53]:

Not only in research, but also in the everyday world of politics and economics, we would
all be better off if more people realised that simple nonlinear systems do not necessarily
possess simple dynamical properties.

The attractor structure, visible in figure 8, is summarised in table 2 as a function
of parameter λ . It has period doubling cascades to chaos as λ is increased. The first
cascade leads to the onset of chaos at λ = 3.56994 56718 . . .. Within this chaotic
region, there are windows of periodicity (such as the window of period 3), which
then also period-double back to chaos. Given the existence of a period 3 cycle in a
map, then every possible period can also be found in that map [50]. In the logistic
map, there are windows of every period for some 3 < λ < 4. Each of these periodic
windows then period-doubles back to chaos as λ increases. The order in which these
cascades occur itself has a complex structure, which can be calculated iteratively, in
terms of symbolic sequences [57]; the lowest order sequences are shown in table 2.

Cycles of the same period can nevertheless have different kinds of behaviours:
see, for example, figure 10.

The logistic map also exhibits the intermittency route to chaos. If the parameter
λ falls in a window of periodic behaviour, and is then slowly reduced, intermittent
behaviour is seen (for example, figure 9e), until fully chaotic behaviour is reached.
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Fig. 9 Timeseries of the logistic map. 100 iterations, with r0 = 0.1, for various λ .
Top row: (a) λ = 2.8, period 1; (b) λ = 3.3, period 2.
Second row: (c) λ = 3.5, period 4; (d) λ = 3.74, period 5.
Third row: (e) λ = 3.828, chaos before period 3: period 3 behaviour is interleaved with intermittent
bursts of chaotic behaviour; (f) λ = 3.829, period 3.
Bottom row: (g) λ = 4, chaos; (h) λ = 4, with r0 = 0.10001, demonstrating sensitive dependence
on initial conditions.
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lambda dynamics Sloane number [86]

(0,1) fixed point r∗ = 0
(1,3) fixed point, function of λ (eg, λ = 2,r∗ = 0.5
3 first period doubling, to period 2
1+
√

6 = 3.449 . . . second period doubling, to period 4
3.54409 03595 . . . third period doubling, to period 8 A086181
3.56440 72660 . . . fourth period doubling, to period 16 A091517
3.56994 56718 . . . end of first cascade; first onset of chaos A098587
3.62655 31616 . . . appearance of period 6; period 6 cascade A118453
3.70164 07641 . . . 1st period 7 cascade A118746
3.73817 23752 . . . appearance of period 5; 1st period 5 cascade A118452
3.7741 . . . 2nd period 7 cascade
1+2

√
2 = 3.828427 . . . appearance of period 3; sole period 3 cascade

3.841499 . . . period doubling, to period 6
3.8860 . . . 3rd period 7 cascade
3.9055 . . . 2nd period 5 cascade

4th period 7 cascade
3.9375 . . . period 6 cascade

5th period 7 cascade
3.9601 . . . period 4 cascade

6th period 7 cascade
3.9777 . . . period 6 cascade

7th period 7 cascade
3.9902 . . . 3rd and last period 5 cascade

8th period 7 cascade
period 6 cascade
9th and last period 7 cascade

4 fully chaotic

Table 2 Dynamical structure of the logistic map as a function of parameter λ (some λ values taken
from [86]); including order of occurrence of period doubling cascades, for all initial periods up to
7 (adapted from [29, table 2.2]). Higher initial periods cascades are interleaved with these.

Binary shift map. Consider the fully chaotic case, λ = 4. Changing variables, to
x = 1

π
cos−1(1−2r), yields the equation for the binary shift (Bernoulli) map:

xt+1 = 2xt mod 1 (3)

If x is expressed in base 2, each iteration of the map results in a left shift of the num-
ber (the multiplication by 2), and dropping any resulting leading 1 in front of the bi-
nary point (the mod 1). For example, if xt = 0.1110001 . . ., then xt+1 = 0.110001 . . .,
xt+2 = 0.10001 . . ., etc. If x0 is rational, its binary expansion is periodic, and hence
the iteration will be periodic; if x0 is irrational, its binary expansion is non-periodic,
and hence the iteration will be non-periodic. Separate values of x0 that are the same
up to their nth bit will initially have similar iterations, but will eventually diverge,
until they are completely different at the nth iteration: this is a manifestation of
sensitive dependence on initial conditions.



16 Susan Stepney Department of Computer Science, University of York, UK

Fig. 10 Different classes of behaviour of three different period 6 cycles. Top shows the time series
of one period; bottom shows the geometry of the behaviour in a cobweb diagram. (a) λ = 3.6266;
(b) λ = 3.8418; (c) λ = 3.93755

Computational properties. Crutchfield [16] investigates the statistical complex-
ity of the logistic map as a function of λ . The statistical complexity is essentially
a measure of the size of a stochastic finite state machine that can predict the sta-
tistical properties of a system. He finds that the map has low statistical complexity
both when the map is periodic and when it is chaotic (essentially random), and has
highest statistical complexity at the onset of chaos (via the period doubling route,
or the intermittent route). At this point there is a phase transition in the complexity
of the machine needed to predict the behaviour, and these parameter values indicate
the highest computational capacity.

Despite these observations, the majority of computational applications of the lo-
gistic map exploit its completely chaotic behaviour, with λ at or near 4, and use
this behaviour to implement random number generators [41, 72, 99], encryption
[46, 69], etc.

2.2.3 Coupled Map Lattices

Kaneko [37, 38, 39, 40] introduces one-dimensional Coupled Map Lattices (CMLs),
where an array of N iterated maps are coupled together locally, with the following
local dynamics φ :

ri,t+1 = φ0(ri,t)+
ε

2
(φc(ri−1,t)−2φc(ri,t)+φc(ri+1,t)) (4)

where ε is the coupling strength. Each element in the lattice evolves under the dy-
namics of the local process φ0, with an additional interaction contribution εφc from
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Fig. 11 Dimensionality versus topology. Examples for three N = 5,k = 2 networks with different
topologies. (a) regular N = 15 CA-like structure arranged in a 1D spatial lattice (periodic boundary
conditions); (b) three N = 5,k = 2 RBNs linked in a 1D spatial lattice (that is, random connections
with the groups of 5 nodes, lattice links between the groups); (c) general N = 15,k = 2 RBN

its neighbours, whilst passing on a similar amount of its own to its neighbours (under
periodic boundary conditions). The local state ri ∈R and local dynamics φ : R3→R

defines the global state r ∈ RN and global dynamics f : RN → RN . The system is
parameterised by the coupling strength ε , as well as by any parameters in φ .

An initial value of ri,0 = κ , where all the maps have the same initial value, is
trivial, since all maps evolve in lock-step. Kaneko [39] investigates several cases,
one of which is where φ0 is the logistic map with λ in the period-3 window with
cycle (r∗1,r

∗
2,r
∗
3), with ri≤N/2,0 = r∗1,rN/2<i,0 = r∗2, or with random ri,0, and with

φc = φ0. The dynamics exhibits the period doublings, intermittencies, and chaos of
the logistic map, and in addition exhibits spatial patterns and structures similar to
1D CAs. Crutchfield and Kaneko [17] examine the properties of this class of system
in some detail.

Subsequent work generalises the approach to topologies other than 1D nearest-
neighbour (2D, tree-structured, irregular, larger neighbourhoods), and allows the
coupling to be asymmetric. In particular, Holden et al [34] provide a generic formal-
ism, and investigate coupled map lattices in terms of their computational properties.
A CML approach to the density classification problem has been evolved [7]. Open
CMLs are also being exploited computationally (see §3.3.1).

2.2.4 Note on dimensionality and topology

Papers on CMLs tend to describe them as having “discrete time, discrete space, and
continuous state” [40]. Here we describe them as “continuous space”, because here
we are talking purely about the state space.

A CML of N maps laid out in 1D line in (physical) space has an (abstract) state
space of RN . The “dimensionality” of the layout in physical space (a 1D line of
maps) is unrelated to the dimensionality of the state space (of ND, because there are
N maps); if the same N maps were instead laid out in a 2D grid, or even a 27D grid,
say, it would not affect the dimensionality of the state space.

Instead, this “dimensionality” is related the topology of the connections between
the maps, and hence the potential information flow between the maps (figure 11).



18 Susan Stepney Department of Computer Science, University of York, UK

Compare the information flow visible in a 1D (physical space) CA (figure 4) and
that not visible in an RBN with a similar number of cells (figure 7). For this reason,
it makes sense to talk of the (physical spatial) dimension of a CA (it has a regular
local topology), but not of an RBN (it has an irregular graph topology).

When the physical spatial layout moves from discrete to continuous, the state
space moves from being finite (discrete physical space, finite number of cells) or
countably infinite (discrete physical space, countably infinite number of cells) to
uncountably infinite (continuous physical space). See §2.3.4

2.2.5 Numerical errors and the Shadowing Lemma

Chaotic systems, such as the logistic map with λ = 4, display sensitive dependence
on initial conditions: trajectories with nearby initial conditions diverge exponen-
tially (compare figures 9g,h).

Such systems are usually studied by numerical simulations, which generate
pseudo-orbits, because of numerical noise. Additionally, the real physical systems
that these maps (and below, differential equations) model are themselves subject to
noise during their execution, and during measurement, and so potentially execute
pseudo-orbits (or pseudo-trajectories) with respect to the model systems. The ques-
tion naturally arises: what is the relation of these pseudo-orbits to the model orbits?
Are they representative of the modelled dynamics?

Fortunately the answer is (a qualified) “yes”. The Shadowing Lemma states that,
for certain classes of system, the pseudo-orbit shadows (stays close to) some true
orbit of the (modelled) system for all time; this true orbit has a slightly different
initial condition from the pseudo-orbit. This result has been extended to a wider
class of systems, including those studied here, that the pseudo-orbit shadows some
true orbit of the system for “a long time” [28].

However, are the true orbits of the model that are shadowed by these pseudo-
orbits themselves representative of the underlying dynamics; that is, are they typical
true orbits? This is harder to answer, and is clearly false for some particular cases.
For example, consider the binary shift map (equation 3). For any limited precision
binary arithmetic implementation, all pseudo-orbits converge to 0 when the number
of iterations (shifts) exceeds the binary numerical precision. But this case appears
to be an exception, because most numerical trajectories do not behave like this, and
[33]:

If otherwise reliable-looking pseudo-trajectories are atypical, they must be atypical in an
extremely subtle way, because researchers have been making apparently reliable, self-
consistent, peer-reviewed conclusions based on numerical simulations for decades.

So we continue here in assuming that the simulated pseudo-orbits, and the pseudo-
trajectories of actual physical systems, are in general representative of the true dy-
namics defined by the equations.
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2.3 Continuous space, continuous time

We now consider continuous spaces, with X = R, with continuous time dynamics t ∈
R. Let the state vector be r∈RN . The dynamics of a particular system is determined
by its particular transition function f : RN → RN , with

.
r = f (r). Hence the system

is defined by a set of N coupled first order ordinary differential equations (ODEs).
We can recast higher order equations into this normal form by adding new vari-

ables. For example, consider the 1D equation for damped Simple Harmonic Motion:

..
r +κ

.
r +ω

2r = 0 (5)

Let r1 = r,r2 =
.
r. Then, rearranging, we get the 2D normal form version:

.
r1 = r2 ;

.
r2 = ω

2r1−κ r2 (6)

Note how this normalisation takes the single state variable r, and results in two
state variables r1 (r, position) and r2 (

.
r, velocity). In a continuous system, and par-

ticularly when the state variables are position r and momentum m
.
r, the state space

is also called the phase space.
Physical systems embody their own specific dynamics. If that dynamics can be

controlled and exploited in a computational manner, it can be used to reduce the
load on, or even replace, conventional classical digital control in embedded systems
[89]. Understanding the dynamical behaviour of complex material systems from a
computational perspective is also a necessary step along the way to understanding
biological systems as information processing systems [90].

For a good overview of continuous dynamical systems from an embodied com-
putational perspective, see Beer [9]. Abraham and Shaw [2] provide an excellent
visual description of various concepts such as attractors and bifurcations. For more
background, see a textbook such as that by Strogatz [93].

2.3.1 Kinds of attractor

In these continuous time systems, trajectories are continuous paths through a con-
tinuous state space. There are four distinct kinds of attractor that can occur.

Point attractors. A point attractor is a single point in state space that attracts the
trajectories in its basin. An example is the equilibrium position and zero velocity
that is the unique end state of damped simple harmonic motion (figure 12a).

Limit cycle attractors. A limit cycle is a closed loop trajectory that attracts nearby
trajectories to it. See, for example, figure 12b.

Toroidal attractors. A toroidal attractor is a 2D surface in state space with periodic
boundary conditions: shaped like a torus. Trajectories are confined to the surface of
the torus. If the winding number (the number of times the trajectory loops around
in one dimension whilst it performs one loop in the other dimension) is rational, the
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Fig. 12 Attractors and their transient trajectories: (a) point attractor: damped SHM,
..
r +λ

.
r+r = 0,

with λ = 0.5; (b) limit cycle attractor: van der Pol oscillator,
..
r +λ (r2−1)

.
r + r = 0, with λ = 2.

trajectory is periodic, otherwise it is quasiperiodic, and eventually covers essentially
the entire surface of the torus.

Strange attractors. A strange attractor attracts trajectories to its region of state
space, but within this region, nearby trajectories diverge exponentially: it exhibits
sensitive dependence on initial conditions, and thus chaotic behaviour. This com-
bination of attraction and divergence requires at least three dimensions in which to
occur. The detailed structure of a strange attractor is usually fractal.

Example : Rössler strange attractor. The Rössler system is defined by:

.
r1 = −r2− r3 (7)
.
r2 = r1 +ar2.
r3 = b+ r3(r1− c)

It is a family of dynamical systems that displays a range of kinds of dynamics,
some with strange attractor behaviour, some without. It exhibits the period doubling
cascade route to chaos (figure 13a).

The Rössler strange attractor occurs when a = 0.2,b = 0.2,c = 5 (figure 13b). It
is the simplest strange attractor, with only one non-linear term.

Example : Lorenz strange attractor. The Lorenz strange attractor is defined by:

.
r1 = 10(r2− r1) (8)
.
r2 = 28r1− r2− r1r3.
r3 = r1r2−8r3/3

(See figure 14.) It is a member of a family of dynamical systems that displays a
range of kinds of dynamics, some with strange attractor behaviour, some without.

Sensitive dependence on initial conditions is popularly known as The Butterfly
Effect. Lorenz suggests [51, p.14] that the name may have arisen from the title of
a talk he gave in 1972, “Does the Flap of a Butterfly’s Wings in Brazil Set Off a
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Fig. 13 Rössler system: (a) period doubling cascade to chaos, with a = b = 0.2, c =
2.5,3.5,4.0,5.0; (b) Rössler strange attractor
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Fig. 14 Lorenz strange attractor

Tornado in Texas?”, coupled with the butterfly-like shape of Lorenz attractor seen
from some directions (figure 14).

Reconstructing the attractor. Given a physical continuous dynamical system with
a high-dimensional state space (state vector rt ), one can determine properties of
its dynamics, given only scalar discrete time series observations (time series data
rτ ,r2τ , . . . ,rnτ , . . . , where rt is some scalar projection of the state vector rt ). In par-
ticular, one can distinguish chaos (motion on a strange attractor) from noise.

The process of reconstructing the attractor from this data involves constructing a
d-dimensional state vector r̂t from a sequence of time-lagged observations:

r̂nτ = (rnτ ,r(n+k)τ ,r(n+2k)τ , . . . ,r(n+(d−1)k)τ) (9)

d should be > 2da, where da is the dimension of the system’s attractor; d should
also be as small as possible, to avoid fitting noise; k should be large enough that
the attractor is sufficiently sampled, but not so large that the correlations are lost.
Taken’s embedding theorem then relates the invariants of motion, including attractor
structure, of r̂ to those of r. For more on this process, and other techniques for
analysing chaotic systems, see [68].
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Relationship to discrete state space attractors. Wolfram [105] draws a rough
analogy between his class 1, 2, and 3 CAs (see §2.1.5) and point, limit cycle, and
strange attractors respectively. He mentions that the class 4 CAs (the ones conjec-
tured universal) “behave in a more complicated manner”. This might be thought to
imply that there is no continuous analogue of the discrete class 4 systems, and hence
no universal computational properties in continuous matter. This is not so, as we see
below (§2.3.4, §2.3.5).

Kauffman [42] calls RBNs whose attractor cycle length increases exponentially
with n, “chaotic”. He emphasises that this does not mean that flow on the attractor
is divergent (it cannot be, in a discrete deterministic system); the state cycle is the
analogue of a 1D limit cycle. However, there is an analogy: exponentially long cy-
cles cover a lot of the state space before repeating (chaotic strange attractors never
repeat), and “nearby” states (1 bit different) potentially do diverge (even possibly
onto another attractor). However, in the discrete system, there is no direct analogue
of “nearby states diverging exponentially, but staying on the same attractor”, since
there is usually no concept of distance between states in discrete dynamical systems,
and if there were, successive hops through state space can be of any size: there is no
simple “continuity” from which to diverge.

2.3.2 Computation in terms of attractors

We can interpret computation as finding which attractor basin the system is in, by
following its trajectory to the relevant attractor. The output could be (some pro-
jection of) the computed attractor, including a subspace of the state space. Most
instances of analogue computing fall in this domain.

The programming problem is in finding the relevant dynamics, now restricted to
natural (albeit engineered) material system properties, which are not arbitrary. The
aim is to minimise the engineering required to implement the desired dynamics, by
exploiting the natural dynamics.

Continuous systems computing in this way can exhibit robustness. A small per-
turbation to the system might shift it a small distance from its attractor, but its sub-
sequent trajectory will converge back to the attractor. There can be a degree of con-
tinuity in the attractor basins, such that a small perturbation tends to remain in the
same basin, unlike the discrete case.

It is not necessary for a dynamical system to have a complex (chaotic, strange)
dynamics in order to be interesting or useful. Kelso [44, p.53] makes this point
eloquently:

Some people say that point attractors are boring and nonbiological; others say that the only
biological systems that contain point attractors are dead ones. That is sheer nonsense from a
theoretic modeling point of view, as it ignores the crucial issue of what fixed points refer to.
When I talk about fixed points here it will be in the context of collective variable dynamics
of some biological system, not some analogy to mechanical springs or pendula.

That is, the dynamics, including the underlying attractor structure, is part of the
specific model, in particular, what state variables are used to capture the real world
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system. State variables can capture more sophisticated concepts than simple particle
positions and momenta.

2.3.3 Continuous time logistic equation

The logistic growth equation is one of the simplest biologically-based non-linear
ODEs. It is a simple model of population growth where there is exponential growth
for small populations, but an upper limit, or carrying capacity, that prevents un-
bounded growth. The equation was suggested by Verhulst in 1836 (see, for example,
[64, p.2]): .

r = ρr(1− r/κ) (10)

It is rare among non-linear ODEs in that it has an analytic solution:

r(t) =
κ r0 eρt

κ + r0(eρt −1)
(11)

It has a single point attractor at r∞ = κ: whatever the initial population r0, it always
converges to the carrying capacity κ .

Contrast this smooth behaviour with the very different complex periodic and
chaotic behaviour of its discrete time analogue: the logistic map, §2.2.2. This is
a general feature: the discrete time analogue of simple ODEs can exhibit similarly
complex behaviour as the logistic map. This does not mean, however, that ODEs
themselves are unable to display computationally-interesting dynamics.

2.3.4 Infinite dimensions: PDEs

Consider the reaction-diffusion (RD) equation, which models chemical species re-
acting (non-linearly) locally with each other, and diffusing (linearly) through space.
The relevant state variables are the concentrations of the reacting diffusing chemi-
cals, and are functions of time, and also of space: ri(t,x). For a two chemical species,
the RD equation is:

∂ r1

∂ t
= f1(r1,r2)+ k1∇

2r1 (12)

∂ r2

∂ t
= f2(r1,r2)+ k2∇

2r2

Each ri, since it is a function of continuous space x, can be thought of as an (un-
countably) infinite dimensional state variable. Rather than having a state vector with
a finite number of indices ri, we can consider an infinite-dimensional state vector in-
dexed by position, r(x). The state variable at each position can itself have multiple
components (such as the two chemical concentrations, above), leading to r(x). The
space derivative is used to define the dynamics in terms of a local (infinitesimal)
neighbourhood.
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There is a natural link between partial differential equation (PDE) systems and
Cellular Automata. CAs are one natural way to simulate PDEs in a discrete do-
main [5] [106, prob.9]. Care is needed in this process to ensure that the CA models
the correct PDE dynamics, and does not introduce artefacts due to its own discrete
dynamics [101, 107]. Despite this caveat, there are some exact correspondences: ul-
tradiscretisation [96] can be used to derive CA-like rules that preserve the properties
of a given continuous system, for a class of integrable PDEs; inverse ultradiscretisa-
tion [48] transforms a CA into a PDE, preserving its properties. A different approach
represents CA configurations using continuous bump functions [66], and derives a
PDE that evolves the bumps to follow the given CA rule.

The dynamical theory of these infinite dimensional spaces is not as well devel-
oped as in the finite case. Much of the work concentrates on PDEs whose dynamics
can be rigorously reduced to a finite sub-space, so that the existing dynamical sys-
tems theory is applicable. See, for example, [78, 95].

2.3.5 Reaction-diffusion computers

Reaction-diffusion computers [5] use chemical dynamics. The relevant state vari-
ables are the concentrations of the reacting diffusing chemicals, which are functions
of time and space: ri(t,x). For a two chemical species, the relevant RD equation is
given by equation 12.

Reaction-diffusion systems have a rich set of behaviours, exhibiting spatial-
temporal patterns including oscillations and propagating waves. The computation
is performed by the interacting wave fronts; the output can be measured from the
concentrations of the reagents. RD systems have been used to tackle a wide vari-
ety of computation problems (for example, image processing [47], robot navigation
[4]); here we look at two that demonstrate computation exploiting the natural dy-
namics, and one that demonstrates the potential for universal computation.

Voronoi diagrams. An RD computer can solve a 2D Voronoi problem: given a set
S of points in the plane, divide the plane into |S| regions R such that every point in a
given region Ri(si) is closer to si than to any other s j ∈ S.

This problem can be solved directly by a 2D RD computer [97] (figure 15). One
reagent forms a substrate; the second reagent marks the position of the data set of
points S. The data-reagent diffuses and reacts with the substrate-reagent, forming
waves propagating from each data point, and leaving a coloured precipitate. Waves
meet at the borders of the Voronoi regions, since their constant speed of propagation
implies that they have travelled equal distances from their starting points. When
waves meet, they interact and form no precipitate. So the lack of precipitate indicates
the computed boundaries of the Voronoi regions.

Shortest path searching. A propagating wave technique can be used to find the
shortest path through a maze or around obstacles [88, 6, 36]. The maze can be
encoded in the chemical substrate, or by using a light mask. A wave is initiated
at the start of the maze, and a series of time lapse pictures are taken as the wave
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Fig. 15 An RD computer solving a Voronoi problem (figure from [97, fig.3])

Fig. 16 Computer simulation of a shortest path computation in mazes with obstacles (from [36])

propagates at a uniformly speed, which provide a series of equidistant locations
from the starting point; these are used in a post-processing phase to construct the
shortest path (figure 16).

Logic gates. Propagating waves can be confined to channels (“wires”) and interact
at junctions (“gates”) so arranged such that the interactions perform logical oper-
ations. See, for example, [62, 82, 98]. Hence the continuous RD system dynamics
can be arranged by careful choice of initial conditions to simulate a digital circuit.

2.3.6 Generic analogue computers

In general, analogue computers gain their efficiency by directly exploiting the phys-
ical dynamics of the implementation medium. There is a wide range of problem-
specific analogue computers, such as the reaction-diffusion computers described
above, but there are also general purpose analogue computers.

For example, Mills has built implementations of Rubel’s general purpose ex-
tended analog computer [81]. The computational substrate is simply a conductive
sheet [58, 60], which directly solves differential equations; the system is “pro-
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discrete: t ∈N continuous: t ∈R

s ∈ SN finite CAs ; RBNs
s ∈ S∞ infinite CAs ; TMs

r ∈R iterated maps
r ∈RN CMLs ODEs
r ∈R∞ PDEs

x ∈ SM×RN hybrid

Table 3 Classification of the different kinds of autonomous dynamical systems, in terms of their
state space and time evolution.

grammed” by applying specific potentials and logic functions at particular points
in the sheet. Mills has developed a computational metaphor to aid programming
by analogy [59], and is currently developing a compiler to enable straightforward
solution of given differential equations [private communication, Dec 2008].

2.4 Hybrid dynamical systems

So far, all the systems considered have homogeneous dimensions, for example, all S

or all R. More complicated dynamical systems have heterogeneous dimensions. For
example, coupling a classical finite state machine with a continuous system would
yield a hybrid system with a dimensionality like SM×RN .

It is likely that the topology of such a hybrid system would consist of relatively
weakly coupled sub-components (figure 11b), which should help in their analysis
from a dynamical systems point of view.

2.5 Summary

The classes of autonomous dynamical systems that have been discussed are sum-
marised in table 3.

From a computational perspective, one important classification dimension is the
implementation: whether the computational dynamics is implemented “naturally”,
that is, directly by the physical dynamics of the underlying medium, or whether
it is implemented in terms of a virtual machine (VM) itself implemented on that
underlying dynamics.

Discrete systems tend to be implemented in terms of VMs. This has the advan-
tage that the computational dynamics is essentially independent of the underlying
medium (witness the diversity of systems that implement boolean logic, for exam-
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ple), and so can be analysed in isolation. It has the disadvantage of the computational
overhead imposed by the VM layer.

One goal of continuous dynamical systems is to provide a computational dy-
namics closely matched to the physical dynamics, with corresponding gains in ef-
ficiency. The downside is that such systems are more likely to be constrained by
their physical dynamics, and so are less likely to be Turing-universal computational
systems.

3 Open dynamical systems

3.1 Openness as environmental inputs

The systems described so far are autonomous, or closed. They have an initial con-
dition (identifying one state x0 from the XN possible), and then the fixed (non-time-
dependent) dynamics proceeds with no input or interference from the outside world.
They move to an attractor, the result of the computation, or they may not discover an
attractor, in which case the computation has no result. This is the classical, “ballis-
tic” style of computation exemplified by the Turing Machine, or a closed dissipative
system relaxing to equilibrium.

Open, or non-autonomous, systems, on the other hand, have dynamics that are
governed by parameters that change over time. These parameters are inputs from
the environment.

Consider an open dynamical system with N degrees of freedom: its state can be
defined by an ND state vector x(t) ∈ XN . The state space is XN . Now there is also
an input space P, and an output space Q. The dynamics f maps the current state and
input to the next state and output; f : XN×P→ XN×Q.

There is a similarity here to a parameterised family of dynamics (§2.2.1). But
here the parameter p is a function of t, and is considered an input to the dynamics,
a way of modulating or controlling the dynamics, for example, moving it between
periodic and chaotic attractor behaviours.

3.1.1 Timescales

Understanding open systems is significantly more challenging than understanding
closed systems, and depends in part on the relationship between the timescale on
which the input is changing and the timescale on which they dynamics is acting.
Dynamical systems have a “natural” timescale: the time needed to discover the at-
tractor. As Beer [9] says:

Because . . . the flow is a function of the parameters, in a nonautonomous dynamical system
the system state is governed by a flow which is changing in time (perhaps drastically if the
parameter values cross bifurcation points in parameter space). Nonautonomous systems are
much more difficult to characterize than autonomous ones unless the input has a particularly
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simple (e.g., periodic) structure. In the nonautonomous case, most of the concepts that we
have described above (e.g., attractors, basins of attraction, etc.) apply only on timescales
small relative to the timescale of the parameter variations. However, one can sometimes
piece together a qualitative understanding of the behaviour of a nonautonomous system
from an understanding of its autonomous dynamics at constant inputs and the way in which
its input varies in time.

That is, an input changes the dynamics of the system, by changing to a different
member of the parameterised family. This new member might have moved attrac-
tors, or be on the other side of a bifurcation point with different kinds of attractors.
A system immediately after an input will be in the same position in its state space,
but the underlying attractor structure of that space may have changed.

So, if the input is changing slowly with respect to the dynamics, the system is
able to complete any transient behaviour and reach the changed attractor before the
input changes the dynamics yet again, even if it has passed through a discontinuous,
catastrophic bifurcation point. On these timescales, the system is able to “track” the
changing dynamics, and so its behaviour can be analysed piecewise, as a sequence
of essentially unchanging systems. Even so, such systems can exhibit hysteresis:
restoring a parameter to a previous value may not necessarily restore the system
to its corresponding previous state, if this path through parameter space crosses
catastrophic bifurcation points.

If the input is changing quickly with respect to the dynamics, then the system is
unable to respond to changed dynamics before it has changed again. It will mostly
be exhibiting transient behaviour.

Most interesting and complex is the case where the input is changing on a
timescale similar to that of the dynamics: then the system is influenced by its dynam-
ics, but it may never quite, or only just, reach any attractor before the next change
occurs.

The situation can get even more complicated, when the input parameter p is a
function of space as well as time, p(x, t). For example, it might be a temperature
gradient, or magnetic field gradient, which can also drive the system.

3.1.2 Computation in terms of trajectories

Since such open systems need not reach a “halting state” of being on an attractor, the
computational perspective is necessarily broader. The computation being performed
can be viewed as the trajectory the system takes through the changing attractor
space: which attractor basins are visited, in which order.

The discussion of timescales implies that, for useful computation, the dynamical
timescale of the system should not be significantly slower than the input timescales.
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Fig. 17 Inputs. (a) arbitrary input stream; (b) constrained inputs from a structured environment;
(c) constrained inputs from an interacting environment in a feedback loop.

3.1.3 Environmental constraints

Type A: arbitrary input stream. In the simplest open case, it is assumed that the
system can be provided with any input, regardless of what it is doing, or has done
(figure 17a). The input may as well be considered random. This is not particularly
interesting, except in the cases where the system can somehow exploit noise, for
example, using some kind of informational analogue of a ratchet mechanism (for
example [21]).

This case is formally equivalent to a closed system, as the sequence of arbitrary
inputs could conceptually be provided at the start, embedded in an (expanded) state
XN × seq P as part of the initial condition, along with some pointer to the “current
time” value, and the dynamics updated to allow access only to the current value
(for example, see [15], where such an approach is taken to embed inputs into the
initial state of the model of a formal language). So there is no new computational
capability, except as provided by the (potentially, much) larger state space.

Type B: environmentally constrained input stream. More interesting is the case
where the inputs come from an environment that has some rich dynamical structure
that the system can couple to and exploit (figure 17b). Here the environment is an
autonomous dynamical system, unaffected by any inputs of its own.

Since the environment is autonomous, its sequence of inputs could again con-
ceptually be provided at the start. However, this case is qualitatively different from
the previous one. We are now assuming that there is some structure in the environ-
ment, and hence in the sequence of inputs. This implies that there are regions of the
system state space that are never explored, parts of its underlying dynamics that are
never exercised. As before when talking of virtual machines (§2.1.3), the computa-
tion is restricted to a sub-space: the sub-space and its trajectories here correspond
to the computation in the context of the structured environment: the inputs provide
information that the system need not itself compute. And since the environment may
be unboundedly large, the sequence of inputs may represent an unboundedly large
amount of computation provided to the system.

Type C: feedback constrained input stream. Most interesting is the case where
the environment and system are both open dynamical systems in a rich feedback
loop. Then outputs from the system will alter the environment, and affect its subse-
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quent inputs (figure 17c). So the actual sequence of inputs cannot even conceptually
be provided at the start.

Again, the environment’s inputs will be constrained to a region of state space,
but here this region is (partly) determined by the system: the environment and sys-
tems are coupled, the dynamics of each perturbing the trajectory of the other, in a
feedback loop.

Such an environment may well contain other open systems similar to the system
being considered. And again, since the environment may be unboundedly large, it
may represent an unboundedly large amount of computation provided to the system,
but here, the specific computation provided is affected by what the system does,
because of the feedback coupling. This opens up the possibility for a system to
offload some of its computational burden onto the environment (see §3.4.4).

Beer [9] points out that such a coupled environment and system together form
a higher-dimensional autonomous dynamical system, with its own attractors, and,
because of its larger state space, that this combined system can “generate a richer
range of dynamical behavior than either system could do individually”.

3.2 Open discrete space, discrete time dynamical systems

The autonomous discrete systems have an initial condition (identifying one state s0
from the |S|N possible). In the finite case, they always “halt” on an attractor cycle,
this halting state (cycle) being the result of the computation; in the infinite case, they
either halt on such a cycle, or they may not discover an attractor, in which case the
computation has no result.

In the open discrete space, discrete time case, where X = S, the time evolution of
the state, and the output function, are given by (st+1,qt+1) = f (st , pt).

3.2.1 Modulating the dynamics

The input can provide a “kick” or perturbation, changing (a few bits of) the state at
a particular timestep. This may move the system into a different attractor basin.

The input might also “clamp” the system into a particular substate (by fixing the
value of some bits for many timesteps). This not only perturbs the system at the
point where the bits are clamped, but can also change the global dynamics (if the
natural dynamics would change the value of the clamped bits, for example), pro-
ducing new attractors, and changing or removing existing attractors. For example,
clamping some bits in a CA can result in “walls” across which information cannot
flow, isolating regions, and hence changing the dynamical structure of the system.
(See figure 18.) Such a simple partitioning is harder to achieve in a more irregularly
connected structure such as an RBN.
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Fig. 18 Dependence of CA dynamics on a “clamped” bit. The upper plot shows ordinary periodic
boundary conditions; the lower plot shows the same initial conditions, but with the central bit
“clamped” to 0. (a) ECA rule 26; (b) ECA rule 110

3.2.2 Perturbing Random Boolean Network state

Kauffman [42] defines a minimal perturbation to the state of an RBN to be flipping
the state of a single node at one timestep. Flipping the state of node i at time t is
equivalent to changing its update rule at time t − 1 to be ci,t = ¬φi(χi,t−1). Such
a perturbation leaves the underlying dynamics, and hence the attractor basin struc-
ture, the same; it merely moves the current state to a different position in the state
space, from where it continues to evolve under the original dynamics: it is a transient
perturbation to the state.

Kauffman [42] describes the stability of RBN attractors to minimal perturba-
tions: if the system is on an attractor and suffers a minimal perturbation, does it
return to the same attractor, or move to a different one? Is the system homeostatic?
(Homeostasis is the tendency to maintain a constant state, and to restore its state if
perturbed.)

Kauffman [43] describes the reachability of other attractors after a minimal per-
turbation: if the system moves to a different attractor, is it likely to move to any other
attractor, or just a subset of them? If the current attractor is considered the analogue
of “cell type”, how many other types can it differentiate into under minimal pertur-
bation?

Kauffman’s results are summarised in table 4, which picks out the k = 2 networks
as having “interesting” (non-chaotic) dynamics (a small number of attractors, with
small cycle lengths) and interesting behaviour under minimal perturbation (high sta-
bility so a perturbation usually has no effect; low reachability so when a perturbation
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k stability reachability

1 low high
2 high low
> 5 low high

Table 4 Dynamics of RBNs for different k (adapted from [43, table 5.1])

moves the system to another attractor, it moves it to one of only a small subset of
possible attractors).

3.2.3 Perturbing Random Boolean Network connectivity

Kauffman [42] also defines a structural perturbation to an RBN as being a permanent
mutation in the connectivity or in the boolean function. So a structural perturbation
at time t0 could change the update rule of cell i at all time t > t0 to be φ ′i (χi,t) or
change the neighbourhood of cell i at all time t > t0 to be χ ′i,t . Since the dynamics is
defined by all the φi and χi, such a perturbation changes the underlying dynamics,
and hence the attractor basin structure: it is a permanent perturbation to the dynam-
ics, yielding a new RBN.

Such a perturbation could have several consequences: a state previously on an
attractor cycle might become a transient state; a state previously on a cycle might
move to a cycle of different length, comprising different states; a state might move
from an attractor with a small basin of attraction to one with a large basin; a state
might move from a stable (homeostatic) attractor to an unstable attractor; and so on.

Kauffman [43] relates structural perturbation to the mutation of a cell; if there is
only a small change to the dynamics, this represents mutation to a “similar” kind of
cell.

3.3 Open continuous space, discrete time dynamical systems

In the open continuous space, discrete time case, where X = R, the time evolution
of the state, and the output function, are given by (rt+1,qt+1) = f (rt , pt).

3.3.1 Open Coupled Map Lattices, and Chaos Computing

Sinha and Ditto [83, 84] investigate the computational properties of coupled chaotic
logistic maps (φ0 = the logistic map with λ = 4, see §2.2.3) with open boundaries.
The coupling function φc is a threshold function: φc = if r < θ then 0 else r−θ , and
is unidirectional. This unidirectional relaxation propagates along the lattice until all
elements have a value below threshold (all the ri ≤ θ ), at which point the next
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timestep iteration of the logistic dynamics occurs (so the timescale of the relaxation
is much shorter than the timescale of the logistic dynamics). The boundary of the
lattice is open, so the final element can relax below threshold by removing its excess
value from the system. Depending on the particular threshold value, and the current
state of the system, this process can result in non-linear avalanches of relaxation
along the lattice. Transients are short (typically one dynamical timestep), and the
system displays a variety of attractor dynamics, stable to small amounts of noise,
and determined by the input threshold parameter.

Sinha and Ditto [83, 84] discuss how to use this system to perform computation.
A single lattice element with two inputs (either external, or from the coupled output
of other lattice elements) and appropriate input value of its threshold can implement
a universal NOR logic gate in a single iteration of the logistic dynamics, where the
amount of output encodes the result. Hence networks of such elements can be cou-
pled together to implement more complicated logic circuits. Sinha and Ditto [84]
note that it is the chaotic properties in general, not the logistic map in particular,
that give these coupled systems their computational abilities, and suggest a possi-
ble implementation based on non-linear lasers forming a coupled chaotic Lorenz
system. They dub their approach chaos computing.

Additionally, Sinha and Ditto [83, 84] discuss how to implement other functions,
such as addition, multiplication, and least common multiple, by suitable choice of
numerical encoding, coupling and input thresholds. These choices program the un-
derlying chaotic dynamics to perform computation directly, rather than emulating a
virtual machine of compositions of logic gates [84]:

. . . dynamics can perform computation not just by emulating logic gates or simple arithmetic
operations, but by performing more sophisticated operations through self-organization
rather than composites of simpler operations.

Despite this observation, their subsequent work [22, 85] concentrates on using
more complicated (but realisable) chaotic dynamics to implement robust logic cir-
cuits, that can be readily reconfigured merely by altering thresholds. They empha-
sise the openness of their approach [85]:

it can yield a gate architecture that can dynamically switch between different gates, without
rewiring the circuit. Such configuration changes can be implemented either by a predeter-
mined schedule or by the outcome of computation. Therefore, the flexibility of obtaining
different logic operations using varying thresholds on the same physical element may lead
to new dynamic architecture concepts

3.4 Open continuous space, continuous time dynamical systems

In the open continuous space, continuous time case, X = R, the time evolution of
the state, and the sequence of outputs, are given by

(.
r,q(t)

)
= f (r, p(t)).

Note again the similarity to a parameterised family of dynamics (§2.2.1), with
the (input) parameter p being a function of t. Examples of such input parameters
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might include the temperature T of the system, or the value of an externally-imposed
magnetic field B permeating the system.

3.4.1 Ott, Grebogi, Yorke (OGY) control laws

There are unstable periodic orbits in strange attractors. Small perturbations in the
control parameter can be used to keep the system in one of these; the required per-
turbations are calculated using the OGY control laws [67]. (It is not necessary to
know the underlying dynamics to do this; application of the control laws involves
calculating the required parameter from observations of the system.) There can be
long transient behaviour before the system gets “close” to the desired periodic orbit,
and noise can result in bursts of chaotic behaviour. The approach can also be used
to switch between different periodic orbits with different characteristics (with some
transient chaotic behaviour).

Ott et al [67] note that a chaotic system is potentially more flexible, because this
approach can be used to hold it in a variety of different periodic orbits, whereas this
range of behaviours would require a range of separate systems with non-chaotic dy-
namics. Sinha and Ditto (§3.3.1) make similar observations about their coupled non-
linear maps, although there they claim a lower computational burden (the thresholds
can be simply calculated, and stored in a lookup table) and shorter (essentially zero)
transient behaviours.

3.4.2 Liquid Crystal systems

Liquid crystals are a form of matter that lies on the boundary between solids and
liquids (sometimes called “the fourth phase of matter”). A liquid crystal has both
complex dynamics (the molecules can flow and rotate) and complex structure (the
molecules are ordered on length scales much bigger than their individual sizes).

Such materials can perform computation. Harding and Miller [30, 31, 32] have
demonstrated that a liquid crystal chip can be programmed to act as a tone discrim-
inator (a simple arbitrary input system, where the inputs are tones of two different
frequencies that are to be discriminated) and as a robot controller (a constrained
feedback system, where the inputs from the environment depend on the robot’s po-
sition, and the robot’s outputs change its position).

It is currently unclear how the liquid crystal performs its computations: in the
referenced cases the material was programmed using an evolutionary algorithm. It
would be interesting to analyse these results from a dynamical systems perspective.

3.4.3 NMR logic gates

Nuclear magnetic resonance (NMR) uses radio frequency pulses to manipulate nu-
clear spins in a magnetic field. Depending on the particular values chosen from a
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rich potential set of parameters (frequency, phase, duration, delay, and more), pulses
can be combined in various ways to produce different outputs. These pulses and the
outputs can be interpreted as encoding binary values. Under these interpretations,
the system can be used to implement a single universal logic gate, a circuit of these
gates combined in parallel and in sequence that implement other logic gates, and a
half-adder circuit [79].

Under these interpretations, this is a Type A open system: any arbitrary set of
boolean inputs is permitted, and the system implements the corresponding logic
gate computation on these inputs. Under the wider view of the full parameter space,
this is a Type B open system, with the inputs being restricted by the environment
(the experimenter) to values that can be interpreted as binary bits. Hence we see
how this set-up corresponds to a logic gate virtual machine (§2.1.3) implemented on
the underlying dynamics of the nuclear spin system.

3.4.4 Embodiment

Beer [9] takes a dynamical systems approach to adaptive agents in a changing en-
vironment. For example, a robot agent adapts its walking behaviour depending on
the kind of terrain it is moving across. So an agent receives sensory input from a
structured environment (it sees its current surroundings), which affects its internal
dynamics (its state changes), which affects its outputs (its leg movements), which in
turn affects the environment (at a very minimum, the agent moves to a new location
in the environment, and hence sees new surroundings). So “a significant fraction
of behavior must be seen as emerging from the ongoing interaction between an
agent and its environment”. Beer is talking here of Type C open dynamical systems
(§3.1.3), coupled to their environment in a feedback loop.

Beer’s aim is to use the language and concepts of dynamical systems theory to
develop a theoretical framework for designing adaptive agents. Certain computa-
tional tasks, such as planning, can be greatly simplified by exploiting input from the
structured environment (for example, the agent seeing where it is). This relates to
Brooks’ design principle: “use the world as its own model” [12].

Beer emphasises that, because of the coupling with the environment, “an agent’s
behavior properly resides only in the dynamics of the coupled system”, and hence
cannot be understood or analysed in isolation. Indeed, an agent is adapted to some
environments and not others. Beer analyses this idea of adaptive fit, and determines
that it requires that an agent maintains its trajectory within a certain volume of its
state space (which volume may change with time) under perturbations from the en-
vironment. This is related to an autopoietic [52] (self-creating and self-maintaining)
view of adaptive fitness, and helps define what is needed for homeostasis.

This area also links with a whole burgeoning sub-discipline of using dynami-
cal systems theory to model the brain and its cognitive processes. However, that is
deemed to be outside the scope of this particular discussion. The interested reader
is referred to [44].



36 Susan Stepney Department of Computer Science, University of York, UK

Fig. 19 Two sources of parameter variation: external control versus internal dynamics.

3.5 External control versus internal dynamics

Here we have considered the parameter p(t) to be an externally provided input,
moving a dynamical system between members of its parameterised family. Alterna-
tively, we could have a case where the parameter p was another degree of freedom,
or dimension, of the dynamical system, where the dynamics of the system itself
affect the value of p (figure 19).

This potentially gives a model of a self-organising system. For example, Melby
et al [54] describe a logistic map (§2.2.2) where the value of the dynamical variable
rt is fed through a low-pass filter to (slowly) affect the parameter λ : the system self-
adjusts to values of λ at the edge of chaos, and does so even when subject to an
external force attempting to drive it back into the chaotic region [55]. The situation
is a little more complicated in the presence of noise: the system still self-adjusts to
suppress chaos, but a power-law distribution of chaotic outbreaks occurs [56].

An alternative view is of a hierarchy of coupled dynamical systems, where the
outputs at one level couple to the control parameter(s) at another level. Abraham
and Shaw [1, 2] explore this idea in more detail.

4 Constructive dynamical systems

So far, we have considered predetermined fixed state spaces of given dimensional-
ity. However, this is not the case even for classical computational systems. Their
data structures define their abstract state space: every time new memory is allocated
in the course of the computation, the state space grows in dimension; memory deal-
location shrinks the state space. A dynamical systems perspective on computation
needs to consider cases where the state space itself dynamically changes dimension-
ality, XN(t).
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In such cases, the dynamics constructs the state space, and the state space con-
strains the dynamics. Closed autonomous systems can exhibit such growth, classical
computation being one such example. In open systems, this process can be thought
of as the flow of information, matter, energy being recruited to construct new dimen-
sions of the system: the system inputs “food” (constructs dimensions), and excretes
“waste” (collapses dimensions). This process of modifying its own dimensionality
affects the possible dynamics (recall, for example, that strange attractors require at
least a 3D continuous space §2.3.1).

This is an aspect of dynamical systems theory that has received very little at-
tention: the current theory assumes a pre-defined, fixed state space. Because of the
paucity of theory in this area, this section is intended to illustrate the kinds of pro-
cesses that need to be incorporated in such a theory.

Metadynamics. One approach to incorporating growth might be to model the sys-
tem with an infinite number of dimensions, confining the dynamics to the finite-
dimensional subspace corresponding to the current state space. As new dimensions
are needed, the dynamics expands into the pre-existing dimensions. However, this
approach appears to be a mathematical “trick” that hides the essential properties of
the underlying system3: precisely what confines the dynamics to a subspace, what
causes it to grow into new dimensions, and what determines the topology (the way
the information flows between dimensions)?

A different approach might be to have these a new dimensions start in some small
“curled up” form; a dimension could “uncurl” or “unfold” sufficiently to support the
current state value along that dimension, and curl back up when no longer needed.
Alternatively, the dimensions might be fractal in nature, with the fractal dimension
of the state space increasing, gradually “fattening up” the new dimension.

This suggests that the state space itself might have a metadynamics. The metady-
namics (the high-level dynamics of the state space) can be studied in isolation from
the low-level dynamics (trajectories of the system through the state space).

Another form of metadynamics is to allow the topology (see §2.2.4) to change
dynamically, even if the dimensionality is constant. Such “network dynamics” al-
lows the neighbourhood function (§2.1.5) to be a function of time, ν(t).

Baguelin et al [8, 63] consider a metadynamical transition rule, which changes
the state space (and the corresponding dynamical state transition rule) on a slower
timescale that the system’s dynamics: the system spends most of its time evolv-
ing under its dynamics, punctuated by relatively few metadynamical state space
changes. The overall system dynamics is defined by “concatenating” the various
lower level dynamical behaviours at the metadynamical change points. Baguelin et
al [8, 63] apply this approach to interacting populations of bacteria and phages (the
dynamics) that are also evolving (a slower timescale metadynamics).

3 This approach also has a small technical issue: how to distinguish a system that is not using a
particular dimension, from one that is using it, but is currently confined to the zero value of that
dimension: how to distinguish “absence” from the “presence of nothing”. This can in turn be solved
by a further mathematical trick, of introducing some special value,⊥, to make this distinction. But
the tricks are piling up.
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Whatever approach is used, it needs to be able to cope with different types of
dimensions, as the dynamics results in new types of state variables being constructed
(for example, in evolution, new species can be considered to occupy new types of
dimensions). If such types cannot be statically predetermined, but computed only by
the unfolding dynamics, it is harder to see how to incorporate this into an analysis
based on a known, pre-existing set of state spaces.

Timescales. Important timescales in a constructive dynamical system are the speed
at which the state space grows compared to dynamics on that space. Where growth
timescales are much less than the dynamical timescales (a change in the number of
dimensions tends to happen after the system has relaxed to an attractor), piecewise
approximations may be made in a way similar to slow open systems (§3.1.1), as
in the metadynamics approach outline above. But in faster-changing systems (for
example, L-Systems §4.1.2, where the dimensionality can change every iteration
timestep) this is not possible, and new analysis techniques must be sought.

Computation in terms of construction. In an autonomous (closed) constructive
system, the result of the computation (if the computation halts) could still be con-
sidered as the attractor (final macrostate), and additionally include the structure (di-
mensionality and topology) of the final grown state space.

In an open, non-halting constructive system, the result of the computation could
still be considered as the trajectory through a growing state space, and additionally
include the structure (dimensionality and topology) of the state space along that
trajectory.

4.1 Constructive discrete dynamical systems

4.1.1 Classical computation

Turing Machine. A Turing Machine can be thought of as a growing system: the
tape is of finite but unbounded length, and can be considered to grow (lazily) when-
ever a new tape position is required. It can also be considered to shrink if the last
symbol on the tape is erased.

So the question of growth can be linked to undecidability: whether the dimen-
sionality of the state space stays bounded (if the computation halts or loops), or
grows without limit, is formally undecidable.

Object orientation. OO systems are particularly constructive in this sense: new
objects are created, increasing the dimensionality of the state space; when they go
out of scope, the state space shrinks again.

Such systems are usually designed on the software engineering principle of en-
suring “weak coupling” by small interfaces, which keeps components separate and
modular by restricting the information flow. That is, the topology of the dynamics
is deliberately restricted.
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Contrast the connectivity of RBNs, which have a “small-world” topology, and re-
quire a large number of connections to be cut to partition the graph (figure 11). This
enables rapid information flow, potentially enabling different classes of dynamics.
The consequences of these design decisions are rarely addressed from a dynamical
systems perspective.

Closed or open. These classical computational systems can be closed (for exam-
ple, the TM model), or open (interactive systems). The open systems are usually
analysed as Type A (§3.1.3), where the external environment can potentially pro-
vide any input.

4.1.2 Rewriting systems

Imagine trying to “grow” an RBN where, if it got to a certain state, a new node
would appear, or an existing node would disappear (with consequent rewiring). The
appearance or disappearance of a node would change the dimensionality of the state
space (to N± 1), and also the underlying attractor structure, and hence change the
computation being performed.

Similarly imagine trying to “grow” a 1D CA. One could add a new cell, growing
the dimensionality of the state space from SN to SN+1. Where should the cell be
added in the line? The CA dynamics is symmetric under renumbering shifts, and so
it should be possible to add the cell anywhere with equal ease. But unless it is added
at special position i = N, subsequent cells have to be renumbered. This illustrates the
tyranny of a global coordinate system: “The introduction of numbers as coordinates
. . . is an act of violence” [102]. Instead we would like a coordinate-free, or purely
topological, approach to growth.

L-Systems. Lindenmeyer’s L-Systems [76] are such a coordinate-free approach to
growth: they are generative grammars that define how symbols in a string are rewrit-
ten (“grow”) depending on their local context (their topology, their neighbourhood
symbols), not on any global coordinate system.

The simplest D0L-Systems (deterministic, context free) can be described in the
notation of this chapter as follows. The state s is a string of elements (symbols)
drawn from the finite alphabet S, so s ∈ S∗. The local dynamics φ (rewriting rules,
or productions) is given by φ : S→ S∗. At each timestep, each element in the state
string4 is updated (rewritten) in parallel: si,t+1 = φ(si,t), and the resulting substrings
concatenated to form the new state string.

In conventional use, one starts from some initial state (axiom) s0 ∈ S+, and fol-
lows the dynamics for several iterations to reveal the “grown” structure. However,
the dynamics does not not necessarily result in a different number of dimensions (a
changed length string). For example [19, 20] use L-Systems to model protein fold-

4 Note here that indices are used merely to identify the string elements in order to help define the
local dynamics. They are not a fundamental part of the string data type, which supports operations
such as insertion and deletion, unlike the fundamentally indexed array data type.
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ing: there the rewriting models the change in conformation of the (rendered) string,
and does not result in any change in the length of the string itself.

In Parametric L-Systems [76], each symbol has associated parameters, and so the
state space is (S×P)∗.

In the context-free case there is no information flow between the dimensions:
each individual dimension grows into new dimensions in a manner based on its own
substate alone. Context-sensitive L-Systems [76] couple the dimensions together,
and define a tree-structured topology on the growing space. In standard L-Systems,
the topology is explicitly encoded in the state string, by use of reserved symbols to
define branching.

L-Systems also include a rendering step, where the symbols in the string are in-
terpreted as commands in some language, typically a turtle graphics language, to
construct a representation of the string [76]. In standard L-Systems this rendering
produces a geometrical structure that follows the tree-structured topology of the
state space, typically to produce rendered images of plants. However, other render-
ings are possible, and can produce non-geometric outputs and outputs with different
topologies. For example, [35] interpret the symbols as instructions for generating
topological descriptions of neural networks.

These simplest L-Systems are autonomous dynamical systems, and any compu-
tation performed in the rendering step is separate from the dynamics of the growth
process.

Parametric L-Systems, where the values of (some) parameters are inputs, are
Type A or Type B open dynamical systems (§3.1.3). In typical L-System applica-
tions, they are used as Type B, because the input is assumed to be coming from
some constrained environmental source (for example day length, or other weather
conditions).

Environmentally-sensitive L-Systems [75] are also Type B open dynamical sys-
tems (§3.1.3), of a different form. The dynamics again takes into account external
inputs (for example, the amount and direction of sunlight, or collision with static
obstacles, when modelling plant growth), but here the particular rendering process
is coupled into the dynamics, as the input is a function of the specific geometry of
the rendered result (rendered leaves shading other leaves, etc), not just the topology
of the abstract state.

Open L-Systems [65] are Type C open dynamical systems (§3.1.3). They include
a feedback process, so the environment is affected by the L-System (for example,
the environment might be the water supply, and the L-System the growing roots
that are affecting the amount of water). Again, this approach couples the particular
rendering process into the dynamics.

P-Systems. Păun’s P-systems [71], and other membrane computing formalisms,
are another form of rewriting systems with an underlying tree-structured topol-
ogy. Here the tree-structure models not the branching of a plant, but the nesting
of membranes, or containers. Membranes contain symbols, and rules that act on the
symbols, and on membranes (creating, connecting, and dissolving them). The com-
putational model successively applies the rules until no more are applicable; the
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Fig. 20 Pask’s schematic indicating the relationship between the electrode array and the ferrous
sulphate medium ([70], as cited by [13, fig.1])

computation has halted, and the symbols in a given membrane are the result of the
computation. Much theoretical effort is expended on determining the computational
power of different classes of membrane systems: Turing-complete systems exist. So
this prototypical system has a rather classical view of computation, but there is a
plethora of variants with different computational models.

Topological approach. Michel and co-workers [26] contrast the “absolute space”
coordinate-based philosophy of Newton, with the relative space, coordinate-free
philosophy of Leibniz, from a computational perspective. Their approach to (dis-
crete) “dynamical systems with a dynamical structure (DS)2” is topological, fo-
cussing on the neighbourhood relation and induced subcollections (essentially a set
of related elements in a neighbourhood). The neighbourhood relation can specify
structures ranging from the regular spatial neighbourhood of a CA to the logical
neighbourhood of a data structure such as a list, graph, or array [27]. The approach
then specifies global dynamics in terms of parallel application of local transforma-
tions that rewrite subcollections [87, 27]. This approach subsumes dynamic rewrit-
ing systems such as L-Systems and P-systems, as well as more static-structured
CA-like rewritings [27].

4.2 Constructive continuous dynamical systems

Gordon Pask was a member of the Cybernetics movement. In the 1950s he built a
system that could “grow” into an “ear” (a sensor capable of detecting sound waves,
or magnetic fields) by adaptively laying down suitable conducting filaments (fig-
ure 20) in response to environmental inputs and a structured “reward” input.
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Cariani [13] provides an excellent review of this work, and some implication in
terms of “organizationally-closed” (that is, able to construct their own input filters),
“informationally-open” systems. In an open, adaptive, self-constructing system

the dimensionality of the signal space can increase over time as new informational channels
evolve. Hill-climbing is thus accomplished not only by following gradients upwards, but
also by changing the dimensionality of the problem landscape when one can go no further
using those dimensions already available.

4.3 Constructive hybrid dynamical systems

Winfree and co-workers [103, 80] are implementing “algorithmic self assembly”.
They use carefully-designed DNA fragments to implement nano-scale “sticky tiles”,
which self-assemble into crystalline structures. The self-assembly can be interpreted
as a computation: which computation is performed depends on the tiles’ design,
which determines which tiles they will stick to. Their running example is the im-
plementation of a rule 90 ECA (which from a single “on” state grows a Sierpinski
gasket). Other tile designs can implement other CAs, or even a representation of the
tape of a TM.

The model of this system is a hybrid system. There is an abstract Tile Assem-
bly Model that captures the discrete dynamics of tiles (the particular CA or TM
behaviour). This is augmented with a kinetic Tile Assembly Model, that captures
continuous properties that account for errors in the assembly process.

They speculate that a similar process could be used to construct molecular elec-
tronic circuits and other nano-scale devices. That is, design a constructive dynamics
to grow a structure that then has an autonomous computational dynamics.

5 Discussion and Conclusions

Classical computational systems can be analysed in terms of autonomous discrete
dynamical systems. The dynamical systems approach can be extended to continuous
systems, to give a computational perspective on embodied computational devices. It
can be extended again, to include open dynamical systems coupled to a structured
dynamical environment, and again to include constructive, or growing systems. The
dynamical systems theory is, however, less well developed in these latter cases.

In addition to the straightforward computational perspective, this dynamical sys-
tems viewpoint gives insight into important properties of complex computational
systems: robustness, and emergence.
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5.1 Robustness

Homeostasis. Robustness is the ability to maintain function in the presence of per-
turbations, stresses, or errors. The system exhibits homeostasis. Classical computa-
tion, on the other hand, is notoriously fragile: a single bit change can completely
alter the behaviour of the system.

From a dynamical systems computational point of view, robustness is the abil-
ity to find the attractor even when perturbed from the current trajectory. A system
will find the attractor from anywhere within its basin of attraction: if a perturbation
nevertheless maintains the basin, the system will be robust to that perturbation.

Here we see the source of classical computation’s fragility: extremely small
basins of attraction, such that any perturbation is likely to move the system to a
different basin, hence to a different attractor, resulting in a different computation.

Compare this situation to the dynamical structure of k = 2 RBNs (§2.1.6). There
a perturbation is likely to leave the system in the same basin. “Small attractors lo-
cated inside a volume of states constituting their basins of attraction are the natural
image of stable systems exhibiting homeostasis.” [43, p.467] So robustness requires
large basins of attraction, which implies relatively few macrostates compared to the
number of microstates.

Continuous systems have greater potential for robustness. They have a notion of
locality: a small perturbation moves the system a small distance in its state space,
and is therefore likely to be in the same basin. (Although it is true that as well as
fractal strange attractors, there can be fractal-structured basins; in such cases a small
perturbation might end up in one of many other basins.) Alternatively, the small
perturbation could be a small change to a parameter. Provided the parameter does
not cross a bifurcation point, this will result in only a small change to the dynamics.

Kitano [45] explicitly casts a discussion of various kinds of biological robustness
in terms of dynamical systems attractors.

Precision. Robustness comes at the price of precision, however. Many microstates
per macrostate means a loss of precision: we no longer distinguish these microstates.
Also, real-valued ouput from a continuous system cannot be measured with arbitrary
precision. Similar to the case when considering the timescales, the precision of the
computation and output should be matched to the precision of the environment and
inputs.

Homeorhesis. Waddington [100] notes that homeostasis is too restrictive a term
when considering growing systems, since they do not have a “steady” state to which
to return: they are embarked on some trajectory through their ever-changing state
space. He introduces the term homeorhesis [100, p.32], meaning “constant flow”, in
that systems actually maintain a constant trajectory through developmental space.
He deprecates the alternative term, canalisation, because it may [100, p.43-44]

suggest too concrete an image to be suitable as a name for the abstract quality to which
it refers; but this seems a less important failing than those involved in the alternative term
homeostasis.
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Note that this implies that the developmental trajectory is in some sense an attrac-
tor of the growth process: a perturbation away from the growth trajectory is attracted
back to that trajectory, not merely to some final attractor state. In biological terms,
this is robust morphodynamics.

5.2 Emergence

The attractors and their basins, and the bifurcation points of parameterised systems,
are emergent properties of their dynamics [92].

Although the microstates are changing on an attractor cycle, this can lead to a
stable macrostate if observed on a timescale longer than the attractor period. In the
dynamical systems view, everything is process (motion on an attractor), but when it
is viewed on a suitable timescale, it can behave like a thing.

An attractor functions as a symbol when it is viewed . . . by a slow observer. If the dynamic
along the attractor is too fast to be recorded by the slow-reading observer, he then may
recognize the attractor only by its averaged attributes . . . , but fail to recognize the trajectory
along the attractor as a deterministic system. [1]

The slow observer does not see the intricate dynamics on the attractor, just some
averaged behaviour, and this dynamics becomes an atomic component in its own
right. What is lost is the microstructure; what remains is a stable pattern that be-
comes an entity in its own right. This connects directly with the concepts of relative
timescales, where there is a sufficient difference between a fast timescale (of the un-
derlying dynamics of the system), and a slower timescale (of the inputs perturbing
the system §3.1.1; of the metadynamic timescales of state space change §4; of the
slow observer of these processes).

These new high-level emergent entities can have their own state space and
(meta)dynamics, particularly when coupled to other dynamical systems such as the
environment, or in some hierarchical structure. So their (higher level) dynamics will
exhibit attractors; motion on these attractors will appear as emergent entities to (even
slower) observers. And so on.

5.3 The Future

These discussions imply that we need a dynamical systems theory of open, con-
structive computational systems, where new dimensions of state space, and new
types of dimensions, are constructed by the computation as it progresses. This will
provide one of the tools we need to enable us to study, understand, design and reason
about robust emergent computational systems, covering the range from classically
discrete, to non-classical embodied systems.
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